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Abstract

The situation calculus, as proposed by McCarthy and Hayes,
and developed over the last decade by Reiter and co-workers,
is reconsidered. A new logical variant is proposed that cap-
tures much of the expressive power of the original, but where
certain technical results are much more easily proven. This is
illustrated using two existing non-trivial results: the regres-
sion theorem and the determinacy of knowledge theorem of
Reiter. We also obtain a regression theorem for knowledge,
and show how to reduce reasoning about knowledge and ac-
tion to non-epistemic non-dynamic reasoning about the initial
situation.

Introduction
The situation calculus, as proposed by McCarthy and
Hayes (McCarthy 1963; McCarthy and Hayes 1969) is a di-
alect of first-order logic for representing and reasoning about
the preconditions and effects of actions. A second-order re-
finement of the language, developed by Reiter and his col-
leagues (Reiter 2001a), forms the theoretical and implemen-
tation foundation forGolog (Levesque et al. 1997), a lan-
guage for the high-level control of robots and other agents
(see, for example, (Burgard et al. 2000; McIlraith and Son
2002)). Over the past decade, a number of extensions have
been proposed to deal with issues such as time, natural ac-
tions, knowledge of agents, numerical uncertainty, or utili-
ties (see (Reiter 2001a) and the references therein).

As a formalism, the situation calculus is based onax-
ioms. In Reiter’s formulation, which is also our starting
point, these take the form of so-calledbasic action theories.
These consist of a number of foundational axioms, which
define the space of situations, unique-name axioms for ac-
tions, axioms describing action preconditions and effects,
and axioms about the initial situation.

What makes basic action theories particularly useful is the
formulation of action effects in terms ofsuccessor state ax-
ioms, which not only provide a simple solution to the frame
problem (Reiter 1991) but also allow the use of regression-
based reasoning, which has been used in planning (Finzi,
Pirri, and Reiter 2000) and forms the core of every Golog
interpreter, for example. Derivations using regression are
simple, clear, and computationally feasible.
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Since the situation calculus is defined axiomatically, no
special semantics is needed. Tarskian models suffice, pro-
vided they satisfy the foundational axioms. When the focus
is on logical entailments, which is the case in the execution
of Golog programs, for example, this approach seems per-
fectly adequate.

However, when we wish to consider theoretical questions
about basic action theories that are not direct entailment
questions, problems arise. For example, suppose we are do-
ing an analysis of our system, and want to know, if whenever
Theory1entailsFormula1, is it also true thatTheory2entails
Formula2? Here we can run into serious complications in an
axiomatic setting unless there are ways to take a derivation
of Formula1 from Theory1and convert it into a derivation
of Formula2from Theory2. (Similar issues arise with con-
sistency questions.)

For instance, consider the epistemic extension of the sit-
uation calculus, as introduced by Moore and later extended
by Scherl and Levesque (Moore 1985; Scherl and Levesque
2003). If Know(A) entails(Know(B) ∨ Know(C)) in this
theory, is it also true thatKnow(A) entails Know(B) or
Know(A) entailsKnow(C)? For restrictedA, B, C, the an-
swer isyes, but the proof requires a multi-page argument us-
ing considerable proof-theoretic machinery such as Craig’s
Interpolation Lemma (Reiter 2001b).

One might wonder whether a semantic proof using Tarski
structures would be any easier. The answer, in short, isno.
The problem is that different structures can have different
domains and effort is required to standardize the domains,
identify the situations, and amalgamate multiple structures
into a single structure that satisfies the foundational axioms.
While certainly possible, the argument is again long and
complicated.

In contrast, in the logic of only-knowingOL (Levesque
and Lakemeyer 2001), the semantic proof of the above de-
terminacy of knowledge theorem is simple, clear and direct.
One reason for this is the use of a semantic formulation
involving possible worlds for knowledge (Hintikka 1962;
Fagin et al. 1995). Typical of these formalisms, situations
and possible worlds are not reified in the language itself. Be-
yond this, however, a major factor in the simplicity of proofs
in OL is the use ofstandard names, which allows a substi-
tutional interpretation of the first-order quantifiers. While
there have been philosophical arguments against substitu-



tional quantification (Kripke 1976), our experience has been
that its technical simplicity has been of tremendous help in
tackling issues such as quantifying-in (Kaplan 1971), which
are rarely addressed in other formalisms.

SinceOL only deals with static knowledge bases, an
amalgamation ofOL and the situation calculus was previ-
ously proposed (Lakemeyer and Levesque 1998). However,
this formalization kept situations reified, did not allow sub-
stitutional quantification, and the definition of knowledge re-
quired second-order logic, all of which again complicated
the proofs considerably, even semantic ones.

In this paper, we propose a rather different amalgamation
of OL and the situation calculus calledES. The idea is to
keep the simplicity ofOL, and while dropping some of the
expressiveness of the ordinary situation calculus, retain its
main benefits, like successor state axioms to solve the frame
problem and regression-based reasoning. In particular, we
will use a possible-world semantics where situations are part
of the semantics but do not appear as terms in the language.
In order to represent what is true in a situation after a number
of actions have occurred, we use special modal operators.
For example, we will have formulas like those of traditional
dynamic logic (Pratt 1976; Harel 1984), such as

[pickup(obj5)] [drop(obj5)] Broken(obj5)

to say thatobj5 is broken after doing the two actions. In
contrast to other modal approaches to reasoning about ac-
tion such as (Castilho, Gasquet, and Herzig 1999; Herzig et
al. 2000; Demolombe 2003), we also allow formulas of the
form ∀a.([a]Broken(obj5) ≡ φ), where modalities contain
(action) variables. This feature will be key in reconstructing
Reiter’s basic action theories in our language. Moreover, un-
like standard modal logics (including dynamic logics), we
will be able to use a substitutional interpretation for first-
order quantifiers.1 This is perhaps the main reason why we
cannot afford situation terms as part of our language. The
epistemic situation calculus requires us to consider an un-
countable number of initial situations (see (Levesque, Pirri,
and Reiter 1998) for a second-order foundational axiom that
makes this explicit). In a language with only countably
many situation terms, this would preclude a substitutional
interpretation of quantifiers.

Yielding much simpler proofs (like the determinacy of
knowledge and the correctness of regression) is not the only
benefit of this approach. As we will see, the use of regres-
sion allows us to reduce reasoning about basic action theo-
ries (possibly involving knowledge) to reasoning about the
initial situation (possibly with knowledge), as in the original
situation calculus. What is new here, however, is that we can
then leverage the representation theorem ofOL (Levesque
and Lakemeyer 2001) and show that certain forms of rea-
soning about knowledge and action reduce overall to strictly
first-order reasoning about the initial situation, without ac-
tion and without knowledge.

1For simplicity, we will only consider the first-order version of
our proposal here. The second-order version, which is necessary
to formalize Golog, will appear in a companion paper (Lakemeyer
and Levesque 200x).

