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Abstract

We give examples of situations where formal specifications of procedures in the standard pre/postcondition
style become lengthy, cumbersome and difficult to change, a problem which is particularly acute in the
case of object-oriented specifications with inheritance.  We identify the problem as the inability to express
that a procedure  changes only  those things it has to, leaving everything else unmodified, and review  some
attempts at dealing with this “frame problem” in the Software Specification community.

The second part of the paper adapts a recent proposal for a solution to the frame problem in Artificial
Intelligence --- the notion of explanation closure axioms --- to provide an approach whereby one can state
such conditions succinctly and modularly, with the added advantage of having the specifier be reminded of
things that she may have omitted saying in procedure specifications. Since this approach is based on
standard Predicate Logic, its semantics  is relatively straight-forward. The paper  also suggests  an
algorithm which generates syntactically the explanation closure axioms from the pre/postcondition
specifications,  provided they are written in a restricted language,  and  suggests a model theory  supporting
it.
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1.  Introduction

The arguments for preparing first a formal specification of a program, before implementing it in some
programming language, are by now well known and widely accepted.  Program specifications present  what
the desired program is supposed to do rather than how  it is going to accomplish it, using some suitable
notation, which we shall call a formal specification language  (or, just specification language).  The
adequacy of such language is determined  by general  criteria such as expressiveness, but also by

• notational suitability , i.e., the degree to which a specification language makes it possible for the
specifier to express the intent of a procedure in a precise yet simple, concise, understandable,
modular  and easily modifiable  way;

• capacity to support formal  treatment, i.e., the extent to which a formal specification language
provides a foundation and lends support to a methodology for formally proving properties about  the
program and its development.

The first criterion focuses on human engineering concerns, in contrast to its expressiveness. The
importance of such concerns is supported by much of the research on formal specification languages. After
all, one could state everything that is needed for a formal specification using the notations of a sufficiently
rich set theory or predicate logic, and if it was only an issue of expressive power, there would be no need
for VDM,  Z,  Larch, etc., nor for notions such as object-orientation.

The second criterion measures the degree to which formality leads to a methodology, preferably supported
by tools,  for proving  properties about specifications. One familiar kind of proof involving specifications is
to show that some implementation meets  it.   Another kind of  "proof obligation",  which arises in the use
of  model-based specification techniques such as VDM and  Z, requires the specifier to show that each
procedure maintains the global  program-state invariants that are part of the specification (e.g., see [Cohen
86]). State invariants (for example, "Only students who have paid their registration fees can appear on a
class list")  are also known as   integrity constraints in the world of databases. Such constraints are usually
stated as part of the database definition, independently of procedures that access or update the database,
because the database persists between runs of procedures and because system evolution often requires new
procedures to be added.  If a procedure p is specified in terms of a pair of assertions (pre-p, post-p)
-- referring to the conditions required to hold before the invocation of  p, and those  required to hold once p
terminates -- and if I is an invariance assertion (involving a single program state), then this proof
obligation usually has the form

      I before  ∧   pre-p  ∧   post-p ⇒  I after
 

where I before  evaluates the invariant I  with respect to the program state before execution of procedure
p (the state in which pre-p  is evaluated) and I after  with respect to the state in which post-p  is
evaluated.  We'll have the opportunity to discuss these proof obligations in a more formal setting  later in
the paper.

The first aim of this paper is to make the reader aware of a  family of problems which arise in formal
specifications using the pre/postcondition notation, and which is related to a long-standing problem in the
field of Artificial Intelligence (hereafter AI), called the  frame problem  [McCarthy69].  We present
examples illustrating this problem, which becomes a serious impediment for large object-oriented
specifications where  inheritance plays a central role. The examples are intended to demonstrate that failure
to deal with the frame problem compromises a formal specification language with respect to its notational
suitability and its capacity to support a methodology for formally proving properties of specifications. The
rest of the paper discusses  some ways in which existing specification languages endeavor to cope with the
problem and then presents a novel approach, based on recent work intended to solve the frame problem in
planning applications within AI.
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2.   The Frame Problem: Theme and Variations

Since the claims in the sequel apply equally well to any specification language based on pre/postcondition
assertions, we have used the more neutral notation of (First Order) Predicate Logic to express our
examples.  However, in order  to establish this claim of generality, we will repeatedly also show
specifications in the notation of one of the more familiar specification languages, such as VDM or Z.

