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Abstract

The situation calculus, as proposed by McCarthy and Hayes,
and developed over the last decade by Reiter and co-workers,
is reconsidered. A new logical variant is proposed that cap-
tures much of the expressive power of the original, but where
certain technical results are much more easily proven. This is
illustrated using two existing non-trivial results: the regres-
sion theorem and the determinacy of knowledge theorem of
Reiter. We also obtain a regression theorem for knowledge,
and show how to reduce reasoning about knowledge and ac-
tion to non-epistemic non-dynamic reasoning about the initial
situation.

Introduction

The situation calculus, as proposed by McCarthy and
Hayes (McCarthy 1963; McCarthy and Hayes 1969) is a di-
alect of first-order logic for representing and reasoning about
the preconditions and effects of actions. A second-order re-
finement of the language, developed by Reiter and his col-

leagues (Reiter 2001a), forms the theoretical and implemen-

tation foundation foiGolog (Levesque et al. 1997), a lan-
guage for the high-level control of robots and other agents
(see, for example, (Burgard et al. 2000; Mcllraith and Son
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Since the situation calculus is defined axiomatically, no
special semantics is needed. Tarskian models suffice, pro-
vided they satisfy the foundational axioms. When the focus
is on logical entailments, which is the case in the execution
of Golog programs, for example, this approach seems per-
fectly adequate.

However, when we wish to consider theoretical questions
about basic action theories that are not direct entailment
questions, problems arise. For example, suppose we are do-
ing an analysis of our system, and want to know, if whenever
TheorylentailsFormulal, is it also true thaTheory2entails
FormulaZ? Here we can run into serious complications in an
axiomatic setting unless there are ways to take a derivation
of Formulalfrom Theoryland convert it into a derivation
of Formula2from Theory2 (Similar issues arise with con-
sistency questions.)

For instance, consider the epistemic extension of the sit-
uation calculus, as introduced by Moore and later extended
by Scherl and Levesque (Moore 1985; Scherl and Levesque
2003). IfKnow(A) entails(Know(B) vV Know(C)) in this
theory, is it also true thakKnow(A4) entails Know(B) or
Know(A) entailsknow(C)? For restricted4, B, C, the an-
swer isyes but the proof requires a multi-page argument us-

2002)). Over the past decade, a number of extensions haveing considerable proof-theoretic machinery such as Craig’s
been proposed to deal with issues such as time, natural ac-|nterpolation Lemma (Reiter 2001b).

tions, knowledge of agents, numerical uncertainty, or utili-
ties (see (Reiter 2001a) and the references therein).

As a formalism, the situation calculus is based st
ioms In Reiter's formulation, which is also our starting
point, these take the form of so-callbdsic action theories
These consist of a number of foundational axioms, which

define the space of situations, unique-name axioms for ac-

tions, axioms describing action preconditions and effects,
and axioms about the initial situation.

What makes basic action theories particularly useful is the
formulation of action effects in terms gficcessor state ax-
ioms which not only provide a simple solution to the frame
problem (Reiter 1991) but also allow the use of regression-
based reasoning, which has been used in planning (Finzi
Pirri, and Reiter 2000) and forms the core of every Golog
interpreter, for example. Derivations using regression are
simple, clear, and computationally feasible.
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One might wonder whether a semantic proof using Tarski
structures would be any easier. The answer, in shorip.is
The problem is that different structures can have different
domains and effort is required to standardize the domains,
identify the situations, and amalgamate multiple structures
into a single structure that satisfies the foundational axioms.
While certainly possible, the argument is again long and
complicated.

In contrast, in the logic of only-knowin@L (Levesque
and Lakemeyer 2001), the semantic proof of the above de-
terminacy of knowledge theorem is simple, clear and direct.
One reason for this is the use of a semantic formulation
involving possible worlds for knowledge (Hintikka 1962;

' Fagin et al. 1995). Typical of these formalisms, situations

and possible worlds are not reified in the language itself. Be-
yond this, however, a major factor in the simplicity of proofs

in OC is the use oftandard nameswhich allows a substi-
tutional interpretation of the first-order quantifiers. While
there have been philosophical arguments against substitu-



tional quantification (Kripke 1976), our experience has been
that its technical simplicity has been of tremendous help in
tackling issues such as quantifying-in (Kaplan 1971), which
are rarely addressed in other formalisms.

Since OL only deals with static knowledge bases, an
amalgamation ofL and the situation calculus was previ-
ously proposed (Lakemeyer and Levesque 1998). However,
this formalization kept situations reified, did not allow sub-
stitutional quantification, and the definition of knowledge re-
quired second-order logic, all of which again complicated
the proofs considerably, even semantic ones.

In this paper, we propose a rather different amalgamation
of OL and the situation calculus callgg$. The idea is to
keep the simplicity oL, and while dropping some of the
expressiveness of the ordinary situation calculus, retain its

main benefits, like successor state axioms to solve the frame o flyent predicates of arity: F* = {5 fh,

problem and regression-based reasoning. In particular, we
will use a possible-world semantics where situations are part
of the semantics but do not appear as terms in the language
In order to represent what is true in a situation after a number
of actions have occurred, we use special modal operators.
For example, we will have formulas like those of traditional
dynamic logic (Pratt 1976; Harel 1984), such as

[pickup(obj5)] [drop(obj5)] Broker{obj5)

to say thatobj5 is broken after doing the two actions. In

contrast to other modal approaches to reasoning about ac-

tion such as (Castilho, Gasquet, and Herzig 1999; Herzig et
al. 2000; Demolombe 2003), we also allow formulas of the
form Va.([a]|Broker(obj5) = ¢), where modalities contain
(action) variables. This feature will be key in reconstructing
Reiter’s basic action theories in our language. Moreover, un-
like standard modal logics (including dynamic logics), we
will be able to use a substitutional interpretation for first-
order quantifierd. This is perhaps the main reason why we
cannot afford situation terms as part of our language. The
epistemic situation calculus requires us to consider an un-
countable number of initial situations (see (Levesque, Pirri,
and Reiter 1998) for a second-order foundational axiom that
makes this explicit). In a language with only countably
many situation terms, this would preclude a substitutional
interpretation of quantifiers.