The rest of the paper is organized as follows. In the next
section we introduce the syntax and semantics ofES, fol-
lowed by a discussion of basic action theories and regression
for the non-epistemic case. In the following section, we con-
sider properties of knowledge, extend regression and show
the connection to the representation theorem ofOL. We end
the paper with a discussion of related work and concluding
remarks.

The Logic ES
The Language
The language consists of formulas over symbols from the
following vocabulary:

• variablesV = {x1, x2, x3, . . . , y1, . . . , z1, . . . , a1, . . .};
• fluent predicates of arityk: F k = {fk

1 , f
k
2 , . . .}; for

example,Broken; we assume this list includes the distin-
guished predicatesPossandSF(for sensing);

• rigid functions of arityk: Gk = {gk
1 , g

k
2 , . . .}; for ex-

ample,obj5, pickup; note thatG0 is a set of non-fluent
constants (or standard names);

• connectives and other symbols:=, ∧, ¬, ∀, Know,
OKnow, �, round and square parentheses, period,
comma.

For simplicity, we do not include rigid (non-fluent) predi-
cates or fluent (non-rigid) functions. Thetermsof the lan-
guage are the least set of expressions such that

1. Every first-order variable is a term;

2. If t1, . . . , tk are terms, then so isgk(t1, . . . , tk).
We letR denote the set of all rigid terms (here, all ground
terms). For simplicity, instead of having variables of the
action sort distinct from those of theobject sort as in the
situation calculus, we lump both of these together and al-
low ourselves to use any term as an action or as an object.2

Finally, thewell-formed formulasof the language form the
least set such that

1. If t1, . . . , tk are terms, thenfk(t1, . . . , tk) is an (atomic)
formula;

2. If t1 andt2 are terms, then(t1 = t2) is a formula;

3. If t is a term andα is a formula, then[t]α is a formula;

4. If α andβ are formulas, then so are(α ∧ β), ¬α, ∀x.α,
�α, Know(α), OKnow(α).

We read[t]α as “α holds after actiont”, �α as “α holds af-
ter any sequence of actions,”Know(α) as “α is known”, and
OKnow(α) as “α is all that is known.” As usual, we treat
∃x.α, ∃xφ.α, (α ∨ β), (α ⊃ β), and(α ≡ β) as abbrevi-
ations. We call a formula without free variables asentence.
We sometimes use a finite set of sentencesΣ as part of a
formula, where it should be understood conjunctively.

In the following, we will sometimes refer to special sorts
of formulas and use the following terminology:

• a formula with no� operators is calledbounded;

2Equivalently, the version in this paper can be thought of as
having action terms but no object terms.



• a formula with no� or [t] operators is calledstatic;

• a formula with noKnow or OKnow operators is called
objective;

• a formula with no fluent,�, or [t] operators outside the
scope of aKnowor OKnowis calledsubjective;

• a formula with noKnow, OKnow, �, [t], Poss, or SF is
called afluentformula.

The semantics
Intuitively, a worldw will determine which fluents are true,
but not just initially, also after any sequence of actions. We
let P denote the set of all pairsσ:ρ whereσ ∈ R∗ is con-
sidered a sequence of actions, andρ = fk(r1, . . . , rk) is a
ground fluent atom. In general, formulas are interpreted rel-
ative to a modelM = 〈e, w〉 wheree ⊆W andw ∈W , and
whereW = [P → {0, 1}]. Thee determines all the agent
knows initially, and is referred to as anepistemic state.

We interpret first-order variables substitutionally over the
rigid termsR, that is, we treatR as being isomorphic to a
fixed universe of discourse. This is similar toOL, where we
used standard names as the domain. We also definew′ 'σ w
(read:w′ andw agree on the sensing forσ) inductively by
the following:

1. whenσ = 〈 〉, w′ 'σ w, for everyw′ andw;

2. w′ 'σ·r w iff w′ 'σ w andw′[σ:SF(r)] = w[σ:SF(r)].
Here is the complete semantic definition ofES: Given a
modelM = 〈e, w〉 and sequence of actionsσ, let

1. e, w, σ |= f(r1, . . . , rk) iff w[σ:f(r1, . . . , rk)] = 1;

2. e, w, σ |= (r1 = r2) iff r1 andr2 are identical;

3. e, w, σ |= (α ∧ β) iff e, w, σ |= α ande, w, σ |= β;

4. e, w, σ |= ¬α iff e, w, σ 6|= α;

5. e, w, σ |= ∀x. α iff e, w, σ |= αx
r , for everyr ∈ R;

6. e, w, σ |= [r]α iff e, w, σ · r |= α;

7. e, w, σ |= �α iff e, w, σ · σ′ |= α, for everyσ′ ∈ R∗;

8. e, w, σ |= Know(α) iff for all w′ 'σ w,
if w′ ∈ e then e, w′, σ |= α;

9. e, w, σ |= OKnow(α) iff for all w′ 'σ w,
w′ ∈ e iff e, w′, σ |= α;

Whenα is a sentence, we sometimes writee, w |= α instead
of e, w, 〈 〉 |= α. In addition, whenα is objective, we write
w |= α and whenα is subjective, we writee |= α. When
Σ is a set of sentences andα is a sentence, we writeΣ |= α
(read:Σ logically entailsα) to mean that for everye andw,
if e, w |= α′ for everyα′ ∈ Σ, thene, w |= α. Finally, we
write |= α (read:α is valid) to mean{} |= α.

Basic Action Theories and Regression
Let us now consider the equivalent of basic action theories of
the situation calculus. Since in our logic there is no explicit
notion of situations and the uniqueness of names is built into
the semantics, our basic action theories do not require foun-
dational axioms. For now we only consider the objective
(non-epistemic) case.

Given a set of fluent predicatesF , a setΣ ⊆ ES of
sentences is called abasic action theoryover F iff Σ =
Σ0 ∪ Σpre∪ Σpost whereΣ mentions only fluents inF and

1. Σ0 is any set of fluent sentences;

2. Σpre is a singleton sentence of the form�Poss(a) ≡ π,
whereπ is a fluent formula;3

3. Σpost is a set of sentences of the form�[a]f(~x) ≡ γf , one
for each fluentf ∈ F , and whereγf is a fluent formula.4

The idea here is thatΣ0 expresses what is true initially (in
the initial situation),Σpre is one large precondition axiom,
andΣpost is a set of successor state axioms, one per fluent,
which incorporate the solution to the frame problem pro-
posed by Reiter (Reiter 1991).

Here is an example basic action theory from the blocks
world. There are three fluents,Fragile(x) (objectx is frag-
ile), Holding(x) (objectx is being held by some unnamed
robot), andBroken(x) (objectx is broken), and three ac-
tions,drop(x), pickup(x), repair(x). The initial theoryΣ0

consists of the following two sentences:

¬Broken(obj5),
∀z¬Holding(z).

This says that initiallyobj5 is not broken and the robot is
not holding anything. The precondition axiomΣpre is the
following:

�Poss(a) ≡
∃x.a = pickup(x) ∧ ∀z.¬Holding(z)) ∨
∃x.a = drop(x) ∧ Holding(x) ∨
∃x.a = repair(x) ∧ Holding(x) ∧ Broken(x).

