Natural Actions, Concurrency and Continuous Time in the
Situation Calculus

Ray Reiter
Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4

and

The Canadian Institute for Advanced Research

email: reiter@cs.toronto.edu

Abstract

Our focus in this paper is on natural exoge-
nous actions (Pinto [23]), namely those which
occur in response to known laws of physics,
like a ball bouncing at times determined by
Newtonian equations of motion. The prop-
erty of such actions that we wish to capture
is that they must occur at their predicted
times, provided no earlier actions (natural
or agent initiated) prevent them from occur-
ring. Because several such actions may occur
simultaneously, we need a theory of concur-
rency. Because such actions may be modeled
by equations of motion, we need to repre-
sent continuous time. This paper shows how
to gracefully accommodate all these features
within the situation calculus, without sacri-
ficing the simple solution to the frame prob-
lem of Reiter [25]. One nice consequence of
this approach is a situation calculus speci-
fication of deductive planning, with continu-
ous time and true concurrency, and where the
agent can incorporate external natural event
occurrences into her plans.

1 Introduction

For the past several years, the Cognitive Robotics
Group at the University of Toronto has been explor-
ing the feasibility of the situation calculus (McCarthy
[19]) as a theoretical and computational foundation for
modeling autonomous agents dwelling in dynamic en-
vironments. It is a challenging research problem to
capture, in a single formal and computational frame-
work, the full range of characteristics associated with
such settings: the frame, ramification and qualifica-
tion problems, exogenous and natural events, chance
events and the unpredictability of action effects, com-
plex actions and procedures and the ability of an agent
to perform such actions, time, concurrency, hypothet-
ical and counterfactual reasoning about action occur-

http://www.cs.toronto.edu/“cogrobo/

rences and time, perceptual actions and their effects
on an agent’s mental state, the complex relationships
among reasoning, perception and action, planning, be-
lief revision in the presence of conflicting observations,
etc. The principal objective of this project is to pro-
vide just such a general theory of actions and time,
and, as noted above, our formal foundation for this
has been the situation calculus.

While we remain far from achieving these long-range
objectives, we have had some modest success in this
undertaking. Starting with a solution to the frame
problem for deterministic, simple actions (Reiter [25]),
we have defined and implemented a novel situation
calculus-based logic programming language for defin-
ing complex agent behaviors (Levesque et al. [14]),
and experimented with it in a robotics application
(Lespérance et al. [12]), and for software agents
(Marcu et al. [18]). Scherl and Levesque [28§]
have given a situation calculus account of sensing
(knowledge-producing) actions, and Bacchus, Halpern
and Levesque have extended this to include noisy sen-
sors [2]. TLin [15] has extended Reiter’s treatment
for deterministic primitive actions to nondeterminis-
tic ones. Levesque [13] has given a situation calculus
account of planning for agents which can sense their
environments. Shapiro, Lespérance and Levesque [31]
have formalized agent goals and rational actions in the
situation calculus. Pinto [23] has proposed a situation
calculus-based account of concurrency, natural actions
and continuous time.

These initial results have encouraged us in our belief
that the situation calculus is well suited to the general
problem of providing a formal and computational ac-
count of complex dynamic domains and agent behav-
iors. This paper is a further step in the direction of
appropriately enriching the situation calculus for this
purpose. Specifically, we suitably modify, and build
on, the earlier work mentioned above by Pinto [23]
and also by Ternovskaia [32]. This we do by providing
an axiomatization of the situation calculus to include
concurrency, continuous time and two kinds of actions:
(1) Those under the control of an autonomous agent

with the “free will” to perform any of these actions
at any time, provided their preconditions are met. (2)
Natural actions — those under nature’s control — which
must occur at their predetermined times provided no
other actions (natural or agent initiated) occur ear-
lier to prevent them from occurring. Towards that
end, we begin by proposing an axiomatization of the
concurrent, temporal situation calculus. With these
axioms in hand, we define the legal situations, which
are those that respect the property of natural actions
that they must occur at their predicted times, unless
something happens to prevent them. We then prove
some intuitively desirable properties of these legal sit-
uations, for example, that worlds which lack agents
with “free will” evolve deterministically, and we es-
tablish regression-based methods for verifying that a
given situation is legal (the projection problem). One
nice consequence of this approach is a situation cal-
culus theory of deductive planning, with continuous
time and true concurrency, and where the agent can
incorporate external natural event occurrences into her
plans.

2 Formal Preliminaries

2.1 The Language of the Situation Calculus

We begin by expanding the situation calculus ontology
beyond that of Lin and Reiter [16] and Reiter [26].
The situation calculus is a sorted second order lan-
guage with the following sorts, function and predicate
symbols:

1. There is a sort action of simple actions. Con-
ceptually, all simple actions are instantaneous,
and every function symbol of sort action takes
a parameter (in the last argument position) de-
noting the time of the action’s occurrence. So,
start_meeting(person,t) might be the instanta-
neous action of person starting a meeting at time
t. This will make the notion of concurrent ac-
tions relatively unproblematic, which is not the
case when actions have durations, and therefore
may overlap in complicated ways (Gelfond, Lifs-
chitz and Rabinov [7]).

2. A sort time ranging over the reals.

3. A function symbol time: time(a) denotes the oc-
currence time of the simple action a.

4. A function symbol start: start(s) denotes the
start time of the situation s.

5. A new sort concurrent; these are sets of simple
actions. We do not axiomatize sets, but instead
rely on the standard interpretation of sets and
their operations (union, intersection, etc) and re-
lations (membership, subset, etc). This is in the
same spirit as our treatment of the sort time; we
do not axiomatize the reals for this purpose, but

instead rely on the standard interpretation of the
reals and their operations (addition, multiplica-
tion etc) and relations (<, <, etc). To distinguish
the sorts action and concurrent, we use variables
a,a’,...and ¢, ¢, ... respectively.

6. As in the sequential situation calculus, we have a
sort situation, but now ranging over sequences of
concurrent actions.

7. A binary function symbol do : concurrent x
situation — situation, and a constant Sy denot-
ing the initial situation.

8. The sequential situation calculus has a distin-
guished predicate symbol Poss; Poss(a, s) means
that simple action a can be executed in the situ-
ation s. We extend Poss to concurrent actions,
and will write Poss(c, s) to mean that the con-
current action c¢ is possible in situation s.

9. The sequential situation calculus has a distin-
guished predicate symbol <. s < s’ means that
one can get from situation s to situation s’ by a
sequence of executable (possible) simple actions.
We extend < to concurrent actions, so that s < s’
will mean that one can get from situation s to sit-
uation s’ by a sequence of executable (possible)
concurrent actions.

10. Finally, there are predicate symbols natural,
coherent, legal and Intp, to be described later.

2.2 Foundational Axioms for the Concurrent,
Temporal Situation Calculus

Lin and Reiter [16] and Reiter [26] provide founda-
tional axioms for the sequential situation calculus.
These need to be generalized to the concurrent, tem-
poral setting, which we now do. Our assumption that
all simple actions are instantaneous makes this gener-
alization relatively unproblematic.