2.1   The Frame Problem

Consider part of the specification of a simple procedure enrolInCourse, which records the enrollment
of a student st  in a course crs .

enrolInCourse(st,crs)

PRE: size(crs) < classLimit(crs)   ∧     ¬EnrolledIn(st,crs)

POST: size'(crs) = size(crs) + 1      ∧       EnrolledIn'(st,crs)

Here size  and classLimit  are functions, while EnrolledIn  is a predicate4. To refer to the values of
the variables immediately before and after the execution of the procedure we adopt the usual
unprimed/primed notation.  The above specification then declares as precondition to enrolling in a course
the availability of places (i.e., that the number of students already enrolled in the course is less than the
class limit) and that the particular student st  hasn't already enrolled in the particular course crs 5.  The
postcondition, on the other hand, specifies the effect of the procedure on the final state,  including
incrementing the size  and changing the EnrolledIn  predicate so that it is true for st, crs.

Unfortunately, the specification  of enrolInCourse is subject to at least two readings. Moreover, the
more intuitive reading is the harder one to formulate in Predicate Logic.  To see the problem, consider two
implementations of this specification. The first results in exactly two changes to a program state, as
required by the postcondition. The second makes these changes, but also changes some other predicate,
such as CourseCompleted , or  EnrolledIn  at some other argument. The more intuitive, "tighter",
reading of the specification is inconsistent with the second implementation because that implementation
does more than what is necessary to make the postcondition true.  In other words,  the intuitive reading
includes a clause of the form "...and nothing else changes" to circumscribe the modifications  effected by a
procedure.

The second, "looser",  reading of the specification does not include the "...nothing else changes" clause and
is consistent with both implementations mentioned earlier.  This reading is less intuitive in that it merely
places a lower bound on the effects of the procedure that has been specified. On the other hand, this reading
has two advantages: It is less restrictive, thus offering greater implementation freedom -- a desirable
property of specifications. And it affords a simple formalization in Predicate Logic:  first, view  states as
models for formulae involving unprimed predicates and functions -- the "variables" that the program will
update;  the eventual implementation must then establish a state where the postcondition formula evaluates
to true, with primed predicates evaluated in the final state, and unprimed ones in the initial state.  Second,
note that the priming of predicates allows us to put together the theories of the initial state and final state
into a single theory for the entire pre/post-condition formula. Note that the relationship between predicates
R and R'  is entirely through convention  (and through the postcondition) -- they may as well be called by
completely different names. In particular,  any proof obligation of the form mentioned in the introduction
which involves a program state invariant I  and a procedure p  with pre/postconditions pre-p(   x  ),
post-p(   x  ) has to be stated as

                                                                        
4 In general, function symbols used in formulas will begin with a lower case letter and predicate symbols with upper
case ones, while class names will be fully in capital letters.
5 Preconditions are assumed to define partial functions, so that if somehow the procedure is invoked with the
precondition false, it will not terminate. Normally, additional specifications would be conjoined to this one to specify
exception handling.
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∀  x  [I ∧   pre-p(   x  )  ∧  post-p(   x  ) ⇒  primed(I)]

where primed(I)  represents the invariant I with all its predicates and functions primed. Now suppose
that we have some simple state  invariant ∀y.Q(y), where Q is a predicate; then the proof obligation
amounts to demonstrating  the  following formula:

∀ st,crs [
∀x.Q(x) ∧
  (size(crs) < classLimit(crs)   ∧      ¬ EnrolledIn(st,crs))  ∧
    (size'(crs) = size(crs) + 1  ∧  EnrolledIn'(st,crs))

   ⇒  ∀x.Q'(x) ]

This cannot be proven because the postcondition of the procedure says nothing about  the predicate Q'.
Therefore, such proof obligations cannot be achieved using the looser reading of the specification unless
the specifier takes the trouble to mention explicitly in her specification not just the things that are changed
by the procedure, but also all those that are not. Thus if the specifier wants to state that "...nothing else
changes", she has to state so explicitly in the specification by adding a clause of the form

∀  x  [(P(   x  ) ⇒ P'(   x  )) ∧  ( ¬P(   x  )   ⇒  ¬P'(   x  ))]

or, equivalently,

∀  x  [P(   x  ) ≡ P'(   x  )]
for every predicate P other than EnrolledIn (such as Q ), and a clause of the form

∀  x  [f(   x  ) =  f'(   x  )]

for every function f other than size.  In addition, there have to be clauses that state that EnrolledIn
and size  remain unchanged for all arguments other than st, crs:

∀x [ x ≠ crs   ⇒    size(x) = size'(x)]

∀x, y [ x ≠ st ∨ y ≠ crs   ⇒
(EnrolledIn(x, y) ≡ EnrolledIn'(x, y))]

Assuming that program states are described by  only two functions, size  and classLimit,  and two
predicates, EnrolledIn   and Q,   a complete specification of enrolInCourse  which states explicitly
that "...nothing else changes"  is as follows: 

enrolInCourse(st,crs)

PRE: size(crs) < classLimit(crs)  ∧    ¬EnrolledIn(st,crs)