This says that a pickup action is possible if the robot is not
holding anything, that a drop action is possible if the ob-
ject in question is held, and that a repair action is possible
if the object is both held and broken. Note the use of�
here, which plays the role of the universally quantified sit-
uation variable in the situation calculus, ensuring that these
preconditions hold after any sequence of actions. The set of
successor state axiomsΣpost in the example has the following
three elements:

�[a]Holding(x) ≡
a = pickup(x) ∨ Holding(x) ∧ a 6= drop(x),

�[a]Fragile(x) ≡ Fragile(x),
�[a]Broken(x) ≡

a = drop(x) ∧ Fragile(x) ∨
Broken(x) ∧ a 6= repair(x).

This tells us precisely under what conditions each of the
three fluents is affected by doing an action: an object is held
iff it was just picked up or was already held and not dropped;
the fragility of an object is unaffected by any action; an ob-
ject is broken iff it was just dropped and fragile, or it was
already broken and not just repaired. Note that the solution

3We follow the usual situation calculus convention that free
variables are universally quantified from the outside. We also as-
sume that� has lower syntactic precedence than the logical con-
nectives, so that�Poss(a) ≡ π stands for∀a.�(Poss(a) ≡ π).

4The [t] construct has higher precedence than the logical con-
nectives. So�[a]f(~x) ≡ γf abbreviates∀a.�([a]f(~x) . ≡ γf ).



to the frame problem depends on the universally quantified
variablea, but the unique-name aspect is built into the se-
mantics of the language.

For a given basic action theoryΣ, a fundamental reason-
ing task isprojection, that is, determining what holds after a
number of actions have occurred. For example, isobj5 bro-
ken after first picking it up and then dropping it? Formally,
this corresponds to determining if

Σ |= [pickup(obj5)][drop(obj5)]Broken(obj5).
It is not hard to see that this conclusion does not follow from
the action theory above (since it is left open whether or not
obj5 is fragile). In general, the projection task involves de-
termining if

Σ |= [r1] . . . [rk]α,
whereΣ is a basic action theory, theri are ground terms
(representing actions), andα is an arbitrary sentence. Rei-
ter showed how successor state axioms allow the use ofre-
gressionto solve this reasoning task for certainα (which he
called theregressable formulas). The idea is to successively
replace fluents inα by the right-hand side of their successor
state axioms until the resulting sentence contains no more
actions, at which point one need only check whether that
sentence follows from the sentences in the initial theory.

We remark that, although the projection problem is de-
fined for linear sequences of actions, a solution such as re-
gression also allows us to reason about conditional plans.
For example, verifying whether a conditional plan is guar-
anteed to satisfy a goalα amounts to determining whetherα
holds at the end of every branch of the conditional.5

We now show how to do regression inES given an ba-
sic action theoryΣ. In our account, any bounded, objective
sentenceα is considered regressable, and we defineR[α],
the regression ofα wrt Σ, to be the fluent formulaR[〈 〉, α],
where for any sequence of termsσ (not necessarily ground),
R[σ, α] is defined inductively onα by:
1. R[σ, (t1 = t2)] = (t1 = t2);
2. R[σ,∀xα] = ∀xR[σ, α];
3. R[σ, (α ∧ β)] = (R[σ, α] ∧R[σ, β]);
4. R[σ,¬α] = ¬R[σ, α];
5. R[σ, [t]α] = R[σ · t, α];
6. R[σ,Poss(t)] = R[σ, πa

t ];
7. R[σ, f(t1, . . . , tk)] is defined inductively onσ by:

(a) R[〈 〉, f(t1, . . . , tk)] = f(t1, . . . , tk));
(b) R[σ · t, f(t1, . . . , tk)] = R[σ, (γf )a

t
x1
t1 . . .

xk
tk

].
Note that this definition uses the right-hand sides of both the
precondition and successor state axioms fromΣ.

Using the semantics ofES, we will now reprove Reiter’s
Regression Theorem, and show that it is possible to reduce
reasoning with formulas that contain[t] operators to reason-
ing with fluent formulas in the initial state.

We begin by defining for any worldw and basic action
theoryΣ another worldwΣ which is likew except that it is
defined to satisfy theΣpre andΣpost sentences ofΣ.

5In the case of Golog, regression is applied even to plans with
loops and nondeterministic action choices.

Definition 1 Letw be a world andΣ a basic action theory
with fluent predicatesF . ThenwΣ is a world satisfying the
following conditions:

1. for f 6∈ F , wΣ[σ:f(r1, . . . , rk)] = w[σ:f(r1, . . . , rk)];
2. for f ∈ F , wΣ[σ:f(r1, . . . , rk)] is defined inductively:

(a) wΣ[〈 〉:f(r1, . . . , rk)] = w[〈 〉:f(r1, . . . , rk)];
(b) wΣ[σ · r:f(r1, . . . , rk)] = 1 iff

wΣ, σ |= (γf )a
r

x1
r1
. . . xk

rk
.

3. wΣ[σ:Poss(r)] = 1 iff wΣ, σ |= πa
r .

Note that this again uses theπ andγf formulas fromΣ.
Then we get the following simple lemmas:

Lemma 1 For any w,wΣ exists and is uniquely defined.

Proof: wΣ clearly exists. The uniqueness follows from the
fact thatπ is a fluent formula and that for allf ∈ F , once the
initial values off are fixed, then the values after any number
of actions are uniquely determined byΣpost.

Lemma 2 If w |= Σ0 thenwΣ |= Σ.

Proof: Directly from the definition ofwΣ, we have that
wΣ |= ∀a�Poss(a) ≡ π andwΣ |= ∀a∀~x�[a]f(~x) ≡ γf .

Lemma 3 If w |= Σ thenw = wΣ.

Proof: If w |= �Poss(a) ≡ π andw |= �[a]f(~x) ≡ γf ,
thenw satisfies the definition ofwΣ.

Lemma 4 Letα be any bounded, objective sentence. Then
w |= R[σ, α] iff wΣ, σ |= α.

Proof: The proof is by induction on the length ofα (treat-
ing the length ofPoss(t) as the length ofπa

t plus 1). The
only tricky case is forPoss(r) and for fluent atoms. We have
thatwΣ, σ |= Poss(r) iff (by definition of wΣ) wΣ, σ |= πa

r
iff (by induction) w |= R[σ, πa

r ] iff (by definition of R)
w |= R[σ,Poss(r)]. Finally, we consider fluent atoms, and
prove the lemma by a sub-induction onσ:
1. wΣ, 〈 〉 |= f(r1, . . . , rk) iff (by definition ofwΣ),
w, 〈 〉 |= f(r1, . . . , rk) iff (by definition ofR),
w |= R[〈 〉, f(r1, . . . , rk)];

2. wΣ, σ · r |= f(r1, . . . , rk) iff (by definition ofwΣ),
wΣ, σ |= (γf )a

r
x1
r1
. . . xk

rk
iff (by the sub-induction),

w |= R[σ, (γf )a
r

x1
r1
. . . xk

rk
] iff (by definition ofR),

w |= R[σ · r, f(r1, . . . , rk)],
which completes the proof.