Yielding much simpler proofs (like the determinacy of

The rest of the paper is organized as follows. In the next
section we introduce the syntax and semanticgSffol-
lowed by a discussion of basic action theories and regression
for the non-epistemic case. In the following section, we con-
sider properties of knowledge, extend regression and show
the connection to the representation theorer@®6f We end
the paper with a discussion of related work and concluding
remarks.

The Logic &S
The Language

The language consists of formulas over symbols from the
following vocabulary:

e variablesV = {z, 2, z3,. .. S

..}, for
example Broken we assume this list includes the distin-
guished predicateRossandSF (for sensing);

e rigid functions of arityk: G* = {g¥, g5,...}; forex-
ample,obj5, pickup note thatG? is a set of non-fluent
constants (or standard names);

connectives and other symbols=, A, -, V, Know,
OKnow [, round and square parentheses, period,
comma.

For simplicity, we do not include rigid (non-fluent) predi-
cates or fluent (non-rigid) functions. Thermsof the lan-
guage are the least set of expressions such that

1. Every first-order variable is a term;
2. If ty, ...t are terms, then so ig° (¢4, . . . , t1).

We let R denote the set of all rigid terms (here, all ground
terms). For simplicity, instead of having variables of the
action sort distinct from those of thebjectsort as in the
situation calculus, we lump both of these together and al-
low ourselves to use any term as an action or as an object.
Finally, thewell-formed formula®f the language form the
least set such that

1. Ifty, ..., are terms, therf® (¢4, . ..
formula;

2. If t; andt, are terms, the(it; = t) is a formula;
3. If tis aterm andy is a formula, therit]« is a formula;

yYly ey 21y ey A1, .

, 1) is an (atomic)

knowledge and the correctness of regression) is not the only4 |f o and3 are formulas, then so ater A 3), —a, Va.q,

benefit of this approach. As we will see, the use of regres-
sion allows us to reduce reasoning about basic action theo-
ries (possibly involving knowledge) to reasoning about the
initial situation (possibly with knowledge), as in the original
situation calculus. What is new here, however, is that we can
then leverage the representation theoren®6f(Levesque
and Lakemeyer 2001) and show that certain forms of rea-
soning about knowledge and action reduce overall to strictly
first-order reasoning about the initial situation, without ac-
tion and without knowledge.

For simplicity, we will only consider the first-order version of

our proposal here. The second-order version, which is necessary

to formalize Golog, will appear in a companion paper (Lakemeyer
and Levesque 200x).

Oa, Know(a), OKnow(«).

We read(t]a as “a holds after actiont”, o as “a holds af-
ter any sequence of action&how(«) as “a is known”, and
OKnow«) as “a is all that is known.” As usual, we treat
Jr.a, Jxd.a, (aV P), (o D B), and(a = ) as abbrevi-
ations. We call a formula without free variablesentence
We sometimes use a finite set of sententeas part of a
formula, where it should be understood conjunctively.

In the following, we will sometimes refer to special sorts
of formulas and use the following terminology:

e aformula with ndJ operators is callebounded;

2Equivalently, the version in this paper can be thought of as
having action terms but no object terms.



a formula with ndJ or [¢] operators is calledtatic;

a formula with noKnow or OKnow operators is called
objective;

a formula with no fluent[J, or [¢] operators outside the
scope of &nowor OKnowis calledsubjective;

a formula with noKnow, OKnow O, [t], Poss or SFis
called afluentformula.

The semantics

Intuitively, a worldw will determine which fluents are true,
but not just initially, also after any sequence of actions. We
let P denote the set of all pais:p whereo € R* is con-
sidered a sequence of actions, ang f*(ry,...,r;) is a
ground fluent atom. In general, formulas are interpreted rel-
ative to a modelM = (e, w) wheree C W andw € W, and
whereW = [P — {0,1}]. Thee determines all the agent
knows initially, and is referred to as @pistemic state.

We interpret first-order variables substitutionally over the
rigid terms R, that is, we treat? as being isomorphic to a
fixed universe of discourse. This is similar@t, where we
used standard names as the domain. We also defing, w
(read: w’ andw agree on the sensing fot) inductively by
the following:

1. wheno = (), w’ ~, w, for everyw’ andw;
2. W =5 w iff W ~, wandw'[o:SHr)] = w[o:SHT)].

Here is the complete semantic definition &8: Given a
modelM = (e, w) and sequence of actions let

e,w,o = f(ry,...,rg) iff wlo:f(r,...,m)] =1;
e,w,o |=(r1 =r9) iff r; andrs are identical;
e,w,o0 = (aApB) iff e,w, 0 aande,w,o = G;
e,w,o = —a iff e,w, o~ a;
e,w,0 =Vz. a iff e,w,o = aZ, foreveryr € R;
e,w,o = [rla iff e,w,0-rEaq;
e,w,o = Da iff e,w,0-0’ | «, foreveryo’ € R*;
e,w,o = Know(«) iff forall v’ ~, w,

if w' € e thene,w’ o E «;
e,w,o = OKnow(«) iff forall w' ~, w,

w eeliff e,w 0 q;
Whena is a sentence, we sometimes wetev = « instead
of e,w, () = «. In addition, whenx is objective we write
w = « and whenu is subjective we writee = a. When
¥ is a set of sentences ands a sentence, we writ8 = «
(read:Y logically entailsa) to mean that for every andw,
if e,w |= o for everya/ € ¥, thene,w = «. Finally, we
write = « (read:« is valid) to mean(} = a.
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Basic Action Theories and Regression

Let us now consider the equivalent of basic action theories of
the situation calculus. Since in our logic there is no explicit
notion of situations and the uniqueness of names is built into
the semantics, our basic action theories do not require foun-
dational axioms. For now we only consider the objective
(non-epistemic) case.

Given a set of fluent predicateB, a sety. C &S of
sentences is called laasic action theoryover F iff ¥ =
Yo U Xpe U Xpost WhereX mentions only fluents icF and

1. ¥y is any set of fluent sentences;

2. X is a singleton sentence of the fof@Posga) = ,
wherer is a fluent formulg&

3. XpostiS a set of sentences of the fofftja] f (Z) = 7, one
for each fluentf € F, and wherey; is a fluent formuld.

The idea here is that, expresses what is true initially (in
the initial situation),X,. is one large precondition axiom,
and X, is a set of successor state axioms, one per fluent,
which incorporate the solution to the frame problem pro-
posed by Reiter (Reiter 1991).