POST: size'(crs) = size(crs) + 1      ∧    EnrolledIn'(st,crs) ∧
∀x [ x ≠ crs   ⇒

size(x) = size'(x)] ∧
∀x, y [ x ≠ st ∨ y ≠ crs   ⇒

(EnrolledIn(x, y) ≡ EnrolledIn'(x, y))] ∧
∀x [classLimit(x) =  classLimit'(x)] ∧
∀x [Q(x) ≡  Q'(x)]

The extra clauses that were needed to state explicitly that "...nothing else changes" have been called frame
axioms  [McCarthy69]  while the  general problem of stating succinctly  the "...nothing else changes" clause
is precisely the frame problem..
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We hope that the reader already agrees that  requiring the specifier to provide the frame axioms makes
specification a lengthier, less perspicuous and more error-prone process. Failure to deal with the frame
axioms, on the other hand, limits the extent to which formal properties of specifications can be proven.
In the rest of this section we focus on the ways such problems  have been treated in existing specification
languages, and on presenting three special  kinds of  specifications, for which these solutions (as well as the
standard FOPC approach) appear to be inadequate.

2.2  Stating Frame Axioms in  Specification Languages

In practice, specification languages are enhanced to allow the specifier to state explicitly, but more
conveniently, what  elements of a program state remain unchanged.  To see such features in action, we
consider  several widely known specification languages such as  Z [Spivey89] and VDM [Jones86].  These
are based on the notation of mathematics and set theory, where the functions and predicates of our
predicate-calculus notation are naturally converted to functions and relations, which are often viewed as
sets of tuples.  In such a case, the predicate assertion   EnrolledIn'(st,crs) translates naturally to
(st,crs) ∈ enrolledIn'. The notation of set-theory is then normally used to express some part
of the frame axioms by stating

enrolledIn' = enrolledIn  ∪  {(st,crs)}
and

size' = size ⊕  { crs |→  size(crs)+1 }

These statements  have the effect of  asserting that  EnrolledIn and size do not change at arguments
other  than  st and crs.   We are then left only with  the task of stating that enroling in a course does not
modify the classLimit  or other predicates such as  Q.  For this task, Z provides the Ξ  predicate
constructor,    which allows one to take a  named list of variables  N = (x 1, x 2,...,x k ),  and
produce the assertion

ΞN   =def   x1' = x1 ∧  x2 ‘ = x2  ∧ ... ∧  xk '=  xk

By naming  the list of  remaining variables,  Rest = (classLimit,Q), we can then express the
desired meaning of enrol   as the Z schema6

enrolInCourse

st : STUDENT
crs : COURSE
Ξ Rest

size(crs) < classLimit(crs)  ∧      (st,crs ) ∉ enrolledIn   ∧
  enrolledIn' = enrolledIn   ∪  { (st ,crs) } ∧   
  size' = size ⊕  { crs  |→  size(crs) + 1 }

This approach works well if we can modularize the presentation  to give names to appropriate subsets of
variables, such as Rest  above.

Many other specification languages, such as Larch [Guttag85] and VDM [Jones86], take a second
approach, whereby  a procedure specifier is required to identify the variables that it     might    modify, with the
implicit  assertion that any variable not so declared remains  unchanged.  (This implicit assertion must then
be expanded by some automatic background tool or used by special-purpose theorem provers.) Specifically,
in VDM the specification of enrol  would indicate that it needs access only to external variables size ,
classLimit  and enrolledIn , with  the second one being a “read only”,  so that it might modify at

                                                                        
6  Both here and elsewhere, we have chosen to use a sometimes more self-explanatory syntax in order to
avoid frequent detours into notation. For example,  according to proper Z style,  the input parameters
should be named st ? and crs ?, and we should also have included statements of the form  ∆
enrolledIn in order to introduce the symbols enrolledIn and enrolledIn’.
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most size  and enrolledIn . (For variety, in this case we will model class enrolments as a function from
students to sets of courses. Also, we will take the liberty of continuing to use theconvention of priming the
variables in the post-state, although languages such as VDM and COLD use different syntactic
conventions.)

ENROL-IN-COURSE(st : STUDENT, crs : COURSE)
ext

wr size        :  CourseToInt
rd classLimit  :  CourseToInt
wr enrolledIn  :  Student →  Course- set

pre size(crs) < classLimit(crs)   ∧
    crs ∉ enrolledIn(st)

post enrolledIn' = enrolledIn  ∪  {(st,crs)}   ∧
    size’ = size + { crs  |→ 1+size(crs) }

The specification language COLD [Jonkers91] has an even more refined way of stating so-called
“modification rights”, by using complex expressions that delimit the subset of the state space over which
the operation can act differently than the identity mapping. For example,  in the COLD specification below,
the line MOD indicates that only the enrolment of the specific student st  , and the size of the specific course
crs  may change.