Theorem 1 Let Σ = Σ0 ∪ Σpre ∪ Σpost be a basic action
theory and letα be an objective, bounded sentence. Then
R[α] is a fluent sentence and satisfies

Σ0 ∪ Σpre∪ Σpost |= α iff Σ0 |= R[α].
Proof: SupposeΣ0 |= R[α]. We prove thatΣ |= α. Let
w be any world such thatw |= Σ. Then,w |= Σ0, and so
w |= R[α]. By Lemma 4,wΣ |= α. By Lemma 3,wΣ = w,
and sow |= α.

Conversely, supposeΣ |= α. We prove thatΣ0 |= R[α].
Let w be any world such thatw |= Σ0. From Lemma 2,
wΣ |= Σ, and sowΣ |= α. By Lemma 4,w |= R[α].



Note that the conciseness of this proof depends crucially on
the fact that Lemma 4 is proven by induction oversentences,
which is possible only because quantification is interpreted
substitutionally.

Knowledge
The interpretation of knowledge inES is just a special case
of possible-world semantics (Kripke 1963; Hintikka 1962).
In particular, as we model knowledge as a set of “worlds”, it
is not surprising that we obtain the usual properties ofweak
S5(Fagin et al. 1995). Since we assume a fixed universe of
discourse, the Barcan formula for knowledge (Property 4 of
the following theorem) and its existential version (Property
5) hold as well. Moreover, these properties hold after any
number of actions have been performed.

Theorem 2
1. |= �(Know(α) ∧ Know(α ⊃ β) ⊃ Know(β));
2. |= �(Know(α) ⊃ Know(Know(α)));
3. |= �(¬Know(α) ⊃ Know(¬Know(α)));
4. |= �(∀x.Know(α) ⊃ Know(∀x.α));
5. |= �(∃x.Know(α) ⊃ Know(∃x.α)).
Proof:
1. Let e, w, σ |= Know(α) ∧ Know(α ⊃ β). Then for all
w′ 'σ w, if w′ ∈ e thene, w′, σ |= α ande, w′, σ |=
(α ⊃ β). Hence,e, w′, σ |= β and, therefore, we have
thate, w, σ |= Know(β).

2. Let e, w, σ |= Know(α). Let w′ andw′′ be worlds in
e such thatw′ 'σ w andw′′ 'σ w′. Since'σ is an
equivalence relation, we havew′′ 'σ w and, therefore,
e, w′′, σ |= α by assumption. As this is true for allw′′ ∈ e
withw′′ 'σ w

′, we havee, w′, σ |= Know(α) and, hence,
e, w, σ |= Know(Know(α)).

3. Let e, w, σ |= ¬Know(α). Thus for somew′, w′ 'σ w,
w′ ∈ e ande, w′, σ 6|= α. Letw′′ be any world such that
w′′ 'σ w′ andw′′ ∈ e. Clearly,e, w′′, σ |= ¬Know(α).
Sincew′′ 'σ w, e, w, σ |= Know(¬Know(α)) follows.

4. Let e, w, σ |= ∀x.Know(α). Hence for allr ∈ R,
e, w, σ |= Know(αx

r ) and thus for allw′ 'σ w, if
w′ ∈ e then for allr ∈ R, e, w, σ |= αx

r , from which
e, w, σ |= Know(∀x.α) follows.

5. Let e, w, σ |= ∃x.Know(α). Thene, w, σ |= Know(αx
r )

for somer ∈ R. By the definition ofKnow, it follows
thate, w, σ |= Know(∃x.α).

We remark that the converse of the Barcan formula (Property
4) holds as well. However, note that this is not the case for
Property 5:�(Know(∃x.α) ⊃ ∃x.Know(α)) is not valid in
general. Despite the fact that quantification is understood
substitutionally, knowing that someone satisfiesα does not
entail knowing who that individual is, just as it should be.

Perhaps more interestingly, we can show a generalized
version of the determinacy of knowledge:

Theorem 3 Supposeα is an objective sentence andβ is
an objective formula with one free variablex, such that
|= Know(α) ⊃ ∃x.Know(β). Then for some rigid termr,
|= Know(α) ⊃ Know(βx

r ).

Proof: Suppose not. Then for everyr, Know(α) does
not entailKnow(βx

r ), and so, by the Lemma below,α does
not entailβx

r . So for everyr, there is a worldwr such that
wr |= (α ∧ ¬βx

r ). Let e = {wr | r ∈ R}. Then we have
thate |= Know(α) and for everyr ∈ R, e |= ¬Know(βx

r ),
and soe |= ∀x.¬Know(βx

r ). This contradicts the fact that
Know(α) entails∃x.Know(β).

Lemma 5 If α andβ are objective, and|= (α ⊃ β), then
|= (Know(α) ⊃ Know(β)).

Proof: Suppose that somee |= Know(α). Then for every
w ∈ e, w |= α. Then for everyw ∈ e, w |= β. Thus
e |= Know(β).

This proof is exactly as it would be inOL. Again it is worth
noting that the proof of this theorem in the ordinary situation
calculus (for the simpler case involving disjunction rather
than existential quantification) is a multi-page argument in-
volving Craig’s Interpolation Lemma.

Regressing Knowledge

In the previous section we introduced basic action theories
as representations of dynamic domains. With knowledge,
we need to distinguish between what is true in the world
and what the agent knows or believes about the world. Per-
haps the simplest way to model this is to have two basic
action theoriesΣ andΣ′, whereΣ is our account of how
the world is and will change as the result of actions, andΣ′

is the agent’s version of the same. The corresponding epis-
temic state is then simply{w | w |= Σ′}, which we also
denote as<[[Σ′]]. It is easy to see that

Lemma 6 <[[Σ]], w |= OKnow(Σ).

Proof: Let w′ be any world. Thenw′ '〈 〉 w by the
definition of'σ. By the definition of<[[Σ]] we have that
w′ ∈ <[[Σ]] iff w′ |= α. Hence<[[Σ]] |= OKnow(Σ).

As discussed in (Scherl and Levesque 2003), actions can
be divided into ordinary actions which change the world like
pickup(obj5) and knowledge-producing or sensing actions
such as sensing the color of a litmus paper to test the acidity
of a solution. To model the outcome of these sensing actions,
we extend our notion of a basic action theory to be

Σ = Σ0 ∪ Σpre∪ Σpost∪ Σsense,

whereΣsense is a singleton sentence exactly parallel to the
one forPossof the form

�SF(a) ≡ ϕ

whereϕ is a fluent formula. For example, assume we have
a sensing actionseeRedwhich tells the agent whether or not
the Redfluent is true (that is, some nearby litmus paper is
red), and that no other action returns any useful sensing re-
sult. In that case,Σsensewould be the following:

�SF(a) ≡ [a = seeRed∧ Red∨ a 6= seeRed].