Here is an example basic action theory from the blocks
world. There are three fluentSragile(z) (objectz is frag-
ile), Holding(z) (objectz is being held by some unnamed
robot), andBroker(z) (objectz is broken), and three ac-
tions, drop(z), pickupx), repair(z). The initial theory>,
consists of the following two sentences:

—Broker{obj5),
Vz—=Holding(z).

This says that initiallyobj5 is not broken and the robot is
not holding anything. The precondition axioB),. is the
following:

OPosga) =
Jz.a = pickugz) A Vz.—Holding(z)) V
Jdz.a = drop(z) A Holding(z) V
Jz.a = repair(z) A Holding(x) A Broker(x).

This says that a pickup action is possible if the robot is not
holding anything, that a drop action is possible if the ob-
ject in question is held, and that a repair action is possible
if the object is both held and broken. Note the usé bf
here, which plays the role of the universally quantified sit-
uation variable in the situation calculus, ensuring that these
preconditions hold after any sequence of actions. The set of
successor state axiorhg,y in the example has the following
three elements:

Ola]Holding(z) =
a = pickupz) Vv Holding(z) A a # drop(x),

O[a]Fragile(z) Fragile(x),

O[a]Broker(z)
a = drop(z) A Fragile(z) Vv
Broker(z) A a # repair(x).

This tells us precisely under what conditions each of the
three fluents is affected by doing an action: an object is held
iff it was just picked up or was already held and not dropped;
the fragility of an object is unaffected by any action; an ob-
ject is broken iff it was just dropped and fragile, or it was
already broken and not just repaired. Note that the solution

3We follow the usual situation calculus convention that free
variables are universally quantified from the outside. We also as-
sume thatd has lower syntactic precedence than the logical con-
nectives, so thdflPosga) = 7 stands foiva.CJ(Posga) = 7).

“The [t] construct has higher precedence than the logical con-
nectives. S@[a] f(Z) = ~ abbreviate¥a.0([a] f(Z) . = ~¢).



to the frame problem depends on the universally quantified

Definition 1 Letw be a world and® a basic action theory

variablea, but the unique-name aspect is built into the se- with fluent predicates. Thenwy, is a world satisfying the

mantics of the language.

following conditions:

~ Foragiven basic action theoly, a fundamental reason- 1 for f ¢ 7, wy[o: f(r1,...,r)] = w[o f(r1, ..., m)];
ing task isprojection that is, determining what holds after a 2. for f € F, wso: (71 r)] is defined |nduct|vely
number of actions have occurred. For examplebi bro- = Y
ken after first picking it up and then dropping it? Formally, (@) ws[():f(r1,..o )] = wl( >_ (r1s )]s
this corresponds to determining if (b) wslo - T'f(qh . )m) = kl

Ws, 0 = \Vf TT‘ll" :k

Y E [pickupobj5)][drop(obj5)|Broker(obj5).

Itis not hard to see that this conclusion does not follow from
the action theory above (since it is left open whether or not
obj5is fragile). In general, the projection task involves de-
termining if

¥ E ] [ree,
whereY. is a basic action theory, thg are ground terms
(representing actions), andis an arbitrary sentence. Rei-
ter showed how successor state axioms allow the use-of
gressionto solve this reasoning task for certair{which he
called theregressable formulds The idea is to successively
replace fluents imv by the right-hand side of their successor
state axioms until the resulting sentence contains no more
actions, at which point one need only check whether that
sentence follows from the sentences in the initial theory.

We remark that, although the projection problem is de-
fined for linear sequences of actions, a solution such as re-
gression also allows us to reason about conditional plans.
For example, verifying whether a conditional plan is guar-
anteed to satisfy a goalamounts to determining whether
holds at the end of every branch of the conditiohal.

We now show how to do regression & given an ba-
sic action theony.. In our account, any bounded, objective
sentencex is considered regressable, and we defije],
the regression oft wrt X, to be the fluent formul® (), o,
where for any sequence of termgnot necessarily ground),
R]o, o] is defined inductively omv by:

1. Rlo, (t1 = t2)] = (1 = t2);

2. Rlo,Vza] = VzR]o, al;

3. Rlo, (a A B)] = (Rlo,a] AR, 5]);

4. Rlo,~a] = - Ro,ql;

5. Rlo, [tla] = Ro - t,al;

6. R[o,Posst)] = Rlo, 7f];

7. Rlo, f(t1,...,tx)] is defined inductively owr by:
@ RO, [t te)] = [t )
(b) Rlo-t, f(tr,. - te)] = Rlo, (vp)i ) - 5]

Note that this definition uses the right-hand sides of both the
precondition and successor state axioms fdom

Using the semantics &S, we will now reprove Reiter’s
Regression Theorem, and show that it is possible to reduce
reasoning with formulas that contdit) operators to reason-
ing with fluent formulas in the initial state.

We begin by defining for any worldh and basic action
theoryX another worldws, which is likew except that it is
defined to satisfy th&,. andX,., sentences af.

5In the case of Golog, regression is applied even to plans with
loops and nondeterministic action choices.

3. wyfo:Posgr)] =1 iff wy, o | 72

Note that this again uses theand~; formulas fromX.
Then we get the following simple lemmas:

Lemma 1 For any w,wy exists and is uniquely defined.

Proof:  ws, clearly exists. The uniqueness follows from the
fact thatr is a fluent formula and that for afl € 7, once the
initial values off are fixed, then the values after any number
of actions are uniquely determined By, I

Lemma?2 If w | X thenwy, = X.

Proof:  Directly from the definition ofwy, we have that
wy, = VaOPosga) = m andwy, = VavZOla] f(Z) = ;.1

Lemma 3 If w = ¥ thenw = ws.