  PROC   enrolInCourse: STUDENT # COURSE →
  IN  st,crs
  PRE  size(crs) < classLimit(crs)   ∧

  (crs) ∉ enrolledIn(st)
  MOD  enrolledIn(st), size(crs)
  POST  enrolledIn'(st) = enrolledIn(st)  ∪  { crs }   ∧
    size’(crs) = size(crs) + 1

Larch [Guttag85]  provides  a "modifies at most" clause with similar capabilities.

Clearly,  these techniques work quite well in this simple case. However, we present next a series of
examples that do not fare  as well.

2.3  Conditional Specifications

Suppose  we now want to redefine enrolInCourse so that if there is no room left in the course but the
student is in her fourth year of school, her request is added to a waiting list; otherwise, the student is sent a
notice rejecting her request. Moreover, assume that waitSize  and rejectSize  are functions counting
respectively the number of enrollment attempts on a waiting list or rejected.  Returning to our Predicate
Calculus notation,  we might be inclined to state the new postcondition of enrolInCourse   as

size(crs) < classLimit(crs) ⇒
(size'(crs) = size(crs) + 1  ∧  EnrolledIn'(st,crs))       ∧

size(crs) ≥ classLimit(crs) ∧ Year(st, 4) ⇒
(waitSize'(crs) = waitSize(crs) + 1  ∧  Waiting'(st,crs))   ∧

size(crs) ≥ classLimit(crs) ∧ ¬Year(st, 4) ⇒
(rejectSize'(crs) = rejectSize(crs) + 1  ∧  Rejected'(st,crs))

But once again, we run into the frame problem:  we forgot to state for each branch of the conditional what
portions of the program state remain unchanged. We must therefore write

size(crs) < classLimit(crs) ⇒
(size'(crs) = size(crs) + 1  ∧  EnrolledIn'(st,crs)) ∧
           ( ∀x [ x ≠ crs  ⇒ size(x) = size'(x)] ∧
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∀x, y [ x ≠ st ∨ y ≠ crs    ⇒
(EnrolledIn(x, y) ≡ EnrolledIn'(x, y))] ∧

∀x [ waitSize(x) =  waitSize'(x)] ∧
∀x, y [Waiting(x, y) ≡  Waiting'(x, y)] ∧
∀x [ rejectSize(x) =  rejectSize'(x)] ∧
∀x, y [Rejected(x, y) ≡    Rejected'(x, y)] ) ∧

size(crs) ≥ classLimit(crs) ∧ Year(st, 4) ⇒
(waitSize'(crs) = waitSize(crs) + 1  ∧ 

Waiting'(st,crs)) ∧
          ( ∀x [ x ≠ crs   ⇒  waitSize(x) = waitSize'(x)] ∧

∀x, y [ x ≠ st ∨ y ≠ crs   ⇒
(Waiting(x, y) ≡ Waiting'(x, y))] ∧

∀x[size(x) =  size'(x)] ∧
∀x, y[EnrolledIn(x, y) ≡  EnrolledIn'(x, y)] ∧
∀x[rejectSize(x) =  rejectSize'(x)] ∧
∀x, y[Rejected(x, y) ≡  Rejected  '(x, y)] ) ∧

size(crs) ≥ classLimit(crs) ∧ ¬Year(st, 4) ⇒
(rejectSize'(crs) = rejectSize(crs) + 1  ∧ 

Rejected'(st,crs)) ∧
           ( ∀x [ x ≠ crs ⇒ rejectSize(x) = rejectSize'(x)] ∧

∀x, y[ x ≠ st ∨ y ≠ crs   ⇒
  (Rejected(x, y) ≡  Rejected'(x, y))] ∧
∀x [size(x) =  size'(x)] ∧
∀x, y[EnrolledIn(x, y) ≡  EnrolledIn'(x, y)] ∧
∀x [waitSize(x) =  waitSize'(x)] ∧
∀x, y[Waiting(x, y) ≡   Waiting'(x, y)] ) ∧   ...

To complete this postcondition, we must also add frame axioms for functions and predicates that are not
affected in any of the cases by the procedure (the function classLimit , for example). Specification of
the frame axioms here is even more cumbersome, partly because each case requires a different set of such
axioms.