For ease of formalization, we assume thatSF is character-
ized for all actions including ordinary non-sensing ones, for
which we assume thatSF is vacuously true.6

The following theorem can be thought of as a successor-
state axiom for knowledge, which will allow us to extend re-
gression to formulas containingKnow. Note that, in contrast
to the successor state axioms for fluents, this is atheoremof
the logic not a stipulation as part of a basic action theory:

Theorem 4 |= �[a]Know(α) ≡
SF(a) ∧ Know(SF(a) ⊃ [a]α) ∨

¬SF(a) ∧ Know(¬SF(a) ⊃ [a]α).

Proof: Let e, w, σ |= [r]Know(αa
r) for r ∈ R. We write

α′ for αa
r . Supposee, w, σ |= SF(r). (The case where

e, w, σ |= ¬SF(r) is analogous.) It suffices to show that
e, w, σ |= Know(SF(r) ⊃ [r]α′). So supposew′ 'σ w and
w′ ∈ e. Thusw′[σ : SF(r)] = w[σ : SF(r)] = 1 by assump-
tion, that is,w′ 'σ·r w. Sincee, w, σ |= [r]Know(α′) by
assumption,e, w′, σ · r |= α′, from whiche, w′, σ |= [r]α′

follows.
Conversely, lete, w, σ |= SF(r) ∧ [r]Know(SF(r) ⊃ α′).

(The other case is similar.) We need to show thate, w, σ |=
[r]Know(α′), that is,e, w, σ ·r |= Know(α′). Letw′ 'σ·r w
andw′ ∈ e. Thenw′[σ : SF(r)] = w[σ : SF(r)] = 1 by as-
sumption. Hencee, w′, σ |= SF(r). Therefore, by assump-
tion, e, w′, σ · r |= α′, from whiche, w, σ |= [r]Know(α′)
follows.

We consider this a successor state axiom for knowledge
in the sense that it tells us for any actiona what will be
known after doinga in terms of what was true before. In
this case, knowledge aftera depends on what was known
before doinga about what the future would be like after do-
ing a, contingent on the sensing information provided bya.
Unlike (Scherl and Levesque 2003), this is formalized with-
out a fluent for the knowledge accessibility relation, which
would have required situation terms in the language.

We are now ready to extend regression to deal with knowl-
edge. Instead of being defined relative to a basic action the-
ory Σ, the regression operatorR will be defined relative to
a pair of basic action theories〈Σ′,Σ〉 where, as above,Σ′

represents the beliefs of the agent. We allowΣ andΣ′ to
differ arbitrarily and indeed to contradict each other, so that
agents may have false beliefs about what the world is like,
including its dynamics.7 The idea is to regresswrt. Σ out-
side ofKnow operators andwrt. Σ′ inside. To be able to
distinguish between these cases,R now carries the two ba-
sic action theories with it as extra arguments.

Rule 1–7 of the new regression operatorR are exactly as
before except for the extra argumentsΣ′ andΣ. Then we
add the following:

8. R[Σ′,Σ, σ,SF(t)] = R[Σ′,Σ, σ, ϕa
t ];

9. R[Σ′,Σ, σ,Know(α)] is defined inductively onσ by:

6Here we restrict ourselves to sensing truth values. See (Scherl
and Levesque 2003) for how to handle arbitrary values.

7This is like (Lakemeyer and Levesque 1998) but in contrast to
Scherl and Levesque (Scherl and Levesque 2003), who can only
handle true belief. While we allow for false beliefs, we continue to
use the terms knowledge and belief interchangeably.

(a) R[Σ′,Σ, 〈 〉,Know(α)] = Know(R[Σ′,Σ′, 〈 〉, α]);
(b) R[Σ′,Σ, σ · t,Know(α)] = R[Σ′,Σ, σ, βa

t ], whereβ is
the right-hand side of the equivalence in Theorem 4.

For simplicity, we writeR[α] instead ofR[Σ′,Σ, 〈 〉, α].
To prove the regression theorem for formulas involving

Know, we first need to extend the definition ofwΣ of the
previous section to account forSF-atoms. For any worldw
letwΣ be as in Definition 1 with the additional constraint:

4. wΣ[σ:SF(r)] = 1 iff wΣ, σ |= ϕa
r .

As before, sinceϕ is a fluent formula,wΣ is uniquely defined
for anyw. It is easy to see that Lemma 2 and 3 carry over
to basic action theories extended by aΣsenseformula. In the
following we simply refer to the original lemmas with the
understanding that they apply to the extended basic action
theories as well. We also assume forΣ (resp.Σ′), a basic
action theory, thatΣ0 (resp.Σ′

0) is the sub-theory about the
initial state of the world.

Here is the extension of Lemma 2 to knowledge:

Lemma 7 If e |= OKnow(Σ0) theneΣ |= OKnow(Σ).

Proof: Let e |= OKnow(Σ0), that is, for allw, w ∈ e iff
w |= Σ0. We need to show that for allw,w ∈ eΣ iff w |= Σ.

Supposew |= Σ. Thenw |= Σ0 and hencew ∈ e and, by
definition,wΣ ∈ eΣ. By Lemma 3,wΣ = w and, therefore,
w ∈ eΣ.

Conversely, letw ∈ eΣ. By definition, there is aw′ ∈ e
such thatw = w′

Σ. Sincew′ |= Σ0, by Lemma 2,w′
Σ |= Σ,

that is,w |= Σ.
We now turn to the generalization of Lemma 4 for knowl-

edge. Given any epistemic statee and any basic action the-
ory Σ, we first defineeΣ = {wΣ | w ∈ e}.
Lemma 8 e, w |= R[Σ′,Σ, σ, α] iff eΣ′ , wΣ, σ |= α.

Proof: The proof is by induction onσ with a sub-induction
onα.

Let σ = 〈 〉. As with the case ofPossin Lemma 4, we
take the length ofSF(r) to be the length ofϕa

r plus 1. The
proof for Poss, fluent atoms, and the connectives¬, ∧, and
∀ is exactly analogous to Lemma 4.

ForSF, we have the following:

eΣ′ , wΣ, 〈 〉 |= SF(r) iff (by the definition ofwΣ),
eΣ′ , wΣ, 〈 〉 |= ϕa

r iff (by induction),
e, w |= R[Σ′,Σ, 〈 〉, ϕa

r ] iff (by the definition ofR),
e, w |= R[Σ′,Σ, 〈 〉,SF(r)].

For formulasKnow(α) we have:

eΣ′ |= Know(α) iff
for all w ∈ eΣ′ , eΣ′ , w |= α iff (by definition of eΣ′ ),
for all w ∈ e, eΣ′ , wΣ′ |= α iff (by induction),
for all w ∈ e, e, w, |= R[Σ′,Σ′, 〈 〉, α] iff
e |= Know(R[Σ′,Σ′, 〈 〉, α]) iff (by definition ofR),
e |= R[Σ′,Σ, 〈 〉,Know(α)].