Proof: If w |= OPosga) = m andw = Old] f(Z) = vy,
thenw satisfies the definition ab. il

Lemma 4 Leta be any bounded, objective sentence. Then
wE Rlo,a] iff wg,0Fa

Proof: The proof is by induction on the length of(treat-
ing the length ofPosgt) as the length ofry plus 1). The
only tricky case is foPosgr) and for fluent atoms. We have
thatwy, o |= Posgr) iff (by definition of wy) wy, o = 7°

iff (by induction) w | R[o,7%] iff (by definition of R)

w = R[o, Posgr)]. Finally, we consider fluent atoms, and
prove the lemma by a sub-induction en

1. wy, () E f(r1,...,rs) iff (by definition of wy,),
w, () = f(r1,...,r) iff (by definition of R),
w R f(rr )
2. wy,o -1 f(r1,...,r) iff (by definition of wy,),
ws, 0 = (yg)frs ... 7k iff (by the sub-induction),
w = Rlo, (vp)irs ... 7k iff (by definition of R),

wER[o -, f(ri,...,m)],
which completes the prooll

Theorem 1 LetY = Xy U Xy U Epost e @ basic action
theory and letn be an objective, bounded sentence. Then
Rla] is a fluent sentence and satisfies
E() @] Epre @] Epost ': o iff E() ): R[OZ]

Proof: Suppose, = R[«a]. We prove thal: = «. Let
w be any world such that = X. Then,w = Xy, and so
w = Rla]. By Lemma 4wy | a. By Lemma 3wy, = w,
and sow = a.

Conversely, suppose = a. We prove that, = R[a].
Let w be any world such that | ¥,. From Lemma 2,
wg E X, and sowy = «. By Lemma 4w | Rla]. 1



Note that the conciseness of this proof depends crucially on
the fact that Lemma 4 is proven by induction ogentences
which is possible only because quantification is interpreted
substitutionally.

Knowledge

The interpretation of knowledge & is just a special case

of possible-world semantics (Kripke 1963; Hintikka 1962).
In particular, as we model knowledge as a set of “worlds”, it
is not surprising that we obtain the usual propertieweék
S5(Fagin et al. 1995). Since we assume a fixed universe of
discourse, the Barcan formula for knowledge (Property 4 of
the following theorem) and its existential version (Property
5) hold as well. Moreover, these properties hold after any
number of actions have been performed.

Theorem 2

1. = O(Know(a) A Knowae D 3) D Know(3));
2. E O(Know(«) D Know(Know(a)));

3. E O(-=Know(a) D Know(—Know(«)));

4. = OVz.Knowa) D Know(Vz.a));

5. = O(3z.Knowa) D Know(3z.a)).

Proof:

1. Lete,w,o0 = Knowa) A Know(a D (). Then for all
w ~, w, if w € ethene,w’,oc E «ande,w’,c =
(o D B). Hencee,w',o = § and, therefore, we have
thate, w, o = Know(g3).

. Lete,w,0 E Know«). Letw’ andw” be worlds in
e such thatw’ ~, w andw” ~, w’. Since~, is an
equivalence relation, we have” ~, w and, therefore,
e,w” o = a by assumption. As thisis true forall’ € e
with w” ~, w’, we havee, w’, o = Know(«) and, hence,
e,w,o = Know(Know(«)).

. Lete,w,o0 = —-Know(«). Thus for somev’, v’ ~, w,
w’ € eande,w’,o [~ «. Letw” be any world such that
w” ~, w' andw” € e. Clearly,e,w”, o = —-Know(«).
Sincew” ~, w, e,w, o = Know(—Know(«)) follows.

. Lete,w,0 = Vz.Know(a). Hence for allr € R,
e,w,o0 E Know(a?®) and thus for allw’ ~, w, if
w' € ethen forallr € R, e,w,0 = «f, from which
e,w,o = Know(Vz.«a) follows.

. Lete,w,o | Jz.Know(a). Thene,w,o = Knowa¥)
for somer € R. By the definition ofKnow, it follows
thate, w, o = Know(3z.c). I

We remark that the converse of the Barcan formula (Property

4) holds as well. However, note that this is not the case for
Property 5:0(Know(3z.«) D Jz.Know(«)) is not valid in
general. Despite the fact that quantification is understood
substitutionally, knowing that someone satisfiedoes not
entail knowing who that individual is, just as it should be.

Proof:  Suppose not. Then for every Know«) does
not entailknow(5%), and so, by the Lemma below, does
not entail 3. So for everyr, there is a worldw, such that
wy = (aA-pF). Lete = {w, | r € R}. Then we have
thate = Know(«) and for everyr € R, e = —Know(5¥),
and soe = Vz.—Know(57). This contradicts the fact that
Know(«) entails3z.Know(3). Il

Lemma5 If o and 3 are objective, and= (o D (), then

E (Know(a) D Know(53)).

Proof: Suppose that somej= Know(«). Then for every
w € e,w | a. Then for everyw € e, w E 8. Thus

e = Know(5). 1

This proof is exactly as it would be i@£. Again it is worth
noting that the proof of this theorem in the ordinary situation
calculus (for the simpler case involving disjunction rather
than existential quantification) is a multi-page argument in-
volving Craig’s Interpolation Lemma.

Regressing Knowledge

In the previous section we introduced basic action theories
as representations of dynamic domains. With knowledge,
we need to distinguish between what is true in the world
and what the agent knows or believes about the world. Per-
haps the simplest way to model this is to have two basic
action theoriess and ¥’, whereX. is our account of how
the world is and will change as the result of actions, &hd

is the agent’s version of the same. The corresponding epis-
temic state is then simplyw | w | X'}, which we also
denote aR[X']. Itis easy to see that

Lemma 6 R[X], w = OKnowX).

~

Proof:  Let w’ be any world. Themnw' ~¢, w by the
definition of ~,. By the definition ofR[X] we have that
w' € R[X] iff w' = o. HenceR[X] = OKnowX). I

As discussed in (Scherl and Levesque 2003), actions can
be divided into ordinary actions which change the world like
pickup(obj5) and knowledge-producing or sensing actions
such as sensing the color of a litmus paper to test the acidity
of a solution. To model the outcome of these sensing actions,
we extend our notion of a basic action theory to be

E == ZO U Epre U z]p(JStL-J ESEHSS

where YIS @ singleton sentence exactly parallel to the
one forPossof the form

OSHa) = ¢

Perhaps more interestingly, we can show a generalized Wherey is a fluent formula. For example, assume we have

version of the determinacy of knowledge:
Theorem 3 Supposex is an objective sentence anglis

an objective formula with one free variable such that
E Know(e) D Jz.Know(3). Then for some rigid term,

E Know(a) D Know(37).

a sensing actioseeReavhich tells the agent whether or not
the Redfluent is true (that is, some nearby litmus paper is
red), and that no other action returns any useful sensing re-
sult. In that cas&s.nsewould be the following:

OSKa) [a = seeRed\ RedV a # seeRef]



For ease of formalization, we assume tB&tis character-
ized for all actions including ordinary non-sensing ones, for
which we assume th&Fis vacuously trué.