Even  in Z , VDM,  or COLD, we would need to say at the beginning that rejected , rejectSize ,
waiting , waitSize , size , and enrolledIn  all might be modified, and then state for each branch
what does/doesn’t change, as in

size(crs) < classLimit(crs) ⇒
   [enrolledIn' = enrolledIn  ∪  {(st,crs)} ∧

size’ = size ⊕  { crs  |→  size(crs) + 1}
waitSize’=waitSize  ∧  waiting' = waiting ∧
rejectSize’=rejectSize  ∧  rejected' = rejected]  ∧

size(crs) ≥ classLimit(crs) ∧ year(st)= 4  ⇒
[waiting' = waiting  ∪  {(st,crs)} ∧
waitSize’ = waitSize ⊕  { crs |→ waitSize(crs) + 1}
size’= size  ∧   enrolledIn' = enrolledIn ∧
rejectSize’= rejectSize  ∧  rejected' = rejected ]  ∧

size(crs) ≥ classLimit(crs) ∧ ¬year(st)=4 ⇒
[rejected' = rejected  ∪  {(st,crs)} ∧
rejectSize’ = rejectSize ⊕  { crs |→  waitSize(crs) + 1}
size’= size  ∧   enrolledIn' = enrolledIn ∧
waitSize’= waitSize  ∧  waiting' = waiting ]
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The  problem here is that we have to state ahead of time  the list of things that might  change in the
procedure, and this forces us to state explicitly for any branch of the conditional the things that do not
change.7

2.4  Conjoining Specifications

Consider now a procedure switchCourse  which involves dropping one course and enrolling in another.
Suppose that the system being specified already includes the specification of procedures
enrolInCourse  and dropCourse ,  and we are now asked to specify a procedure switchCourse .
It is natural, and in fact desirable from the point of view of reuse and propagation of changes,  to try to
define switchCourse  by making use of the other two specifications. In Z this is accomplished simply by
using the schema composition notation  [Spivey89]:

switchCourse(st, crs 1, crs 2) = def

    dropCourse(st,crs 1) ||  enrolInCourse(st,crs 2)

where "||" is a binary operation on specifications which conjoins its operands (in our case conjoining their
pre- and postconditions8).  Unfortunately, such an operation leads to meaningless specifications if the two
conjoined procedures include their respective frame axioms.  For example, assume that dropCourse is
defined as follows:

dropCourse

st : STUDENT
crs : COURSE
Ξ Rest

(st,crs) ∈ enrolledIn ∧   
  enrolledIn' = enrolledIn  −   {(st,crs)} ∧   
  size' = size ⊕  { crs  |→  size(crs) - 1 }

Then, clearly, the conjunction of the postconditions of enrolInCourse and dropCourse is
inconsistent since it includes, among other clauses,

enrolledIn' = enrolledIn  −   {(st,crs 1)} ∧
enrolledIn' = enrolledIn  ∪  {(st,crs 2)}

Note that exactly the same situation occurs in VDM and  even COLD: the conjunction of the post-
conditions will have the form

  POST     enrolledIn'(st) = enrolledIn(st)  ∪  { crs 2 } ∧
    size'(crs 2) = size(crs 2) + 1

  enrolledIn'(st) = enrolledIn(st)  − { crs 1 } ∧
    size'(crs 1) = size(crs 1) − 1

which is inconsistent for enrolledIn'(st) .  The problem in this case is caused by  the use of set-
theoretic notation to state part of the frame axiom.  This example suggests that the "...nothing else changes"
clause should read, more precisely,  "...nothing else changes,    unless otherwise stated   ".  Note that if we had

                                                                        
7 It has been suggested to us (James Power, personal communication) that  Z's facility for hiding identifiers might be
used to abbreviate the above to some extent: if  ΞV is a schema asserting that all variables remain unchanged , then to
each case of the conditional  one can conjoin   ΞV   with the variables modified in that case being hidden.
8 Note that such a conjoin operation makes no assumptions on the order in which the two conjoined procedures will be
carried out --- it only ensures that the effect of both is carried out.
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been able to describe  enrolInCourse   and  dropCourse  with  post-conditions of the form  crs ∈
enrolledIn'(st)  and crs ∉ enrolledIn'(st) , then the final conjunction would have had the
consistent form

crs 1 ∉ enrolledIn'(st) ∧  crs 2 ∈ enrolledIn'(st)

However, this requires different frame axioms for EnrolledIn  in the context of enrolInCourse,
dropCourse and switchCourse. If frame axioms are treated as textual elements of a procedure
specification, language facilities such as the schema conjunction operation may be rendered problematic or
at best ineffective.