We begin by postulating a second order induction ax-
iom:

(VP).P(So) A (Ve, s)[P(s) D P(do(e, s))] (1

D (Vs)P(s).
We need the following unique names axioms for situa-
tions:
So # do(e, s),! (2)
do(c,s) =do(c',s') De=c ANs=5". (3)

The time of an action occurrence is the value of that
action’s temporal argument. So, for each action func-
tion A(¥,t) of our situation calculus language, we need
an axiom:

time(A(%,1)) = t, (4)

'In what follows, lower case Roman characters will de-
note variables in formulas, unless otherwise noted. In ad-
dition, free variables will always be implicitly universally
prenex quantified.

as, for example, in

time(start_meeting(person,t)) =t.

Following Lin and Shoham [17], Pinto [23] and oth-
ers we treat concurrent actions as sets, possibly infi-
nite, of simple actions. As we’ll see later, the pos-
sibility of infinitely many actions occurring concur-
rently must be taken seriously, so that the obvious
notation a||az|| - - -||an cannot accommodate this pos-
sibility. Because concurrent actions are sets of simple
actions, we can use the notation a € ¢ to mean that
simple action a is one of the actions of the concurrent
action c.

We require that concurrent actions be coherent, which
is to say, there is at least one action in the collection,
and that all of the (instantaneous) actions in the col-
lection occur at the same time:

coherent(c) =
(3a)a € ¢ A (3t)(Ya)[d’ € ¢ D time(a') = 1].)

We can now extend the function ¢ime from simple ac-
tions to concurrent ones, and we can define the func-
tion start, as follows:

coherent(c) D

[time(c) =t = (Fa)(a € c Atime(a) =1)] (6)
Astart(do(c, s)) = time(c).

Notice that we do not define the start time of Sy; this
is arbitrary, and may (or may not) be specified to be
any real number, depending on the application.

Not every action is executable in every situation. Ac-
cordingly, we introduce a binary predicate Poss(c, s),
meaning that it is possible to execute concurrent ac-
tion ¢ in situation s. What can we say in general about
the preconditions of concurrent actions? At the very
least, we need the following:

Poss(a,s) D Poss({a},s), (7)
]

Poss(e, s) D coherent(c) A (Va)[a € ¢ D Poss(a, s)].
(8)
As we shall see in Section 3.3, the converse of (8) need

not hold.

Finally, we need to reconsider the relation < on situa-
tions as axiomatized for the sequential, non-temporal
situation calculus in Lin and Reiter [16] and Reiter
[26]. The intended interpretation of s < s’ is that
situation s’ is reachable from situation s by some se-
quence of one or more concurrent actions, each con-
current action of which is possible in that situation
resulting from executing the actions preceding it in
the sequence. Consider the situation

do({collide(B1, By, 4), endlunch(Bill,4)},
do({start_meeting(Susan,6)}, So)),

in which the time of the second action precedes that of
the first. Intuitively, we do not want to consider such

an action sequence possible, and we amend the foun-
dational axioms for < in the sequential, non-temporal
case accordingly:

=18 < So, (9)

s < do(e,s') = Poss(e,s') As < s A

start(s') < time(c). (10)

Here, s < s’ is an abbreviation for s < s’ Vs = s’
Now, s < s’ means that one can get to s’ from s by a
sequence of possible concurrent actions, and moreover,
the times of those action occurrences must be nonde-
creasing. Notice that we are overloading the predicate
<; it is used to order situations as well as real numbers
in the temporal domain. It will always be clear from
context which usage we mean. Finally, notice that the
constraint start(s’) < time(c) in axiom (10) permits
action sequences in which the time of an action may
be the same as the time of a preceding action, without
requiring that these actions occur concurrently. For
example,

do({collide(B1, Ba,4), enddunch(Bill, 4)},
do({start_-meeting(Susan,4)}, So)),

might be a perfectly good situation accessible from
Sp- This situation is defined by a sequence of two con-
current actions, each of which has the same occurrence
time. We allow for this possibility because often an ac-
tion occurrence serves as an enabling condition for the
simultaneous occurrence of another action. For exam-
ple, cutting a weighted string at time ¢ enables the ac-
tion start_falling(t). Both actions occur at the same
time, but conceptually, the falling event happens “af-
ter” the cutting. Accordingly, we want to allow the sit-
uation do({start_falling(t)}, do({cut_string(t)}, So)).

The axioms (1) - (10) are the foundational axioms for
the concurrent, temporal situation calculus.

3 Axiomatizing Concurrent Worlds

Most actions (picking up a block, going from one loca-
tion to another) take time. What use, then, is a theory
of actions in which all actions are instantaneous? As
observed by Pinto [23] and Ternovskaia [32], the trick
for making this work in the situation calculus is to
concelve of such actions as processes, represented by
fluents, and to introduce durationless actions which
initiate and terminate these processes. For example,
in a blocks world, we might have instantaneous ac-
tions start_pickup(z,t) and end_pickup(z,t), and the
process of picking up z is represented by the fluent
picking_up(z,t,s). start_pickup(z,t) causes the fluent
picking_up to be true, end_pickup(z,t) causes it to be
false. In those situations s in which picking_up(z,t,s)
is true, we can describe those properties of the world,
for example the position of the agent’s hand as a func-
tion of ¢, which must be true during the evolution of
the process picking_up.

3.1 Successor State Axioms

Reiter [25], building on the ideas of Pednault [21] and
of Haas [9] and Schubert [29], proposes a solution to
the frame problem for deterministic, nonconcurrent ac-
tions in the absence of state constraints. This provides
a systematic way of obtaining so-called successor state
aztoms from the effect axioms. We have to generalize
these successor state axioms slightly, to take concur-
rency into account. This is quite straightforward, fol-
lowing the proposals of Pinto in his Ph.D. thesis [23]
and Ternovskaia [32]. So, we will write formulas like:

Poss(c, s) D [picking_up(z,do(c,s)) =
(3t)start_pickup(x,t) € c V
picking_up(z, s) A ~(3t)end_pickup(z,t) € ¢].

A more interesting example is due to James Allen [1].
Imagine a door with a spring latch. The door can
be unlocked by turning the latch, but the agent must
keep the latch turned, for if not, the spring loaded
mechanism returns the latch to its locked position. To
open the door, the agent must turn the latch, and
keep 1t turned while she pushes on the door. The
concurrent latch turning and door pushing causes the
door to open. Neither action by itself will open the
door. This is easy to do in the situation calculus if
we view the action of turning and holding the latch
open, which intuitively would have a duration, as a
composite of two instantaneous actions, turn_latch(t)
and release_latch(t), whose effects are to make the
fluent locked(s) false and true respectively. In the
same spirit, we treat the action of pushing on a door,
which also would intuitively have a duration, as a
composite of two instantaneous actions start_push(t)
and end_push(t), whose effects are to make the fluent
pushing(s) true and false respectively. The appropri-
ate successor state axiom for open is:

Poss(c, s) D [open(do(c, s)) =
(Ft)[turnlateh(t) € ¢ A start_push(t) €
pushing(s) A (It)turnlatch(t) € ¢V
—locked(s) A (3t)start_push(t) € ¢V open(s)].