The following theorem can be thought of as a successor-

state axiom for knowledge, which will allow us to extend re-
gression to formulas containignow. Note that, in contrast
to the successor state axioms for fluents, thistreearemof
the logic not a stipulation as part of a basic action theory:

Theorem 4 | Ofa]Know(a) =
SHa) A Know(SHa) D [a]a) V
—SHa) A Know(—SHKa) D [a]c).

Proof: Lete,w,o [ [r][Knowa?) for r € R. We write
o for a®. Supposes,w,oc = SHr). (The case where
e,w,o = —SHr) is analogous.) It suffices to show that
e,w,o = KNowWSKr) D [r]a’). So suppose’ ~, w and
w’ € e. Thusw'[o : SHr)] = w[o : SKr)] = 1 by assump-
tion, that is,w’ ~,.,. w. Sincee,w,o | [r]Know(a') by
assumptione, w’, o - r = o/, from whiche, v’ o = [r]o/
follows.

Conversely, let, w, o = SHr) A [r]lKnow(SHr) D o).
(The other case is similar.) We need to show that, o =
[r]Know('), thatis,e, w, o - = Knowa'). Letw’ ~;.,. w
andw’ € e. Thenw'[o : SHr)] = w[o : SKHr)] = 1 by as-
sumption. Hence, w’,o = SHr). Therefore, by assump-
tion, e,w’,o - r |= @, from whiche, w, o = [r]Know(a)
follows. 1

We consider this a successor state axiom for knowledge

in the sense that it tells us for any actianwhat will be
known after doingz in terms of what was true before. In
this case, knowledge after depends on what was known
before doing: about what the future would be like after do-
ing a, contingent on the sensing information provideddy
Unlike (Scherl and Levesque 2003), this is formalized with-
out a fluent for the knowledge accessibility relation, which
would have required situation terms in the language.

We are now ready to extend regression to deal with knowl-

edge. Instead of being defined relative to a basic action the-

ory ¥, the regression operat® will be defined relative to
a pair of basic action theorie&’, ) where, as abovey’
represents the beliefs of the agent. We allBvand Y’ to
differ arbitrarily and indeed to contradict each other, so that
agents may have false beliefs about what the world is like,
including its dynamicg. The idea is to regressrt. ¥ out-
side of Know operators andavrt. Y’ inside. To be able to
distinguish between these cas®snow carries the two ba-
sic action theories with it as extra arguments.

Rule 1-7 of the new regression operafoiare exactly as
before except for the extra argumedtsandX. Then we
add the following:

(@ R[X, X, (), Knowa)] = Knom(R[Z/, %, (), a]);
(b) R, %, 0-t,Knowa)] = R[X, X, o, 5], whereg is
the right-hand side of the equivalence in Theorem 4.

For simplicity, we writeR [a] instead ofR[Y/, X, (), ).

To prove the regression theorem for formulas involving
Know, we first need to extend the definition ef, of the
previous section to account f&~atoms. For any worldv
let wy, be as in Definition 1 with the additional constraint:

4. we[o:SHr) =1 iff wy,0 = ¢

As before, since is a fluent formulayuy, is uniquely defined
for anyw. Itis easy to see that Lemma 2 and 3 carry over
to basic action theories extended b¥.a.s.formula. In the
following we simply refer to the original lemmas with the
understanding that they apply to the extended basic action
theories as well. We also assume or(resp.Y’), a basic
action theory, thaE, (resp.X;) is the sub-theory about the
initial state of the world.

Here is the extension of Lemma 2 to knowledge:

Lemma 7 If e = OKnowXy) theney = OKnowY).

Proof: Lete = OKnowXy), thatis, for allw, w € e iff
w E Xo. We need to show that for all, w € ey iff w E X.

Supposev | 3. Thenw | £, and hencev € e and, by
definition,wy € ey. By Lemma 3wy = w and, therefore,
w € ex.

Conversely, letv € eyx. By definition, there is a’ € e
such thatw = w,. Sincew’ = ¥¢, by Lemma 2. E X,
thatis,w = 2.1

We now turn to the generalization of Lemma 4 for knowl-
edge. Given any epistemic stat&and any basic action the-
ory 3, we first defineey, = {wys | w € e}.

Lemma8 e,w = R[Y, X, 0,q] iff ex,ws,0 E a.

Proof:
onc.
Let o = (). As with the case oPossin Lemma 4, we
take the length oSHr) to be the length of¢ plus 1. The
proof for Poss fluent atoms, and the connectivesA, and
V is exactly analogous to Lemma 4.
For SF, we have the following:

esr, ws, () = SHr) iff (by the definition ofwy),
esr, W, () = % iff (by induction),
e,w ER[Y, 3, (), 2] iff (by the definition ofR),
e;w =R, X, (), SHr)].

For formulasknow(«) we have:
esr = Know(a) iff
forallw € ey, e, w = «iff (by definition of ey/),
forall w € e, exr, wy = « iff (by induction),

The proofis by induction oa with a sub-induction

8' R[E/7 27 U? SF(t)] = R[E/’ 27 0.7 (P?],
9. R[Y/, %, 0,Know(«)] is defined inductively omr by:

forallw € e, e,w, = R[X, ¥, (), o] iff
e E KnowW(R[X, ¥/, (), a]) iff (by definition of R),
e = RIY.E. (), Know(a).

®Here we restrict ourselves to sensing truth values. See (Scherl _ .
and Levesque 2003) for how to handle arbitrary values. This concludes the base case- (). o

"This is like (Lakemeyer and Levesque 1998) but in contrastto  NOW consider the case of - r, which again is proved
Scherl and Levesque (Scherl and Levesque 2003), who can only Py & sub-induction om. The proof is exactly like the sub-
handle true belief. While we allow for false beliefs, we continue to  induction for the base case except Kmow, for which we

use the terms knowledge and belief interchangeably. have the following:



ess, Wy, o -7 = Know(a) iff (by Theorem 4),

esr, Wy, 0 = B2 (Where thes is from Theorem 4)
iff (by the main induction),

e,w ER[Y, X, 0,82 iff (by definition of R),

e,w ER[Y,E, 0 r,Knowa)],

which completes the prooll.
Finally, here is the general regression theorem:

Theorem 5 Let a be a bounded sentence with no OKnow
operators. TherR[«] is a static sentence and satisfies

L AOKnowY') E a iff g A OKnowX() | R[a].