This concludes the base caseσ = 〈 〉.
Now consider the case ofσ · r, which again is proved

by a sub-induction onα. The proof is exactly like the sub-
induction for the base case except forKnow, for which we
have the following:



eΣ′ , wΣ, σ · r |= Know(α) iff (by Theorem 4),
eΣ′ , wΣ, σ |= βa

r (where theβ is from Theorem 4)
iff (by the main induction),

e, w |= R[Σ′,Σ, σ, βa
r ] iff (by definition ofR),

e, w |= R[Σ′,Σ, σ · r,Know(α)],
which completes the proof.

Finally, here is the general regression theorem:

Theorem 5 Let α be a bounded sentence with no OKnow
operators. ThenR[α] is a static sentence and satisfies

Σ ∧OKnow(Σ′) |= α iff Σ0 ∧OKnow(Σ′
0) |= R[α].

Proof: To prove the only-if direction, let us suppose that
Σ ∧ OKnow(Σ′) |= α and thate, w |= Σ0 ∧ OKnow(Σ′

0).
Thusw |= Σ0 and, by Lemma 2,wΣ |= Σ. Also, e |=
OKnow(Σ′

0) and thus, by Lemma 7,eΣ′ |= OKnow(Σ′).
Therefore,eΣ′ , wΣ |= Σ ∧ OKnow(Σ′). By assumption,
eΣ′ , wΣ |= α and, by Lemma 8,e, w |= R[α].

Conversely, supposeΣ0 ∧ OKnow(Σ′
0) |= R[α] and

let e, w |= Σ ∧ OKnow(Σ′). (Note thate is unique as
e = <[[Σ′]] by Lemma 6.) Thenw |= Σ0. Now suppose
e′ |= OKnow(Σ′

0). Then, by assumption,e′, w |= R[α].
Thene′Σ′ , wΣ |= α. By Lemma 7,e′Σ′ |= OKnow(Σ′). By
Lemma 3,wΣ = w and, by the uniqueness ofe, e′Σ′ = e.
Therefore,e, w |= α.

The reader will have noticed that we left outOKnowfrom
our definition of regression. While it seems perfectly rea-
sonable to ask what one only knows after doing an actiona,
it is problematic to deal with for at least two reasons. For
one, the current language does not seem expressive enough
to represent what is only-known in non-initial situations.
Roughly, this is because after having donea one knows that
one has just donea and that certain things held before the
action. However, the language does not allow us to refer to
previous situations. But even if were able to extend the lan-
guage to deal with this issue, another problem is that when-
ever[a]OKnow(α) holds, theα in question would in general
not be regressable. To see why, recall that regressable for-
mulas are restricted to bebounded, that is, they do not men-
tion �. In our discussion above we make the reasonable as-
sumption that, initially, the agent only-knows a basic action
theoryΣ′, which contains sentences like successor state ax-
ioms, which are not bounded. Then, whatever is only-known
after doinga must somehow still refer to these axioms, but
they are not regressable by our definition. For these reason,
we have nothing to say about only-knowing in non-initial
situations.

As a consolation, being able to reason about what is
known in future states, as opposed to only-known, seems
to be sufficient for most practical purposes.

An Example
To illustrate how regression works in practice, let us con-
sider the litmus-test example adapted from (Scherl and
Levesque 2003). In addition to the actionseeRed, which
we described above as sensing whether or not the fluentRed
is true (the litmus paper is red), there is a second action
dipLitmus(dipping the litmus paper into the solution), which

makesRedtrue just in case the solution is acidic, represented
by the fluentAcid. For this example, we will use theΣsense

from above, andΣpre = {�Poss(a) ≡ true}, which states
that all actions are always possible, for simplicity. We let
Σpost, the successor state axioms, be the following:

�[a]Acid ≡ Acid,
�[a]Red ≡

a = dipLitmus∧ Acid ∨
Red∧ a 6= dipLitmus,

that is, the acidity of the solution is unaffected by any action,
and the litmus paper is red iff the last action was to dip it into
an acidic solution, or it was already red and was not dipped.
Finally, we letΣ0, the initial theory, be the following:

Acid,¬Red.

Now let us consider two basic action theories:

Σ = Σ0 ∪ Σpre∪ Σpost∪ Σsense and

Σ′ = {} ∪ Σpre∪ Σpost∪ Σsense.

The two are identical except thatAcid is true andRedfalse
initially in Σ. This amounts to saying that in reality the solu-
tion is acidic and the litmus paper is initially not red (inΣ),
but that the agent has no knowledge about the initial state of
the two fluents (inΣ′). Then we get the following:

1. Σ ∧OKnow(Σ′) |= ¬Know(Acid);

2. Σ ∧OKnow(Σ′) |= [dipLitmus]¬Know(Acid);

3. Σ ∧OKnow(Σ′) |= [dipLitmus][seeRed]Know(Acid).

In other words, after first dipping the litmus and then sensing
the result, the agent comes to know not only that the litmus
paper is red but that the solution is acidic. Informally, what
happens is this: becauseAcid is true in reality, thedipLitmus
action makesRedtrue; the agent knows that neitherRednor
Acid are affected byseeRed, and so knows that ifRedwas
made true bydipLitmus(becauseAcid was true), then both
will be true afterseeRed; after doing theseeRed, the agent
learns thatRedwas indeed true, and soAcidwas as well.

Observe that the agent only comes to these beliefs after
doing both actions. (1.) and (2.) show the usefulness of
only-knowing. In particular,¬Know(Acid) wouldnotbe en-
tailed if we replacedOKnowby Know in the antecedent.

To see why (1.) holds, notice thatR[¬Know(Acid)] =
¬Know(R[Σ′,Σ′, 〈 〉,Acid]) = ¬Know(Acid). Therefore,
by Theorem 5, we get that (1.) reduces to

Σ0 ∧OKnow(true) |= ¬Know(Acid).

The entailment clearly holds because the set of all worldse0
is the unique epistemic state satisfyingOKnow(true), and
e0 contains worlds whereAcid is false.

To see why (2.) holds, first note that

R[[dipLitmus]¬Know(Acid)] = ¬R[Σ′,Σ, d,Know(Acid)],

where we abbreviatedipLitmusasd. Then, using Rule (9b),

¬R[Σ′,Σ, d,Know(Acid)] =
¬R[Σ′,Σ, 〈 〉,SF(d) ∧ Know(SF(d) ⊃ [d]Acid) ∨

¬SF(d)∧Know(¬SF(d) ⊃ [d]Acid)].



The right-hand side of the equality reduces to¬Know(Acid)
because bothR[Σ′,Σ, 〈 〉,SF(d)] andR[Σ′,Σ′, 〈 〉,SF(d)]
reduce totrue andR[Σ′,Σ′, d,Acid] = Acid. Hence (2.)
also reduces to

Σ0 ∧OKnow(true) |= ¬Know(Acid),

which was shown to hold above.
Finally, (3.) holds because

R[ [dipLitmus][seeRed]Know(Acid) ]

reduces toAcid∧Know(Acid⊃ Acid)∨¬Acid∧Know(Acid),
which again follows fromΣ0 ∧OKnow(true).