Y

Those for pushing and locked are:

Poss(c,s) D [pushing(do(c,s)) =
Vpushing(s) A =(3t)end_push(t) € c],

Poss(c,s) D
Viocked(s) A

[locked(do(c, s)) = (Ft)release_latch(t) €
—(3t)turnlatch(t) €].

Another interesting example is due to Rob Miller.?
Turning on the hot water faucet causes hot water to
run (denoted by the fluent hot(s)); similarly for turn-
ing on the cold. Both the hot and cold water faucets
share a common spout, so if only the hot water is run-
ning, you will burn your hand. This example is of

2 . .
Personal communication.

(3t)start_push(t) € ¢

cc

interest because the occurrence of the action of turn-
ing on the cold water faucet cancels the effect of a
co-occurrence of turning on the hot.

Poss(e, s) D [hot(do(e, s)) = (3t)turnonHot(t) € ¢ V
hot(s) A —=(3t)turnoffHot(t) € ¢].
Poss(e, s) D [eold(do(c, s)) = (3t)turnonCold(t) € ¢ V

cold(s) A —(3t) turnoffCold(t) € c].

The following successor state axiom captures the con-
ditions for burning oneself:

Poss(c, s) D [burn(do(c, s)) =
—cold(s) A (3t)turnonHot(t) E cA
—(3t)turnonCold(t) €
V=hot(s) A cold(s) A (Ehf)turnonHot(t) EcA
(Ft)turnoffCold(t) € ¢
Vhot(s) A cold(s) A —=(3t)turnoffHot(t) € ¢ A
(3t)turnoffCold(t) € ¢

Vburn(s)].

3.2 Action Precondition Axioms

The approach of Reiter [25] to axiomatizing dynamic
worlds in the situation calculus relies on a collection of
action precondition arioms, one for each action type,
and we also rely on such axioms here. These spec-
ify necessary and sufficient conditions under which the
action is possible. For example, in a blocks world, we
might have the following action precondition axiom for
the action pickup(z), by a one-handed robot:

s) = [(Vy)—holding(y, s)] A

clear(z,s) A —heavy(z,s).

Poss(pickup(z),

In general, an action precondition axiom will have the
syntactic form:

Poss(A(Z,1),s) = ®(&,1, s). (11)

Here, ®(#,1, s) is any first order formula with free vari-
ables among #,t and s whose only term of sort situa-
tion is s.

3.3 The Precondition Interaction Problem

Our approach to axiomatizing actions appeals to ac-
tion precondition azxioms for specifying the precondi-
tions of simple actions. These have the syntactic form
(11). As pointed out by Pelavin [22] and Pinto [23], in
the case of action preconditions for concurrent actions,
the converse of (8) need not hold. Two simple actions
may each be possible, their action preconditions may
be jointly consistent, yet intuitively they should not be
concurrently possible. Pinto calls this the precondition
interaction problem. Here is a simple example, after a

similar example of Pelavin [22]:
Poss(start_move_left(t), s) = ~moving(s).

Poss(start_move_right(t), s) = ~moving(s).

Intuitively,

Poss({start_-move_le ft(t), start_move_right(t)}, s)
should be false. With reasonable successor state ax-
ioms, we should be able to derive something like:

Poss({start_move_le ft(t), start_move_right(t)},s) D
moving _right(
do({start_move_left(t), start_move_right(t)},s)),

and

Poss({start_move_le ft(t), start_move_right(t)},s) D
moving le ft(
do({start_move_left(t), start_move_right(t)},s)).

So, in the presence of a reasonable state constraint like:
—[moving_right(s) A moving_le ft(s)],
we could derive

—Poss({start_move_le ft(t), start_move_right(t)}, s).

These are complicated i1ssues which need to be looked
at more closely; see Pinto [23] for a more extensive
discussion. We shall ignore them here, except to note
that the ideas in the rest of this paper require no com-
mitment, one way or another, to the form of a solution
to the precondition interaction problem.

3.4 Infinitely Many Actions Can Co-Occur

Nothing prevents one from writing:
Poss(A(z,t),s) =t =1,

in which case A(z, 1) can co-occur, for all z. So if z
ranges over the natural numbers (or the reals, or ...)
we get lots of possible co-occurrences.

4 Natural Actions

Our focus in this paper is on natural exogenous actions
(Pinto [23]), namely those which occur in response to
known laws of physics, like a ball bouncing at times
determined by Newtonian equations of motion. These
laws of physics will be embodied in the action precon-
dition axioms, in the style of Pinto’s PhD thesis [23],
but in a somewhat more natural form:
Poss(bounce(t), s) = is_falling(s) A {height(s) +
vel(s)[t — start(s)] — 1/2g[t — start(s)]? = 0}.

Here, height(s) and vel(s) are the height and velocity,
respectively, of the ball at the start of situation s.

Notice that the truth of Poss(bounce(t),s) does not
mean that the bounce action must occur in situation s,
or even that the bounce action must eventually occur.
It simply means that the bounce is physically possible
at time ¢ in situation s; a catch action occurring before
t should prevent the bounce action.

We introduce a predicate symbol natural, with which
the axiomatizer can declare suitable actions to be nat-
ural, as, for example, natural(bounce(t)).

4.1 Natural Actions and Legal Situations

In the space of all possible situations, we want to single
out the legal situations, i.e. those which respect the
property of natural actions that they must occur at
their predicted times, provided no earlier actions (nat-
ural or agent initiated) prevent them from occurring.
We capture these legal situations with the following
definition:
legal(s) = [So < s A
(Va, ¢, s').natural(a) A Poss(a,s’) Ado(c,s') < s D
a € ¢V time(c) < time(a)].
(12)
This definition may initially be a bit difficult to under-
stand; the following provides a more intuitive inductive
characterization of the legal situations.

Lemma 1 The foundational axioms imply that the
definition (12) is equivalent to the conjunction of the
following two sentences:
legal(So).
legal(do(e, s)) = [legal(s) A Poss(e,s) A
start(s) < time(c) A
(Va).natural(a) A Poss(a,s) D
a € ¢ Viime(e) < time(a)].

Proof:

= Straightforward.

< Use the induction axiom (1), with the definition
(12) as induction hypothesis.

4.2 An Example: Enabling Actions

In the discussion following the presentation of axiom
(10), we noted the possibility of situations containing
two or more concurrent actions with the same occur-
rence times. We now provide an example where this
is a desirable feature of our axiomatization. Consider
a scenario in which an agent is holding an object. At
some time she releases the object, enabling it to start
falling. The start_falling action i1s a natural action,
which is to say, it must occur immediately after the
release action. For simplicity, assume that once the
object starts to fall, it continues falling forever.
start(Sp) = 0, holding(Sy), —falling(Sy).
natural(a) = (3t)a = start_falling(t),
Poss(release(t), s) = holding(s) A start(s) < t,
Poss(start_falling(t), s) = —holding(s) A
—falling(s) A start(s) <t,
Poss(c,s) D [falling(do(c, s)) =
(Ft)start_falling(t) € ¢V falling(s)],
Poss(e, s) D [holding(do(ec, s)) = (3t)cateh(t) € ¢ V
holding(s) A —(3t)release(t) € c].
Then, the following is a legal situation:
do({start_falling(1)}, do({release(1)}, So)).