Proof:  To prove the only-if direction, let us suppose that
¥ A OKnow(Y) E a and thate,w = Xy A OKnow(Xy).
Thusw E Xy and, by Lemma 2wy E X. Also, e &
OKnow(Xj) and thus, by Lemma 7., | OKnow(X').
Therefore,ex, ws, = ¥ A OKnow(X'). By assumption,
esr,wy = aand, by Lemma &, w = R[a].

Conversely, suppos&; A OKnow%j) = R[a] and
let e,w = X A OKnowX'). (Note thate is unique as
e = R[¥'] by Lemma 6.) Thenv | ¥y. Now suppose
¢/ | OKnow(Xj). Then, by assumptiory’, w = Ra].
Thenel,,wy = «. By Lemma 7., = OKnowX'). By
Lemma 3,ws = w and, by the uniqueness ef e/, = e.
Thereforeeg, w | a. 1

The reader will have noticed that we left ddKnowfrom
our definition of regression. While it seems perfectly rea-
sonable to ask what one only knows after doing an actjon
it is problematic to deal with for at least two reasons. For

one, the current language does not seem expressive enoug

to represent what is only-known in non-initial situations.
Roughly, this is because after having denene knows that
one has just done and that certain things held before the

action. However, the language does not allow us to refer to
previous situations. But even if were able to extend the lan-
guage to deal with this issue, another problem is that when-

ever[a]OKnow(«) holds, then in question would in general

not be regressable. To see why, recall that regressable for-

mulas are restricted to H®undedthat is, they do not men-

tion O. In our discussion above we make the reasonable as-

sumption that, initially, the agent only-knows a basic action

theoryY’, which contains sentences like successor state ax-
ioms, which are not bounded. Then, whatever is only-known

after doinga must somehow still refer to these axioms, but

they are not regressable by our definition. For these reason,

we have nothing to say about only-knowing in non-initial
situations.

As a consolation, being able to reason about what is
known in future states, as opposed to only-known, seems

to be sufficient for most practical purposes.

An Example

makesRedtrue justin case the solution is acidic, represented
by the fluentAcid. For this example, we will use thBg. s
from above, an@®,. = {{OPosga) = true}, which states
that all actions are always possible, for simplicity. We let
Yposy the successor state axioms, be the following:

Ola]Acid = Acid,

O[a]Red =
a = dipLitmusA Acid Vv
RedA a # dipLitmus

that is, the acidity of the solution is unaffected by any action,

and the litmus paper is red iff the last action was to dip it into

an acidic solution, or it was already red and was not dipped.
Finally, we letX, the initial theory, be the following:

Acid, —Red

Now let us consider two basic action theories:
Y =30 U e U Zpost U Sense
Y ={} U3peUEp0stU Uense

The two are identical except thatid is true andRedfalse
initially in . This amounts to saying that in reality the solu-
tion is acidic and the litmus paper is initially not red @b,

but that the agent has no knowledge about the initial state of
the two fluents (ir2’). Then we get the following:

1. ¥ A OKnowY') = —Know(Acid);
2. ¥ A OKnowY') = [dipLitmug—Know(Acid);
3. ¥ A OKnowY') k= [dipLitmug[seeRe[Know(Acid).

r]n other words, after first dipping the litmus and then sensing
the result, the agent comes to know not only that the litmus
paper is red but that the solution is acidic. Informally, what
happens is this: becau8eidis true in reality, thalipLitmus
action make®edtrue; the agent knows that neitheednor
Acid are affected byseeRedand so knows that iRedwas
made true bydipLitmus(becauseéicid was true), then both
will be true afterseeRegafter doing theseeRedthe agent
learns thaRedwas indeed true, and gcidwas as well.

Observe that the agent only comes to these beliefs after
doing both actions. (1.) and (2.) show the usefulness of
only-knowing. In particular,-Know(Acid) would notbe en-
tailed if we replacedDKnowby Knowin the antecedent.

To see why (1.) holds, notice th&[-Know(Acid)] =
-Know(R[X/, %', (),Acid) = —Know(Acid). Therefore,
by Theorem 5, we get that (1.) reduces to

Yo A OKnow(true) = —Know(Acid).
The entailment clearly holds because the set of all watlds

is the unique epistemic state satisfyi@Know(true), and
e contains worlds wherAcidis false.

To see why (2.) holds, first note that

and

To illustrate how regression works in practice, let us con- R[[dipLitmug—Know(Acid)] = -R[¥/, X, d, Know(Acid)],

sider the litmus-test example adapted from (Scherl and

Levesque 2003). In addition to the actiseeRedwhich
we described above as sensing whether or not the fRiedt

is true (the litmus paper is red), there is a second action

dipLitmus(dipping the litmus paper into the solution), which

where we abbreviatgipLitmusasd. Then, using Rule (9b),
-R[¥, X, d, KnowAcid)] =
R, %, (), SHd) AKnow(SHd) D [d]Acid) V
-SHd) AKnow(—=SHd) D [d]Acid)].



The right-hand side of the equality reduces-tonow(Acid)
because botiR[X, %, (), SHd)] and R[X', %, (), SHd)]
reduce totrue and R[X', %', d, Acid = Acid. Hence (2.)
also reduces to

Yo A OKnow(true) = —Know(Acid),

which was shown to hold above.
Finally, (3.) holds because

R [dipLitmug[seeRelKnow(Acid) ]

reduces ta\cidAKnow(Acid > Acid)Vv-AcidAKnow(Acid),
which again follows fron®y A OKnow(true).

While regression allows us to reduce questions about
knowledge and action to questions about knowledge alone,
in the next section we go even further and replace reasoning
about knowledge by classical first-order reasoning.