2.5   Inheritance and Object-Oriented Specifications

The above problems could be shrugged off as mere annoyances. Unfortunately,  they lie at the heart of
object-oriented specifications, which  appear to be of increasing interest (see, for example, [Schuman87],
[Duke90], [Alencar94], [Marshall91], and the collections [Stepney92], [Lanno94]).  Two distinguishing
features of object-oriented programming languages (OOPLs, for short) are taken to be (i) the presence of
class hierarchies with inheritance, where what is stated in a class need not be repeated for its subclasses;
(ii) the selection of procedure versions (methods, in OOPL jargon) to execute based on the type of the
arguments. It is exactly these features that distinguish object-oriented languages such as Eiffel [Meyer88]
or Taxis [Mylopoulos80], from those that merely support data encapsulation, such as ADA or CLU. The
arguments for the benefits of inheritance  presented for OOPLs also apply to object-oriented specification
languages (e.g., [Borgida84]) and include abbreviating specifications, propagating changes and
encouraging reuse.

As argued, among others,  in [Meyer88,Borgida84], an important and desirable property  of subclasses with
inheritance is the ability to specialize  the specification of superclasses. For example,  if the class
EDUCATOR  has attribute degrees , which is required to be a subset of the enumeration
{BA,BS,Ms,Phd} , then it is  desirable to allow the type of degree to be specialized to {PhD}  for the
subclass PROFESSOR  of EDUCATOR.  The same principle is applicable to the specialization of methods
[Meyer88, Borgida81].  For example,  if  a class of  equations has a method solve  that finds roots  within
an error bound of 0.001 say, then some subclass (for which a special technique  might be found, or which is
particularly important)  should be able to offer the same method but with a tighter error bound, of 0.000001
say.

As it turns out, inheritance is accomplished in almost all object-oriented specification languages by simply
conjoining the specification  of the superclass(es) to the additional assertions associated with the subclass.
For example,  [Alencar 94] shows how in OOZE one can obtain the class SUPER_PREMIUM_ACCOUNT
from the simple conjunction of two parent classes: CHEQUE_BOOK_ACCOUNT and PREMIUM_ACCOUNT.
However, as we have seen in Section 2.4,  conjunction of specifications will run into serious trouble unless
we take the loosest possible way of stating post-conditions.  In particular, in any specification language
supporting “bulk” data-types such as sets, relations, records,  etc., if a procedure  P specifies a change to a
variables of such  a type, then no specialization of P can ever modify any other aspect of s , if some part of
the frame assertion appears explicitly  in the post-condition of P. For example, if P calls for the removal
from set s   of  all values satisfying some predicate Ψ,  then no specialization of P may strengthen this to
some stronger predicate  Φ, which removes additional elements from s .   Or if s  records some property of
individuals, such as salary or size, then changing  s(a)  for one object prevents s(b) from being
modified for any other object b in a specialization9. Such limitations are particularly bothersome in object-
centered information systems that rely on data bases (e.g., [Schewe91]),  where data about individuals is
globally visible (encapsulation is not the issue here), and is recorded by making attributes be binary
relations/functions to sets, which are bulk data types of the kinds subject to the above mentioned
restrictions.

We illustrate this problem with several further examples.  Consider a university  where students in courses
are  eventually assigned (absolute) numeric grades from 0 to 100,  and we want to associate with every
course a list of honors students in it.   Using a composite of notations, we could model this as the class:

                                                                        
9 The very specific framing statements of COLD and Larch can actually deal with this problem.
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  class    COURSE
 enrolment:  Set of   STUDENT
 grade:     STUDENT  →|    0..100
 honors:    Set of  STUDENT   initially empty
...
  methods:  

findHonors()
  PRE  :  domain grade = enrolment

      MOD  :  honors
      POST  : honors' = { s ∈ enrolment |  grade(s) > 85}

...

Suppose now that for senior courses,  among others, we wish to lower the requirement for honors to 80%,
since grades are presumably harder to get.  The obvious specification of this would be something like

  class    SENIOR-COURSE    subclass of    COURSE
...
  methods:  

findHonors()
  POST  : honors' = { s ∈ enrolment | grade(s) > 80}

...

This would result in the  specification of SENIOR-COURSE::findHonors()  having  post-condition

           honors'={ s | grade(s) > 85}  ∧  honors'={ s | grade(s) > 80}

which, at best, would imply that there are no students with grades between 80 and 85.  Notice that the
specialization we have in mind is conceptually consistent: the students assigned honors in the original
courses would still get them, but additional ones would also do so. (This is in contrast with "non-strict"
inheritance, as practiced in Smalltalk, say, where the specialized procedure may do anything, even
contradictory to its more general version.) The problem here lies in the frame assertion implicit in the set-
theoretic notation -- the MOD clause already  restricts as carefully as possible the state variables that will
change; but had we stated the post-conditions in the form,
              ∀x/enrolment . grades(x)>85    ⇒    x  ∈  honors'
the loose reading would not prevent  honors  from  containing all students, for example.