The following is not a legal situation:

do({start_falling(2)}, do({release(1)}, Sp)).

4.3 Zeno’s Paradox

Legal situations admit infinitely many distinct action
occurrences over a finite time interval. Consider the
natural action A:

Poss(A(t),s) =t = (1 + start(s))/2,

with start(Sp) = 0. Then for any n > 1, the situa-
tion do([A(1/2),..., A(1 — 1/2™)],S,) is legal.> This
means that if B is another action, natural or not, with
Poss(B(t),s) =t = 1, then B(1) never gets to be
part of any legal situation; it never happens! This
is arguably the right intuition, given the idealization
of physical reality involved in the axiomatization of A.
There does not appear to be any simple way to prevent
Zeno’s paradox from arising in temporal axiomatiza-
tions like ours. Of course, this is not really a paradox,
in the sense that such examples do not introduce any
inconsistencies into the axiomatization. See E. Davis
[4] for a deeper discussion of these issues.

4.4 The Natural World Condition

This 1s the sentence:
(Va)natural(a). (NWC)

The Natural World Condition restricts the domain of
discourse to natural actions only.

Lemma 2 The following is a consequence of the foun-
dational azioms and the definition (12):

legal(do(c,s)) Alegal(do(c’,s)) A\NWC D e=c.
Proof:

Suppose, for fixed e, ¢, s, that legal(do(e,s)),
legal(do(c',s)), and NWC. Then, by Lemma 1,

Poss(ec,s), and Poss(c’,s), and therefore, by (8),
coherent(c) and coherent(c’).
1. First we prove a € ¢ D a € ¢. Suppose, to

the contrary, that there is some «, with a € c,
but o« ¢ ¢. By NWC, natural(a). Since
Poss(c,s), we have Poss(a,0) by (8). Hence,
since legal(do(c’, s)), we conclude, with the help
of Lemma 1, that

time(c') < time(a). (13)

Since coherent(c'), ¢’ is nonempty by (5), so there
exists § such that § € ¢’. Since Poss(c¢/,s), by
(8), we conclude Poss(3,s). Since natural(f),
we conclude, by Lemma 1, that

B € ¢V time(c) < time(f (14)

).
But, since coherent(c) and coherent(c’), we have
time(a) = time(e) and time(8) = time(c'),

®do([a1,...,an],s) abbreviates the situation reached
from s by performing the actions ay,...,a, in sequence.

and these, together with (13), imply time(8) <
time(c). This, together with (14), implies § € c.
Since coherent(c), time(F) = time(c), which con-
tradicts time(B) < time(c).

2. The proof that @ € ¢’ D a € c is entirely symmet-
ric to the previous one.

Combining 1 and 2, we conclude ¢ = ¢'.

O

Intuitively, the above lemma tells us that natural
worlds are deterministic: If there is a legal successor
situation, it is unique. The following theorem extends
Lemma 2 to histories: When there are only natural
actions, the world evolves in a unique way, if it evolves
at all.

Theorem 1 The foundational axioms and the defini-
tion (12) entail the following:

legal(s)Alegal(s')ANWC D Sy <5 <s'VSp < s <s.

Proof:

The proof is by induction on s, using the induction ax-
iom (1). The case s = .Sy is immediate, so assume the
result for s, and suppose legal(do(c, s)) A legal(s') A
NWC. We must prove Sy < do(e,s) < s’V .Sy <
s’ < do(e, s). Since legal(do(c s)), then by Lemma 1,
legal(s) and Poss(c,s). Hence, by the induction hy-
pothesis, we conclude Sy < s <s'VSy <s <s.
Case 1: Sp <s< s

Case 1.1: s = s'. Then, because Poss(c,s), s <
do(e, s) by axiom (10), so, Sy < s’ < do(c, s).

Case 1.2: s < s'.

We require the following two results, each of which is
provable by induction on s’.

(Vs,s').s < s’ D (3c)do(e,s) < &, (15)
(Vs,s').legal(s") A s < s" D legal(s). (16)

Now, by (15), do(c¢’,s) < s’ for some ¢/. Moreover,
because legal(s'), we have, by (16), legal(do(c’, s)).
Since also legal(do(e, s)), then by Lemma 2, ¢ = ¢/,
and we conclude that Sy < do(c,s) < s'.

Case 2: Sy < s <s.

Since Poes((’ s), “then by axiom (10), s' < do(c,s),
and by the transitivity of < (provable by induction),
we conclude Sy < s’ < do(e, s).

4.5 Least Natural Time Points

The following definition plays a central role in theoriz-
ing about natural actions:

Intp(s,t) =
(Ja)[natural(a) A Poss(a,

v s) A time(a)
(Va)[natural(a) A Poss(a,

=1 A
s) D time(a) > t].

(17)

Intuitively, the least natural time point is the earliest
time during situation s at which a natural action can
occur.

Remark 1 (17) entails the following:
Intp(s,t) Alntp(s,t') Dt =1

So, when it exists, the least natural time point is
unique. The least natural time point need not exist, for
example, when (Va).natural(a) = (3z,t)a = B(z,1),
where z ranges over the nonzero natural numbers, and
Poss(B(z,t),s) =t = start(s) + 1/z.

Lemma 3 Our situation calculus arioms entail:
natural(a) Alegal(do(c, s)) Aa € ¢ D Intp(s,time(a)).

Proof:
Assume that natural(a), legal(do(c, s)) and a € ¢, for
fixed a, ¢, s. Since legal(do(c, s)), we know, by Lemma
1, that Poss(e, s), and therefore, by (8) that Poss(a, s)
and coherent(c). We must prove Intp(s,time(a)).
By the definition of Intp, it is sufficient to prove
(Va').natural(a’) A Poss(a’,s) D time(a') > time(a).
So, for fixed @', assume natural(a’) A Poss(a’,s). We
prove time(a’') > time(a). Since legal(do(c,s)), we
know, by Lemma 1, that

a' € cVtime(c) < time(a'). (18)
Moreover, since coherent(c) and since a € ¢, we con-
clude from (5) that time(a) = time(c). (18) gives two
cases:
Case 1: time(c) < time(a'). Since time(a)
time(c), we have time(a’) > time(a).
Case 2: a’ € c. Since coherent(c), we infer time(a’)
time(c). Since time(a) = time(c), then time(a’)
time(a).

O

So, whenever do(c, s) is legal, ¢’s natural actions all
co-occur at the least natural time point of s. All the
actions that must co-occur first, according to the “laws
of motion”, actually do co-occur.

In the case of a domain closure assumption on natural
actions, we can give an explicit formula for Inip(s,t).
So, suppose we have the following domain closure ax-
iom:

natural(a) = (32,t)a = A (Z,t) V- V

(37)a = A, (21, ()
together with the associated declarations (4):
time(A1(Z,t)) = t,
: (20)

time(An (:Z,t)_) =1.