While regression allows us to reduce questions about
knowledge and action to questions about knowledge alone,
in the next section we go even further and replace reasoning
about knowledge by classical first-order reasoning.

OL is part of ES
If we restrict ourselves to static formulas without occur-
rences ofPossor SF, and where the only rigid terms are stan-
dard names (rigid terms fromG0), we obtain precisely the
languageOL of (Levesque 1990; Levesque and Lakemeyer
2001).8 We call such formulas and sentencesOL-formulas
andOL-sentences, respectively.

For example, ifn is a standard name andf1 andf2 are fluent
predicates,

∀x.f1(x) ⊃ Know(f1(x)) and
OKnow(f1(n)) ⊃ Know(¬Know(f2(n)))

areOL-sentences, but

∀x.Poss(x) ⊃ Know(Poss(x)),
OKnow(f1(g(n))) ⊃ Know(¬Know(f2(g(n)))), and
OKnow(f1(n)) ⊃ [t]Know(¬Know(f2(n)))

are not. Note, in particular, that any fluent formula is also
an objectiveOL-formula. It turns out that the two logics are
indeed one and the same when restricted toOL-sentences.

Theorem 6 For everyOL-sentenceα, α is valid inOL iff α
is valid inES.

The proof is not difficult but tedious. Here we only go over
the main ideas. A world inOL is simply a mapping from
ground atoms with only standard names as arguments into
{0, 1}. Similar toES, a model inOL consists of a pair〈e, w〉,
wherew is anOL-world ande a set ofOL-worlds. The
theorem can be proved by showing that, for anyOL-model
〈e, w〉 there is anES-model 〈e′, w′〉 so that both agree on
the truth value ofα, and vice versa. There are two compli-
cations that need to be addressed. One is that the domain
of discourse ofOL ranges over the standard namesG0, a
proper subset of the domain of discourseR of ES. This can
be handled by using an appropriate bijection fromG0 intoR
when mapping models of one kind into the other. The other
complication arises when mapping anES-model〈e, w〉 into
an appropriateOL-model. For that we need the property that

8Actually, in (Levesque and Lakemeyer 2001) non-rigid func-
tion symbols are also considered, an issue we ignore here for sim-
plicity.

for all ES-worldsw andw′, if w andw′ agree initially, that
is,w[〈 〉:f(~t)] = w′[〈 〉:f(~t)] for all ground atomsf(~t), then
either both are ine or both are not ine. It can be shown
that, with respect toOL-sentences, we can restrict ourselves
to ES-models with this property without loss of generality.

We remark that while a previous embedding ofOL into
AOL (Lakemeyer and Levesque 1998) required an actual
translation of formulas, none of that is needed here. Having
OL fully embedded inES has the advantage that existing re-
sults forOL-formulas immediately carry over to the static
part ofES.

To see where this pays off, consider the right-hand side
of the regression theorem for knowledge (Theorem 5). It is
not hard to see that, provided that the arguments of fluents
in Σ, Σ′, andα are standard names, the right-hand side of
Theorem 5 is anOL-formula. It turns out that we can then
leverage results fromOL and show that in order to determine
whether such implications hold, no modal reasoning at all is
necessary!

The idea is perhaps best explained by an example. Sup-
poseOKnow(φ) is true, whereφ is (P (a) ∨ P (b)) ∧ P (c),
wherea, b, andc are standard names. In order to determine
whether∃xP (x) ∧ ¬Know(P (x)) is also known, it suffices
to first determine the known instances ofP . For our given
φ, the only known instance ofP is c, which we can ex-
press asx = c. (Note, in particular, that neithera nor b
is known to satisfyP .) Then we replaceKnow(P (x)) by
x = c and check whether the resulting objective sentence
∃xP (x) ∧ ¬(x = c) is entailed byφ, which it is. In gen-
eral, determining the known instances of a formula with re-
spect toφ always reduces to solving a series of first-order
entailment questions. Hence no modal reasoning is nec-
essary. This is the essence of theRepresentation Theorem
of (Levesque and Lakemeyer 2001).

To make this precise, we will now define||α||φ, which is
the objective formula resulting from replacing inα all oc-
currences of subformulasKnow(ψ) by equality expressions
as above, given thatφ is all that is this known.

Formally, we first defineRES[ψ, φ], which is an equal-
ity expression representing the known instances ofψ with
respect toφ. Here bothφ andψ are objective.|| · ||φ then ap-
plies RES to all occurrences ofKnowwithin a formula using
a recursive descent.

Definition 2 Let φ be an objectiveOL-sentence andψ an
objectiveOL-formula. Letn1, . . . , nk be all the standard
names occurring inφ andψ and letn′ be a name not occur-
ring in φ or ψ. ThenRES[ψ, φ] is defined as:

1. If ψ has no free variables, thenRES[ψ, φ] is TRUE,
if φ |= ψ, andFALSE, otherwise.

2. If x is a free variable inψ, thenRES[ψ, φ] is

((x = n1) ∧ RES[ψx
n1
, φ]) ∨ . . .

((x = nk) ∧ RES[ψx
nk
, φ]) ∨

((x 6= n1) ∧ . . . ∧ (x 6= nk) ∧ RES[ψx
n′ , φ]n

′

x ).

Following (Levesque and Lakemeyer 2001), let us define a
formula to bebasicif it does not mentionOKnow.9

9This should not be confused withbasicaction theories.



Definition 3 Given an objectiveOL-sentenceφ and a basic
OL-formulaα, ||α||φ is the objective formula defined by

||α||φ = α, whenα is objective;
||¬α||φ = ¬||α||φ;
||(α ∧ β)||φ = (||α||φ ∧ ||β||φ);
||∀xα||φ = ∀x||α||φ;
||Know(α)||φ = RES[||α||φ, φ].

Theorem 7 Letφ andψ be objectiveOL-sentences, and let
α be a basicOL-sentence. Then

|= ψ ∧OKnow(φ) ⊃ α iff |= ψ ⊃ ||α||φ.
Proof: The statement holds inOL and the proof is a slight
variant of the proof of Theorem 7.4.1 (the Representation
Theorem) together with Theorem 8.4.1 of (Levesque and
Lakemeyer 2001). By Theorem 6, the statement then holds
in ES as well.

Note that no modal reasoning is required to figure out
||α||φ. So standard theorem-proving techniques can be em-
ployed. There is a price to pay, however: in contrast to clas-
sical theorem proving, RES is not recursively enumerable
since it appeals to provability, when returningTRUE, and
non-provability,when returningFALSE.

We can now combine the previous theorem with the re-
gression theorem for knowledge (Theorem 5) to reduce rea-
soning about bounded formulas to reasoning about static for-
mulas that are now also objective. Formally, we have the
following:

Theorem 8 Given a pair of basic action theoriesΣ andΣ′,
and a bounded, basic sentenceα,

Σ ∧OKnow(Σ′) |= α iff |= Σ0 ⊃ ||R[α]||Σ′
0
.