As another example, consider  the  class COURSE-WITH-COREQ,  a subclass of COURSE where we wish
to maintain a list of courses which need to be taken at the same time as this course.   In this case,   the
drop   method must be refined for COURSE-WITH-COREQ to remove the student who is droping this
course from the enrolments  of  all  corequisites. Here are partial  specifications of the two classes,  using
the notation of Predicate Calculus in this case, together with some of the explicit frame axioms:10

  class    COURSE
HasEnrolled:  COURSE x STUDENT
  methods  :
 drop(self: COURSE, st: STUDENT)

    PRE  :   HasEnrolled(self,st)
    POST  : ¬HasEnrolled'(self,st)

 ∧ ∀x/STUDENT,y/COURSE[ x ≠ st ∧ y ≠ self   ⇒

                                                                        
10   In this case, unlike standard object-oriented specifications, we introduce the variable self  explicitly, rather than
having for each method a  privileged, but unnamed, first argument.
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           (HasEnrolled(y,x) ≡ HasEnrolled'(y,x))]

  class    COURSE-WITH-COREQ    subclass of     COURSE
Coreqs: COURSE-WITH-COREQ x COURSE  
...

  drop(self: COURSE, st:STUDENT)
    POST  : ∀x/COURSE . Coreq(self,x) ⇒  ¬HasEnrolled(x,st)]

∧ ... (other frame axioms)

By inheritance, the full specification of  COURSE-WITH-COREQ::drop  is obtained by conjoining the
assertions stated on  COURSE::drop   with the additional material associated with drop  in COURSE-
WITH-COREQ. However, this is clearly inconsistent because COURSE::drop states that HasEnrolled
only changes at one argument, while COURSE-WITH-COREQ::drop calls for additional changes
whenever there are corequisites.

It is important to note that it is our intention that in any system implementation generated from this
specification, an object could be made an instance of the class COURSE without necessarily being an
instance of COURSE-WITH-COREQ. Therefore we cannot leave out the frame axioms from the definition of
COURSE::drop , or if we do so, we need to rename COURSE to COURSE* -- a dummy  class introduced
strictly for technical reasons --- and make COURSE its subclass with the frame assertion added to drop.  We
find the latter alternative  less acceptable from the point of view of notational convenience and naturalness.

As a final example, suppose we  track, among others, the  addresses of employees, and wish to provide a
method, move, for changing the address of an employee:

   class    EMPLOYEE
livesAt: EMPLOYEE →|    ADDRESS      
...

      EMPLOYEE.move (self: EMPLOYEE, new:ADDRESS)
   MOD  :  livesAt
   POST  : livesAt'(self)=new

  ∧  ∀y.(y ≠self ⇒  livesAt(y)=livesAt'(y))
     ∧ ... (other frame axioms)

Now, for the subclass  of married employees, we need to change move so that the spouse's address is also
changed:

    MARRIED_EMPLOYEE.move
  POST  : livesAt'(spouse(self))=new
       ∧  ∀y.(y ≠self ∧ y≠spouse(self)) ⇒  livesAt(y)=livesAt'(y)

 ∧ ... (other frame axioms)

Only a very refined "modifies at most" facility has a hope of dealing with this situation, if
EMPLOYEE::move  has        MOD  :  livestAt(self)    while MARRIED-EMPLOYEE.move
has        MOD:    livesAt(spouse(self)).

2.6  Conclusions from the Examples

The necessity of stating explicitly that some parts of a program state remain unchanged has been shown to
make specifications longer, more difficult to comprehend and change, more error prone (what if the
specifier overlooks some frame axioms?) and presents an obstacle to aspects of inheritance, and hence
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object-orientation. In fact, without extending the language features, object-oriented formal specifications
seem possible only if one assumes that local variables of a class are not visible to its subclasses, and
procedure specifications cannot be  refined in subclasses --- a restriction not shared by popular object-
oriented programming languages such as C++, Smalltalk and Eiffel.

Even if one were prepared to accept the above, there is an additional cost that arises from the fact that for a
specification involving n procedures and m functions and predicates describing program states, there are
going to be in general O(m*n)  frame axioms. These can make proofs of consistency of a specification
prohibitively expensive, thereby removing a major argument in favor of formal program specifications.

3.   A  Novel Approach to the Frame Problem  in Procedure Specifications

We propose a new approach to the frame problem in procedure specifications inspired by work reported in
[Reiter91] on the frame problem in AI planning.