Lemma 4 (17), (19) and (20) entail the following:
Intp(s,t) =
[(3Z) Poss(A1(Z,t),s) V- -V (IZ) Poss(An(Z,1), s)] A
(VZ,t")[Poss(A1(Z,t'),8) Dt >t]A---A
(VZ,t")[Poss(An(Z

The Least Natural Time Point Condition

In view of the possibility of “pathological” axiomati-
zations, for which the least natural time point may not
exist (see comments following Remark 1), we introduce
the following sentence:

(Vs).(3a)[natural(a) A Poss(a,s)] D

(Ft)intp(s,t). (LNTPC)

Normally, it will be the responsibility of the axioma-
tizer to prove, usually by induction, that his axioms
entaill LNTPC.

Theorem 2 Our situation calculus axioms entaul:

LNTPC D
legal(do(e, s)) = {legal(s) A Poss(c,s) A
start(s) < time(c) A
[(Va).natural(a) Atime(a) < time(c) D
[a € ¢ = Poss(a, s) Alntp(s,time(a))]]}.

Proof:

=

Assume LNTPC, and for fixed ¢, s, legal(do(e, s)).
By Lemma 1, we conclude legal(s), Poss(c,s) and
start(s) < time(c). So we must prove:

(Va).natural(a) A time(a) < time(c) D
[a € ¢ = Poss(a, s) Alntp(s,time(a))].

So, for fixed a, assume natural(a) Atime(a) < time(c);
we prove: a € ¢ = Poss(a, s) Alnip(s,time(a)).

1. Assume a € ¢; we prove Poss(a,s) A
Intp(s,time(a)). Since Poss(e,s), we know
Poss(a,s) by (8). By Lemma 3, we know
Intp(s,time(a)).

2. Assume Poss(a, s)Alntp(s,time(a)); we prove a €
c. Since legal(do(c, s)), then by Lemma 1: a €
¢ Vtime(e) < time(a). Since time(a) < time(c),
we conclude a € c.

=
Assume LNTPC, and for fixed ¢;s, legal(s),
Poss(c, s), start(s) < time(c), and

(Va).natural(a) A time(a) < time(c) D (21)

[a € ¢ = Poss(a, s) Alntp(s,time(a))].

By Lemma 1, we must prove: (Ya').natural(a’) A
Poss(a’;s) D d € ¢V time(e) < time(a).
So, for fixed o', assume natural(a’) A Poss(a’,s) A
time(a’) < time(c). We must prove that o' €
e. By (21), it is sufficient to prove Poss(a’,s) A
Intp(s,time(a’)). We already know that Poss(a’,s),
so we must prove Intp(s,time(a’)). By LNTPC, we
have Intp(s, 7) for some 7, so there is an a such that
natural(a) A Poss(a, s) Atime(a) = 7. We prove that
time(a') = time(a), from which the desired conclusion
Intp(s,time(a’)) follows. Now, because Poss(da’,s)
and natural(a’), we have time(a’) > time(a). There-
fore, because time(a’) < time(c), time(a) < time(c),

so by (21), o € ¢. Since Poss(c,s), by (8) and (5),
time(a) = time(c). Since time(a') > time(a) =
time(c), and since also time(a’) < time(c), we con-
clude time(a’) = time(a). Hence, we have proved
a €ec.

Theorem 3 OQur situation calculus arioms entail the
following:

LNTPCANWC D
legal(do(e, s)) = {legal(s) A Poss(c,s) A
start(s) < time(c) A
(Va)[a € ¢ = Poss(a, s) Alntp(s, time(a))]}.

Proof:

The <« direction follows immediately from Theorem 2.
To prove the = direction, assume that LNTPC and
NWC, and, for fixed ¢ and s, that legal(do(c, s)). We
must prove: (Va).a € ¢ = Poss(a s)Alntp(s, time(a)).
By Lemma 1, we have Poss(c, s), and

(Va).Poss(a,s) D a € cViime(e) < time(a). (22)

1. Suppose a € e¢. Since Poss(ec,s), then by (8)
we know that Poss(a,s). Tt remains to prove
Intp(s,time(a)). This follows immediately from
Lemma 3.

2. Assume Poss(a,s) A Intp(s,time(a)). We must
prove a € e¢. Since Poss(e,s), then by (8),
coherent(c) and hence ¢ is nonempty. So, there
exists a such that o € ¢. Since Poss(c, s), then by
(8), we know that Poss(a, s) and coherent(c), so
by (5), time(a) = time(c). Since Intp(s,time(a)),
we have that time(a) = time(c) > time(a). So,
by (22), we conclude a € c.

O

This theorem informs us that for natural worlds satis-
fying LNT PC', we obtain the next legal situation from
the current one by assembling into ¢ all the possible
actions occurring at the least natural time point of
the current situation, provided this collection of natu-
ral actions is possible, and the least natural time point
is greater than or equal to the start time of the cur-
rent situation. Intuitively, this is as it should be for
natural worlds. Theorem 3 provides the theoretical
foundation for a situation calculus-based simulator for
physical systems (Kelley [10]).

The Concurrent Natural Actions Assumption

This is the following sentence:

A (Ya)[a € ¢ D natural(a) A Poss(a, s)]
D Poss(c, s). (CNAA)

coherent(c)

This says that a coherent collection of natural actions
is possible if each individual action in the collection
is possible. In other words, the precondition interac-
tion problem does not arise for co-occurring natural

actions. This seems to be an assumption about the
accuracy with which the physics of the world has been
modeled by “equations of motion”, in the sense that
if these equations predict a co-occurrence, then this
co-occurrence really happens in the physical world, so
that in our situation calculus model of that world, this
co-occurrence should be possible.

Using this and (8), we obtain the following:

Lemma 5 Our situation calculus arioms entail:

CNAANA (Ya)la € ¢ D natural(a)] D
Poss(ec, s) = coherent(c) A (Va)[a € ¢ D Poss(a, s)].

Corollary 1 OQur situation calculus axioms entaul:

LNTPCANWCACNAAD
legal(do(ec, s)) = {legal(s) A (a)a € ¢ A
start(s) < time(c) A
(Va)[a € ¢ = Poss(a, s) Alntp(s, time(a))]}.

Proof:
By Theorem 3, it is sufficient to prove that

LNTPCANWCACNAAD
(Ja)a € ¢ A start(s) < time(c) A
(Va)la € c = Poss(a s) Alntp(s,time(a))]

Poss(c, s) A start(s) < time(c) A
(Va)[a € ¢ = Poss(a, s) Alntp(s, time(a))].