OL is part of &S

If we restrict ourselves to static formulas without occur-
rences oPossor SF, and where the only rigid terms are stan-
dard names (rigid terms froi@"), we obtain precisely the
languagedL of (Levesque 1990; Levesque and Lakemeyer
2001)8 We call such formulas and senteng@8-formulas
andOL-sentences, respectively.

For example, ifn is a standard name arfd and f5 are fluent
predicates,

V. fi(x) D Knowf1(z)) and
OKnow(f1(n)) > Know(—Know(f2(n)))

areOL-sentences, but

Vx.Posgz) O KnowPosgx)),

OKnow(f1(g(n))) > Know(—=Know( f»(g(n)))), and
OKnow(f1(n)) D [t]Know(—=Know(f2(n)))

are not. Note, in particular, that any fluent formula is also
an objectiveOL-formula. It turns out that the two logics are
indeed one and the same when restricte@fesentences.

Theorem 6 For everyOL-sentencey, « is valid in OC iff «
is valid in&S.

The proof is not difficult but tedious. Here we only go over
the main ideas. A world irOL is simply a mapping from
ground atoms with only standard names as arguments into
{0, 1}. Similarto&S, a model inOL consists of a paife, w),
wherew is an OL-world ande a set of OL-worlds. The
theorem can be proved by showing that, for &g-model
(e,w) there is an&S-model (¢, w’) so that both agree on
the truth value otv, and vice versa. There are two compli-
cations that need to be addressed. One is that the domai
of discourse ofOL ranges over the standard nan@$, a
proper subset of the domain of discou?®f £S. This can

be handled by using an appropriate bijection frGfhinto R
when mapping models of one kind into the other. The other
complication arises when mapping &8-model (e, w) into

an appropriatéL-model. For that we need the property that

8Actually, in (Levesque and Lakemeyer 2001) non-rigid func-
tion symbols are also considered, an issue we ignore here for sim-

plicity.

n

for all £S-worldsw andw’, if w andw’ agree initially, that

is, w[(): f(£)] = w'[{): f(#)] for all ground atomg (%), then
either both are ire or both are not ire. It can be shown
that, with respect t@L-sentences, we can restrict ourselves
to &S-models with this property without loss of generality.

We remark that while a previous embedding@f into
AOL (Lakemeyer and Levesque 1998) required an actual
translation of formulas, none of that is needed here. Having
OC fully embedded ir€S has the advantage that existing re-
sults for OL-formulas immediately carry over to the static
part of £S.

To see where this pays off, consider the right-hand side
of the regression theorem for knowledge (Theorem 5). It is
not hard to see that, provided that the arguments of fluents
in X, ', anda are standard names, the right-hand side of
Theorem 5 is aOL-formula. It turns out that we can then
leverage results fro®L and show that in order to determine
whether such implications hold, no modal reasoning at all is
necessary!

The idea is perhaps best explained by an example. Sup-
poseOKnow(¢) is true, wherep is (P(a) vV P(b)) A P(c),
wherea, b, andc are standard names. In order to determine
whetherdz P(x) A —Know(P(z)) is also known, it suffices
to first determine the known instances®f For our given
¢, the only known instance oP is ¢, which we can ex-
press ast = c¢. (Note, in particular, that neither nor b
is known to satisfyP.) Then we replac&now(P(z)) by
x = ¢ and check whether the resulting objective sentence
JxP(z) A —(z = ¢) is entailed byg, which it is. In gen-
eral, determining the known instances of a formula with re-
spect tog always reduces to solving a series of first-order
entailment questions. Hence no modal reasoning is nec-
essary. This is the essence of fRepresentation Theorem
of (Levesque and Lakemeyer 2001).

To make this precise, we will now defife|,, which is
the objective formula resulting from replacing anall oc-
currences of subformulaénow(¢)) by equality expressions
as above, given that is all that is this known.

Formally, we first definRES[v, ¢], which is an equal-
ity expression representing the known instances afith
respect tap. Here bothy and) are objective] - |4 then ap-
plies RES to all occurrences Khowwithin a formula using
a recursive descent.

Definition 2 Let ¢ be an objectivedL-sentence and an
objectiveOL-formula. Letnq,...,n; be all the standard
names occurring iy and+ and letn’ be a name not occur-
ring in ¢ or ¢». ThenRES[v, ¢] is defined as:

1. If ¢ has no free variables, theRES[v), ¢] is TRUE
if ¢ = 1, andFALSE otherwise.

2. Ifz is a free variable inp, thenRES[y, ¢] is
((x =n1) ARES[YZ ,9]) V...
(2 = ni) ARES[WE, , 6]) v
((x #ny) A A (x # ng) ARES[YZ,, ¢]).

Following (Levesque and Lakemeyer 2001), let us define a
formula to bebasicif it does not mentiorOKnow?®

x
ny?
X

=
n’

n
x

9This should not be confused witiasicaction theories.



Definition 3 Given an objectiv€)L-sentence and a basic
Oc-formulac, || is the objective formula defined by

lals = @,  whena is objective;
|=ely = —lafe;

[(aAB)lg = (lely AlBls):
[Vzals = Valale;

|[Know(a)] s = RES[|alg, ¢].

Theorem 7 Let¢ and+ be objectivedL-sentences, and let
« be a basiadOL-sentence. Then

=4 AOKnow(¢) D a iff =14 D |als.

Proof: The statement holds i@ and the proof is a slight
variant of the proof of Theorem 7.4.1 (the Representation
Theorem) together with Theorem 8.4.1 of (Levesque and
Lakemeyer 2001). By Theorem 6, the statement then holds
in &S as well.ll

Note that no modal reasoning is required to figure out
|ee|4. So standard theorem-proving techniques can be em-
ployed. There is a price to pay, however: in contrast to clas-
sical theorem proving, RES is not recursively enumerable
since it appeals to provability, when returnif@UE, and
non-provability,when returning-ALSE.

We can now combine the previous theorem with the re-
gression theorem for knowledge (Theorem 5) to reduce rea-
soning about bounded formulas to reasoning about static for-
mulas that are now also objective. Formally, we have the
following:

Theorem 8 Given a pair of basic action theoriés andy’,
and a bounded, basic sentenee

S AOKnowy') = a iff =30 D |R[o]]s;.