Proof: By Theorem 5, we have thatΣ∧OKnow(Σ′) |= α
iff Σ0 ∧ OKnow(Σ′

0) |= R[α], which can be rewritten as
|= Σ0 ∧ OKnow(Σ′

0) ⊃ R[α]. By definition, Σ0 andΣ′
0

are both fluent sentences and hence objectiveOL-sentences.
SinceR[α] is a basicOL-sentence by Lemma 10 below, the
result follows by Theorem 7.

To show thatR[α] is a basicOL-sentence, we proceed in
two steps.

Lemma 9 If α is a fluent sentence, thenR[Σ′,Σ, σ, α] is an
objectiveOL-sentence.

Proof: Sinceα is a fluent sentence, only Rules 1–4 and 7
of the definition ofR apply. To simplify notation we write
R[σ, α] instead ofR[Σ′,Σ, σ, α] with the understanding that
regression is with respect toΣ. The proof is by induction
on σ. Let σ = 〈 〉. We proceed by a sub-induction onα.
R[〈 〉, f(t1, . . . , tk)] = f(t1, . . . , tk), which is obviously an
objectiveOL-sentence, and the same forR[〈 〉, t1 = t2]. The
cases for¬, ∧ and∀ follow easily by induction.

Suppose the lemma holds forσ of lengthn. Again, we
proceed by sub-induction onα. R[σ · t, f(t1, . . . , tk)] =
R[σ, (γf )a

t
x1
t1 . . .

xk
tk

], where�[x]f(~y) ≡ γf is in Σpost. Since
γf is a fluent formula,R[σ, (γf )a

t
x1
t1 . . .

xk
tk

] is an objective
OL-formula by the outer induction hypothesis. The case for
= is clear, and the cases for¬, ∧ and∀ again follow easily
by induction.

Lemma 10 Let α be a bounded, basic sentence. Then
R[Σ′,Σ, σ, α] is a basicOL-sentence.

Proof: The proof is by induction onα. If α is
a fluent sentence, then the lemma follows immediately
from Lemma 9. R[Σ′,Σ, σ, Poss(t)] = R[Σ′,Σ, σ, πa

t ].
Sinceπ is a fluent formula, the lemma again follows by
Lemma 9. The same holds forSF(t). R[Σ′,Σ, σ, [t]α] =
R[Σ′,Σ, σ · t, α], which is a basicOL-sentence by induc-
tion. The case forKnow is proved by a sub-induction
on σ. R[Σ′,Σ, 〈 〉,Know(α)] = Know(R[Σ′,Σ′, 〈 〉, α]).
By the outer induction hypothesis,R[Σ′,Σ′, 〈 〉, α] is a ba-
sicOL-sentence and, hence,Know(R[Σ′,Σ′, 〈 〉, α]) is one
as well. R[Σ′,Σ, σ · t,Know(α)] = R[Σ′,Σ, σ,SF(t) ∧
Know(SF(t) ⊃ [t]α) ∨ ¬SF(t) ∧ Know(¬SF(t) ⊃ [t]α)] =
R[Σ′,Σ, σ,SF(t)] ∧ R[Σ′,Σ, σ,Know(SF(t) ⊃ [t]α)] ∨
R[Σ′,Σ, σ,¬SF(t)] ∧ R[Σ′,Σ, σ,Know(¬SF(t) ⊃ [t]α)].
In each case, either Lemma 9 applies or the induction hy-
pothesis forσ, and we are done.

In (Lakemeyer and Levesque 1999), the Representation
Theorem was applied to answering queries inAOL. How-
ever, there reasoning was restricted to the initial situation or
one that was progressed (Lin and Reiter 1997) after a num-
ber of actions had occurred. In other words, the representa-
tion theorem was applicable only after actions had actually
been performed. Here, in contrast, we are able to answer
questions about possible future states of the world, which is
essential for planning and, for that matter, Golog.

Related Work
The closest approaches to ours are perhaps those combin-
ing dynamic logic with epistemic logic such as (Herzig
et al. 2000) and (Demolombe 2003). In the language
of (Herzig et al. 2000), it is possible to express things
like [dipLitmus][seeRed]Know(Acid) using an almost iden-
tical syntax and whereKnow also has a possible-world se-
mantics. Despite such similarities, there are significant dif-
ferences, however. In particular, their language is proposi-
tional. Consequently, there is no quantification over actions,
which is an essential feature of our form of regression (as
well as Reiter’s).

Demolombe (2003) proposes a translation of parts of the
epistemic situation calculus into modal logic. He even con-
siders a form of only-knowing. While his modal language
is first-order, he considers neither a substitutional interpreta-
tion of quantifiers nor quantified modalities, which we find
essential to capture successor state axioms. Likewise, there
is no notion of regression.

Although they do not consider epistemic notions, the
work by (Blackburn et al. 2001) is relevant as it reconstructs
a version of the situation calculus in Hybrid Logic (Black-
burn et al. 2001), a variant of modal logic which was in-
spired by the work on tense logic by Prior (Prior 1967). In a
sense, though, this work goes only part of the way as an ex-
plicit reference to situations within the logic is retained. To
us this presents a disadvantage when moving to an epistemic
extension. As we said in the beginning, the problem is that
the epistemic situation calculus requires us to consider un-



countably many situations, which precludes a substitutional
interpretation of quantification.

Conclusions
In this paper we proposed a language for reasoning about
knowledge and action that has many of the desirable fea-
tures of the situation calculus as presented in (Reiter 2001a)
and ofOL as presented in (Levesque and Lakemeyer 2001).
From the situation calculus, we obtain a simple solution to
the frame problem, and a regression property, which forms
the basis forGolog (Levesque et al. 1997), among other
things. FromOL, we obtain a simple quantified epistemic
framework that allows for very concise semantic proofs, in-
cluding proofs of the determinacy of knowledge and other
properties of the situation calculus. To obtain these advan-
tages, it was necessary to consider a language with a sub-
stitutional interpretation of the first-order quantifiers, and
therefore (in an epistemic setting), a language that did not
have situations as terms. Despite not having these terms,
and therefore not having an accessibility relationK over
situations as a fluent, we were able to formulate a succes-
sor state axiom for knowledge, and show a regression prop-
erty for knowledge similar to that of (Scherl and Levesque
2003). This allowed reasoning about knowledge and action
to reduce to reasoning about knowledge in the initial state.
Going further, we were then able to use results fromOL to
reduce all reasoning about knowledge and action to ordinary
first-order non-modal reasoning.

While ES seems sufficient to capture the basic action the-
ories of the situation calculus, not all of the situation cal-
culus is representable. For example, consider the sentence
∃s∀s′.s′ v s ⊃ P (s′), which can be read as “there is a situ-
ation such that every situation preceding it satisfiesP . There
does not seem to be any way to say this inES. In a compan-
ion paper (Lakemeyer and Levesque 200x), we show that,
by considering a second-order version ofES, we regain the
missing expressiveness under some reasonable assumptions.
In addition, we show how to reconstruct all of Golog in the
extended logic and, moreover, under the same assumptions,
that the non-epistemic situation calculus and non-epistemic
second-orderES are of equal expressiveness.
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