So, assume LNTPC A NWCACNAA. The < di-
rection is straightforward, using Lemma 5, and the
definition (5) of coherent. To prove the = direction,
assume, for fixed a, ¢, and s, that (Ja)a € ¢, and
(Va)la E c = Poss(a 5) A lntp(s time(a))]. It is suf-
ficient to prove Poss(c,s). By Lemma 5 and NWC,
it is sufficient to prove coherent(c) A (Va)la € ¢ D
Poss(a,s)]. The second conjunct follows from NWC,
so we must prove coherent(c), which is equivalent, by
(5), to (Fa)a € ¢ A (Elt)(Va)[a € ¢ D time(a) = t].
The first (‘onJun(‘f is given by assumption, so we are
left with proving (3t)(Va)la € ¢ D time(a) = t].
Suppose, for the purposes of deriving a contradiction,
that (V¢)(3a).a € ¢ A time(a) # t. By assumption,
(Ja)a € c, so, for fixed a, suppose a € ¢. Then we
must have (a).a € cAtime(a) # time(a), so for some
fixed o', we have &’ € ¢ A time(a’) # time(a). Be-
cause o« € ¢ and o € ¢, we infer Intp(s,time(a)
and Intp(s,time(a’)), so by Remark 1, time(a’) =
time(a), contradiction.

5 Some Consequences of this
Approach

5.1 Planning with Concurrent and Natural
Actions

The classical specification of the planning task is by
Green [8], and concerns a single agent in complete con-
trol of all actions that can be performed in the world

being modeled. A ground situation term o is a plan

for G iff
Azioms = Sp < 0 AG(0).

Here, Azioms provide the relevant background theory.

In view of the approach of this paper, we can now
generalize Green’s definition to the case of a single
agent with the “free will” to perform a repertoire of
actions under her control, and a complementary set
of natural actions under nature’s control: A ground
situation term o is a plan for G iff

Azioms = legal(o) A G(0).

Here, Azioms includes the foundational axioms and
the associated definitions of this paper. It will also
include action precondition and successor state ax-
ioms for the actions under consideration, unique names
axioms for actions, and axioms specifying the initial
world situation.

This means we now have a situation calculus specifica-
tion of deductive planning, with continuous time and
true concurrency, and where the agent can incorporate
ezxternal natural event occurrences into her plans.

With the exception of Levesque’s work on planning for
agents with perceptual actions [13], this appears to be
the first significant generalization of Green’s classical
formulation of deductive planning.

5.2 Regression

Lemma 1 provides a basis for establishing legality by
regression (Waldinger [33], Pednault [21], Reiter [25]).
When LNTPC holds, Theorem 2 provides a better
regression mechanism, and when also NWC' is true,
we can use Theorem 3.

While our focus in the previous section was on spec-
ifying what counts as a plan for agents in concurrent
worlds with natural actions, we note that a regression-
style planning algorithm could be based on Theorem
2, at least in the case when LNT PC holds.

5.3 Example

We consider a generalization of an example that Pinto
used in his Ph.D. thesis [23], which involves two nat-
ural actions and an agent’s “free will”. Two perfectly
elastic balls, B; and Bs, are rolling parallel to each
other on a frictionless floor, between two parallel walls.
Their motions are orthogonal to the walls, so we can
expect them to bounce indefinitely between the two
walls, unless the agent catches one or both of them,
which he is free to do. Take the first wall to be the
y-axis, the second wall to be distance W > 0 to the
right of the first wall, and the balls start their motion
towards the right, beginning at the first wall. Initially,
Bs has twice the velocity of Bj.

Initial Situation

W > 0, pos(B1,So) = pos(Ba, Sy) =0, vel(By,S0) >0,
vel(Ba, So) = 2xwel (B, Sp), start(Sy) =0, By # Ba,

natural(a) = (3t).a = bounce(By,t)Va = bounce(Ba,t).

Action Precondition Axioms

Poss(bounce(b,t), s) =
[b: Bl Vb= BQ]/\U@Z(b,S) # 0A

[vel(b,s) > 0 Dt = start(s) + %sb)_sl] A
[vel(b,5) < 0Dt = start(s) — Lb]

Poss(catch(b,t),s) =
vel(b,s) # 0 A ~Poss(bounce(b,t), s).

Successor State Axioms
Poss(c,s) D pos(b,do(c, s)) =
vel(b, s) * (
Poss(e,s) D vel(b,do(c, s)) =
if (3t)catch(b,t) € c then
else if (3¢t)bounce(b,)

else vel(b, s).

os(b, s) +
e(c) — start(s)).

Ec then — vel(b, s)

Least Natural Time Points

Using Lemma 4, and induction, we can show that:

Intp(s,t) = Poss(bounce(Bs,t),s) V
Poss(bounce(Bi,t),s) A (Vt')Poss(bounce(Ba,t'), s).

It follows that LNT PC' holds. Notice that we have
not proved that (Vs)(3t)Intp(s,t). In fact, this is false;
A {catch(By,1), catch(Bs,1)} concurrent action could
intervene in some situation. This would prevent any
bounce action from occurring in the resulting situation,
so this resulting situation would have no least natural
time point.
n*xW

For n = 1,2,... m. The e
are the times at which ball By will bounce, assuming
no catch(Bs,t) actions occur. Then the following se-
quence of concurrent actions leads to a legal situation,
provided the two actions in the concurrent actions are
jointly possible

{bounce(B2, 1)}, {bounce(B1, 1), bounce(Ba,)},
{bounce(Ba, 7'3)} {bounce(B1, 14), bounce(Ba, 14) },
{catch(Bs, [1a + 75]/2)}, {bounce(B1, 76)},
{bounce(B1,13)}, {catch (B, 19)}.

This could be proved by regression, using Theorem 2,
but doing so by hand would be too tedious here.

define 7, =

Notice that the following action, performed in
So may, or may not lead to a legal situation:
{catch(B1,11/2), catch(Bs, 71 /2}. That depends on
whether or not the two catch actions are jointly pos-
sible. If the agent is a one-handed robot, then any
axiomatization of the agent’s abilities will include

(Ve, s).Poss(c, s) D
—(3z,y,t).2 £ y Acatch(z,t) € c A catch(y,t) € c

This 1s another instance of Pinto’s precondition in-
teraction problem. Notice that all the results of this
paper are independent of any assumptions about this
problem.

5.4 Discrete Time

Nothing in the previous discussion requires time to
be continuous. We consider here the consequences of
relaxing this assumption. Specifically, we imagine the
time line to be the integers (positive and negative), so
that the sort tzme now ranges over these. Notice that
Zeno’s paradox cannot arise in this setting. When time
is discrete, we have the following:

Lemma 6 Suppose:

1. The time line ranges over the integers.

2. The domain closure ariom (19) holds for natural
actions.

3. Each natural action A;(¥,t) has an action pre-
condition axiom logically equivalent to one of the
form:

Poss(A;(Z,1),s) = ®;(Z,1, s)Astart(s) < t, (23)

where ®;(Z,t,s) is a first order formula with free
variables among I,t,s.

Then the least natural time point condition is satisfied:
Our situation calculus arioms entail LNTPC.

Proof: (Slightly informal)
Suppose that M is model of our axioms in which the
time sort ranges over the integers, and let o be a vari-
able assignment such that

M, o |= natural(a) A Poss(a, s).

We prove that M, o = (3t)intp(s,t). By axiom (4),
domain closure (19), and the assumption (23),

M, o |= start(s) < time(a).