Proof: By Theorem 5, we have thai A OKnowY') = «

iff o A OKnow(3) = R[a], which can be rewritten as
E Yo A OKnowX() D R[a]. By definition, ¥, and X,
are both fluent sentences and hence objecWesentences.
SinceR[a] is a basiaOL-sentence by Lemma 10 below, the
result follows by Theorem 4

To show thatR[«] is a basiaOL-sentence, we proceed in
two steps.

Lemma 9 If ais a fluent sentence, th&[%', 3, 0, o] is an
objectiveOL-sentence.

Proof:  Sincea is a fluent sentence, only Rules 1-4 and 7
of the definition ofR apply. To simplify notation we write
Rlo, o] instead ofR[¥', ¥, o, ] with the understanding that
regression is with respect . The proof is by induction
ono. Leto = (). We proceed by a sub-induction an
RI(), ft1, ... te)] = f(t1,. .., tr), which is obviously an
objectiveOL-sentence, and the same ®f( ), t; = t2]. The
cases for, A andV follow easily by induction.

Suppose the lemma holds ferof lengthn. Again, we
proceed by sub-induction om. Ro - t, f(t1,...,tx)]
Rlo, (vp)ie)! - tr ], whereQ[z] f (1) = vy iSin Xy Since
v is a fluent formula,R[o, (vf)¢{) ... ¢F] is an objective
OL-formula by the outer induction hypothesis. The case for
= is clear, and the cases for A andV again follow easily
by induction.ll

Lemma 10 Let o be a bounded, basic sentence. Then
R[X, X, 0,a] is a basicOL-sentence.
Proof: The proof is by induction onw. If « is

a fluent sentence, then the lemma follows immediately
from Lemma 9. R[Y/, %, 0, Poss(t)] = R[Y/, %, 0, 7]
Sincer is a fluent formula, the lemma again follows by
Lemma 9. The same holds f&~t). R[X', %, o, [t]a]
R[X, %, 0 - t,al], which is a basidOL-sentence by induc-
tion. The case folKnow is proved by a sub-induction
ono. R[X, X, (), Knoma)] = KnowWR[Z', %/, (), a]).
By the outer induction hypothesi®[¥', ¥, (), o] is a ba-
sic OL-sentence and, hendénow(R[¥', Y, (), a]) is one
as well. R[Y,%,0 - t,Knowa)] = R[Y, X, 0, SKE) A
Know(SKt) D [t]a) V -SHt) A Know(—~SKt) D [t]a)]
R[Y,%,0,SHt)] A RIY,E,0,KNnow(SKHt) D [tla)] V
R[X, %, 0,-SHt)] A R[Y, 2, 0, Know(—=SKHt) D [t]a)].

In each case, either Lemma 9 applies or the induction hy-
pothesis forr, and we are dond

In (Lakemeyer and Levesque 1999), the Representation
Theorem was applied to answering queries4fiC. How-
ever, there reasoning was restricted to the initial situation or
one that was progressed (Lin and Reiter 1997) after a num-
ber of actions had occurred. In other words, the representa-
tion theorem was applicable only after actions had actually
been performed. Here, in contrast, we are able to answer
guestions about possible future states of the world, which is
essential for planning and, for that matter, Golog.

Related Work

The closest approaches to ours are perhaps those combin-
ing dynamic logic with epistemic logic such as (Herzig
et al. 2000) and (Demolombe 2003). In the language
of (Herzig et al. 2000), it is possible to express things
like [dipLitmug[seeRefKnow(Acid) using an almost iden-
tical syntax and wher&now also has a possible-world se-
mantics. Despite such similarities, there are significant dif-
ferences, however. In particular, their language is proposi-
tional. Consequently, there is no quantification over actions,
which is an essential feature of our form of regression (as
well as Reiter’s).

Demolombe (2003) proposes a translation of parts of the
epistemic situation calculus into modal logic. He even con-
siders a form of only-knowing. While his modal language
is first-order, he considers neither a substitutional interpreta-
tion of quantifiers nor quantified modalities, which we find
essential to capture successor state axioms. Likewise, there
is no notion of regression.

Although they do not consider epistemic notions, the
work by (Blackburn et al. 2001) is relevant as it reconstructs
a version of the situation calculus in Hybrid Logic (Black-
burn et al. 2001), a variant of modal logic which was in-
spired by the work on tense logic by Prior (Prior 1967). In a
sense, though, this work goes only part of the way as an ex-
plicit reference to situations within the logic is retained. To
us this presents a disadvantage when moving to an epistemic
extension. As we said in the beginning, the problem is that
the epistemic situation calculus requires us to consider un-



countably many situations, which precludes a substitutional
interpretation of quantification.

Conclusions

In this paper we proposed a language for reasoning about
knowledge and action that has many of the desirable fea-
tures of the situation calculus as presented in (Reiter 2001a)
and of OL as presented in (Levesque and Lakemeyer 2001).
From the situation calculus, we obtain a simple solution to
the frame problem, and a regression property, which forms
the basis forGolog (Levesque et al. 1997), among other
things. FromOL, we obtain a simple quantified epistemic
framework that allows for very concise semantic proofs, in-
cluding proofs of the determinacy of knowledge and other
properties of the situation calculus. To obtain these advan-

tages, it was necessary to consider a language with a sub-

stitutional interpretation of the first-order quantifiers, and
therefore (in an epistemic setting), a language that did not
have situations as terms. Despite not having these terms,
and therefore not having an accessibility relati@hover
situations as a fluent, we were able to formulate a succes-
sor state axiom for knowledge, and show a regression prop-
erty for knowledge similar to that of (Scherl and Levesque
2003). This allowed reasoning about knowledge and action
to reduce to reasoning about knowledge in the initial state.
Going further, we were then able to use results fi@mhto
reduce all reasoning about knowledge and action to ordinary
first-order non-modal reasoning.

While &S seems sulfficient to capture the basic action the-
ories of the situation calculus, not all of the situation cal-

culus is representable. For example, consider the sentence

JsVs'.s' C s D P(s’), which can be read as “there is a situ-
ation such that every situation preceding it satisite§ here
does not seem to be any way to say thigsh In a compan-

ion paper (Lakemeyer and Levesque 200x), we show that,
by considering a second-order versionésf, we regain the
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2003.
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In addition, we show how to reconstruct all of Golog in the
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