So, for any natural action a, time(a) is bounded
from below in M by start(s). Since time is dis-
crete, there is a least ¢ > start(s) for which M o |=
(Ja).natural(a) A Poss(a,s) A time(a) = t. Hence,
M LNTPC.

O

The above lemma is actually more general than it ini-
tially appears to be. To begin, without some kind of
domain closure assumption on natural actions, it is
impossible to prove the legality of any situation. Sec-
ondly, it is quite natural to impose the temporal con-
straint start(s) <t on action precondition axioms, as
in (23), or, as we did in the bouncing balls example,
omit this constraint from the axioms when it is known
from the problem description that the time variable ¢
necessarily satisfies this constraint.

6 Discussion and Conclusions

By basing it on the language A of Gelfond and Lif-
schitz [6], Baral and Gelfond [3] provide a seman-
tic account of concurrency which, although not for-
mulated in the situation calculus, has many similari-
ties with ours. The principal difference is that Baral
and Gelfond focus exclusively on concurrency, so their
ontology does not include time or natural actions.
Moreover, A¢, their action representation language, is
propositional; while it would be possible to translate
Ac theories into the situation calculus, the resulting
sentences would be in the monadic situation calculus,
and therefore would be less general than the logical
theories to which our approach applies.

There have been a few earlier papers on formalizing
natural actions and continuous time. Shanahan’s ap-
proach [30] is embedded in the event calculus (Kowal-
ski and Sergot [11]); Sandewall [27] relies on a tem-
poral logic. Accordingly, these proposals are difficult
to compare with ours, based as it is on the situation
calculus. Below, we provide a comparison along one
dimension: abductive planning, which seems to be re-
quired by these proposals, and the deductive planning
approach of the situation calculus.

The approaches of Pinto [23] and Pinto and Reiter [24],
and of Miller and Shanahan [20] come closest to that
of this paper in that they also rely on the situation
calculus. These all differ from us in proposing some-
thing like an “actual” path in the tree of situations,
corresponding to the way in which the world actually
evolves. Both proposals suffer from what might be
called the “premature minimization problem”, which
amounts to the assumption that all action occurrences
(natural as well as those under the free will of an agent)
are either specified as part of the axiomatization, or are
inferable from it. Closure, in the form of the minimiza-
tion of action occurrences, is enforced by suitably cir-
cumscribing these axioms. This means that any agent
initiated action not deducible from the axioms is as-
sumed not to have happened. Therefore, if A is an
action which the agent could have, but did not initi-
ate according to the axioms, then the “actual” path of
world actions will not include A. In other words, hy-
pothetical world evolutions, in which all possible agent
initiated actions are permitted, are excluded from the
minimized axioms. The only legal situations (in the
sense of this paper) under these approaches are those
on the actual path. Now one of the great advantages
of the situation calculus is that all possible world his-
tories are explicitly available in the language, as ob-
ject language terms.* It is precisely this feature which
permits a deductive approach to hypothetical reason-
ing about possible world futures. This, in turn, pro-

*That is the role of the function symbol do. Like cons in
LISP, it creates sequences, in this case terms representing
world histories, i.e. sequences of actions.

vides for a deductive account for planning. Unfortu-
nately, by prematurely minimizing action occurrences,
the above approaches preclude a deductive approach
to hypothetical reasoning and planning; analogous ver-
sions of the definition of planning of Section 5.1 cannot
be given. Instead, an abductive account must be used.
Intuitively, one can see why this must be so. Since, af-
ter circumscribing the axioms, there is just one actual
path, the possibility of other actual paths can be con-
sidered only by hypothetically postulating other free
will action occurrences, closing the axioms with re-
spect to these hypothetical occurrences, and testing
whether the resulting axioms are satisfiable and entail
the goal condition.

This phenomenon of planning by abduction is quite
widespread; it is used, for example, in the event calcu-
lus [5] and in Allen’s temporal logic [1]. In fact, it is
the only way to do planning in logics which do not pro-
vide for branching futures. Unfortunately, abductive
planning suffers from a number of drawbacks, when
compared with the deductive approach:

1. Tt is a metalevel task; the planner must leave the
object language to generate a candidate collection
of atoms of the form occurs(A,T), test the con-
sistency of these atoms with respect to the object
level axiomatization of the domain, then return to
the object level to prove the goal sentence relative
to the enlarged axiom set.

2. Because of the above consistency test, abductive
plans are not even recursively enumerable for first
order axiomatizations, in contrast to the deduc-
tive case.

3. Even if we ignore the noncomputability of the con-
sistency test, from a computational point of view
there are at least two theorem proving tasks for
abductive planners: the consistency test (which
normally must be performed several times), to-
gether with the goal-entailment proof.

4. Tt is not difficult to imagine settings where a robot
agent needs to establish that a plan does not ex-
ist. In the deductive case, this amounts to estab-
lishing that Azioms = —(3s)G(s), and, at least
formally, is no more problematic than the plan-
ning problem. For abductive planners, it is not at
all obvious what such a proof might look like, or
how 1t could be constructed; the robot must show,
again at the metalevel, that there is no finite set
of atoms of the form occurs(A, T), consistent with
the background axioms, which entails the goal.

5. As observed by Pelavin [22], for concurrent ac-
tions, abductive planning can yield incorrect plans
in the presence of partial world descriptions.

Pelavin [22] addresses the formalization of concurrent
actions by extending the ontology of Allen’s linear time
logic [1] to include histories to represent branching fu-

tures, and suitable modal operators semantically char-
acterized with respect to these histories. This allows a
deductive account of planning within a temporal logic,
but at the expense of a rather complicated logic.

Acknowledgements:

Thanks to the other members of the University of
Toronto Cognitive Robotics Group (Yves Lespérance, Hec-
tor Levesque, Fangzhen Lin, Daniel Marcu and Richard
Scherl) for their comments and suggestions. This paper
was strongly influenced by Javier Pinto’s approach to con-
currency and natural actions in his Ph.D. thesis. [have also
benefited from extensive discussions about temporal rea-
soning with Javier, and with Mikhail Soutchanski and Eu-
genia Ternovskaia. Rob Miller provided useful comments
on an earlier draft of this paper, and Rob and Murray
Shanahan helped me better understand their approach to
natural actions in the situation calculus. Todd Kelley first
pointed out to me the importance of accommodating en-
abling actions; this motivated the current form of the foun-
dational axiom (10) which now allows such actions to be
easily represented. Hesham Khalil carefully read an earlier
draft of this paper, and made many useful suggestions; in
particular, he noted the need for the foundational axiom
(7). This research was supported by grants from the Natu-
ral Sciences and Engineering Research Council of Canada,
the Institute for Robotics and Intelligent Systems of the
Government of Canada, and the Information Technology
Research Centre of the Government of Ontario.

References

[1] J.F. Allen. Temporal reasoning and planning. In J.F.
Allen, H.A. Kautz, R.N. Pelavin, and J.D. Tenenberg,
editors, Reasoning about Plans, pages 1-68. Morgan
Kaufmann Publishers, San Francisco, CA, San Mateo,

CA, 1991.

[2] F. Bacchus, J.Y. Halpern, and H.J. Levesque. Rea-
soning about noisy sensors in the situation calculus.
In Proc. 1JCAI’95, pages 1933-1940, 1995.

[3] C. Baral and M. Gelfond. Reasoning about effects
of concurrent actions. Journal of Logic Programming,
1996. to appear.

[4] Ernest Davis. Infinite loops in finite time. Technical
report, Department of Computer Science, New York
University, February, 1992.

[5] K. Eshghi. Abductive planning with event calculus. In
Proceedings of the Fifth International Conference on
Logic Programming, pages 562-579. MIT Press, 1988.

[6] M. Gelfond and V. Lifschitz. Representing actions in
extended logic programs. In Proc. Joint Int. Conf. and
Symp. on Logic Programming, pages 559-573, 1992.

[7] M. Gelfond, V. Lifschitz, and A. Rabinov. What are
the limitations of the situation calculus? In Working
Notes, AAAI Spring Symposium Series on the Logical
Formalization of Commonsense Reasoning, pages 59—
69, 1991.

(8]

[11]

[12]

[13]

[14]

[19]

[20]

(21]

C.C. Green. Theorem proving by resolution as a basis
for question-answering systems. In B. Meltzer and
D. Michie, editors, Machine Intelligence 4, pages 183—
205. American Elsevier, New York, 1969.

A. R. Haas. The case for domain-specific frame ax-
ioms. In F. M. Brown, editor, The frame problem in
artificial intelligence. Proceedings of the 1987 work-
shop, pages 343-348, Los Altos, California, 1987. Mor-
gan Kaufmann Publishers, San Francisco, CA.

T.G. Kelley. Modeling complex systems in the situa-
tion calculus: A case study using the Dagstuhl steam
boiler problem. In L.C. Aiello, J. Doyle, and S.C.
Shapiro, editors, Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Fifth Interna-
tional Conference (KR’96). Morgan Kaufmann Pub-
lishers, San Francisco, CA, 1996.

R.A. Kowalski and M.J. Sergot. A logic-based calculus
of events. New Generation Computing, 4:267, 1986.

Y. Lespérance, H.J. Levesque, F. Lin, D. Marcu,
R. Reiter, and R. Scherl. A logical approach to
high-level robot programming — a progress report. In
Control of the Physical World by Intelligent Systems,
Working Notes of the 1994 AAAI Fall Symposium,
November, 1994. New Orleans, LA.

H.J. Levesque. What is planning in the presence of
sensing? In Proceedings of the National Conference
on Artificial Intelligence, 1996. To appear.

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. Scherl. GOLOG: a logic programming language
for dynamic domains. Journal of Logic Programminyg,
Special Issue on Actions, 1996. To appear.

F. Lin. Specifying the effects of indeterminate actions.
In Proceedings of the National Conference on Artificial
Intelligence, 1996. To appear.

F. Lin and R. Reiter. State constraints revisited. J. of
Logic and Computation, special issue on actions and
processes, 4:655-678, 1994.

F. Lin and Y. Shoham. Concurrent actions in the sit-
uation calculus. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 590-595, 1992.

D. Marcu, Y. Lespérance, H. Levesque, F. Lin, R. Re-
iter, and R. Scherl. Foundations of a logical approach
to agent programming. In M. Wooldridge, J.P. Muller,
and M. Tambe, editors, Intelligent Agents Volume IT
— Proceedings of the 1995 Workshop on Agent Theo-
ries, Architectures, and Languages (ATAL-95), pages
331-346. Springer-Verlag, Lecture Notes in Artificial
Intelligence, 1996. To appear.

J. McCarthy. Situations, actions and causal
laws. Technical report, Stanford University, 1963.
Reprinted in Semantic Information Processing (M.
Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp.
410-417.

R. Miller and M. Shanahan. Narratives in the situa-
tion calculus. The Journal of Logic and Computation
(Special Issue on Actions and Processes), 4:513-530,
1994.

E.P.D. Pednault. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In
R.J. Brachman, H. Levesque, and R. Reiter, editors,

[22]

[23]

[24]

[23]

[28]

[29]

[30]

[31]

Proceedings of the First International Conference on
Principles of Knowledge Representation and Reason-
ing (KR’89), pages 324-332. Morgan Kaufmann Pub-
lishers, San Francisco, CA, 1989.

R.N. Pelavin. Planning with simultaneous actions
and external events. In J.F. Allen, H.A. Kautz, R.N.
Pelavin, and J.D. Tenenberg, editors, Reasoning about
Plans, pages 127-211. Morgan Kaufmann Publishers,
San Francisco, CA, San Mateo, CA, 1991.

J.A. Pinto. Temporal Reasoning in the Situation Cal-
culus. PhD thesis, University of Toronto, Department
of Computer Science, 1994.

J.A. Pinto and R. Reiter. Adding a time line to the sit-
uation calculus. In Second Symposium on Logical For-
malizations of Commonsense Reasoning, pages 172—
177, Austin, Texas, Jan. 11-13, 1993.

R. Reiter. The frame problem in the situation calcu-
lus: a simple solution (sometimes) and a completeness
result for goal regression. In Vladimir Lifschitz, edi-
tor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy,
pages 359-380. Academic Press, San Diego, CA, 1991.

R. Reiter. Proving properties of states in the situation
calculus. Artificial Intelligence, 64:337-351, 1993.

E. Sandewall. Combining logic and differential equa-
tions for describing real-world systems. In R.J. Brach-
man, H. Levesque, and R. Reiter, editors, Proceedings
of the First International Conference on Principles
of Knowledge Representation and Reasoning (KR’89),
pages 412-420. Morgan Kaufmann Publishers, San
Francisco, CA, 1989.

R. Scherl and H.J. Levesque. The frame problem
and knowledge producing actions. In Proc. AAAI-93,
pages 689-695, Washington, DC, 1993.

L.K. Schubert. Monotonic solution of the frame prob-
lem in the situation calculus: an efficient method for
worlds with fully specified actions. In H.E. Kyberg,
R.P. Loui, and G.N. Carlson, editors, Knowledge Rep-
resentation and Defeasible Reasoning, pages 23-67.
Kluwer Academic Press, 1990.

M.P. Shanahan. Representing continuous change in
the event calculus. In Proceedings ECAI 90, pages
598-603, 1990.

S. Shapiro, Y. Lespérance, and H.J. Levesque. Goals
and rational action in the situation calculus — a pre-
liminary report. In Working Notes of the AAAT Fall
Symposium on Rational Agency: Concepts, Theories,

Models and Applications, Cambridge, MA, 1995.

E. Ternovskaia. Interval situation calculus. In Proc. of
ECATI’94 Workshop W5 on Logic and Change, pages
153-164, Amsterdam, August 8-12, 1994.

R. Waldinger. Achieving several goals simultaneously.
In E. Elcock and D. Michie, editors, Machine Intel-
ligence 8, pages 94-136. Ellis Horwood, Edinburgh,
Scotland, 1977.