3.1  Foundations of the Approach

In short, our proposed approach  adds a second component to the specification process: in addition to
specifying  post-conditions, we also look for a set of assertions that  explain the  circumstances under which
each  predicate or function  might change value from one program state to the next.  There are several ways
in which this can be achieved, and for present purposes we have chosen a moderately complex approach,
which could in fact be used to reason more generally about  procedures. The approach reifies procedures by
adding  actions  as a new sort in the specification language, with all the procedure names being function
symbols of this sort, and taking as arguments the formal parameters of the procedure. For example,  the
procedure enrolInCourse  would be formally named by the two-place function symbol
enrolInCourse , so that enrolling Ann into CS100 would be represented by the term
enrolInCourse(ann,cs100) . To talk about actions, we also introduce the single variable α , and the
predicate Occur (), which takes an action argument. The intended interpretation of Occur () is that the
procedure which is its argument executed successfully.11

For every procedure p(  x  ) with specification (pre-p(   x  ), post-p(   x  ))   we generate first a so-
called effect axiom

      ∀  x  [Occur(p(   x  ))  ⇒  pre-p(   x  )  ∧ post-p(   x  )]

describing the effect of the procedure; i.e., if the procedure was executed (and this is often an external
decision, like choosing to enroll in a course), this axiom assures us of some necessary conditions that must
have held.  For example,  the effect axiom for the initial specification of enrolInCourse would be

∀x, y[ Occur(enrolInCourse(x, y)) ⇒
   (size(y) < classLimit(y)  ∧  ¬ EnrolledIn(x, y)) ∧
   (size'(y) = size(y) + 1   ∧   EnrolledIn'(x, y))]

Note that this omits  frame axioms; these will be specified separately and from a different perspective,
through  explanation closure  axioms  (called change axioms  for short). For every predicate R, the specifier
must write two such axioms describing under what circumstances R might change truth value (from
positive to negative or negative to positive); the circumstances include the actions that took place, their
parameters,  the values where R changed as a result, and complex conditions involving both.

    ∀α∀  y  [ R(   y  ) ∧ ¬R'(   y  ) ∧ Occur( α)  ⇒
             ∃  z  1( α = p 1(  z  1) ∧ ΨR,p

1(  w  1)) ∨

∃  z  2( α = p 2(  z  2) ∧ ΨR,p
2(  w  2)) ∨

                                                                        
11  We leave to a different paper the matter of termination, and the possibility of several actions occuring at the same
time.
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...

∀α∀   y  [ ¬R(   y  ) ∧  R'(   y  ) ∧ Occur( α)  ⇒
             ∃  z  1( α = q 1(   z  1) ∧ ΨR,q

1(   w  1)) ∨

∃  z  2( α = q 2(   z  2) ∧ ΨR,q
2(   w  2)) ∨

...

Here pi , q i  are action symbols and  ΨR,p
i  (resp. ΨR,q

i ) d escribes the circumstances under which pi
(resp.  qi ) can be executed to change R, and     w  j  is a vector of values chosen from among the  constants
and variables in   y   and   z  j .

For functions, a single change axiom is sufficient:

∀α∀   y  [ f(   y  )  ≠ f'(   y  ) ∧ Occur( α)  ⇒
             ∃  z  1( α = p 1(   z  1) ∧ Ψf,p

1(   y  1)) ∨

∃  z  2( α = p 2(   z  2) ∧ Ψf,p
2(   y  2)) ∨

...

These axioms offer a state-oriented rather than a procedure-oriented perspective to the frame problem.
Thus, instead of asking the specifier to assert what each procedure does not change, we ask her to declare
what procedures could have effected a change to a particular element of the program state.

As an example of change axioms, consider the predicate EnrolledIn , and suppose that the only
procedure affecting it is the procedure enrolInCourse, though there may be many other procedures
around, such as assignRoom, assignTeacher, etc. The change axioms then are

  ∀α  ∀s, c
(EnrolledIn(s,c)  ∧  ¬EnrolledIn'(s,c)   ∧  Occur( α) )  ⇒  false

indicating that no procedure removes students from courses, and

∀α ∀st, crs
( ¬EnrolledIn(st,crs)  ∧  EnrolledIn'(st,crs)  ∧  Occur( α) ) ⇒

              ( α = enrolInCourse(st,crs))]

indicating that only enrolInCourse  can add a student to the course. Likewise, the change axiom for
the function size is

          ∀α∀crs . [size(crs) ≠ size'(crs)   ∧  Occur (α) ] ⇒
                     ∃st . α = enrolInCourse(st,crs)

Observe how elegantly these axioms capture the fact that in a closed system (where all procedures are
known) the only source for change of the predicate EnrolledIn  is the procedure enrolInCourse.
This means that the pre/postcondition specifications of all the other procedures need not say anything about
how they affect EnrolledIn .  Also note that the change axiom for size  need not explain the nature of
the change to that function. This information is already captured by the effect axioms of the procedures.

Incidentally, proof obligations  concerning invariants  maintained by a procedure p(x) could  now  be
recast to simply assume as a premise the  occurrence of a procedure:

∀  x[  I ∧  Occur(p(   x  )) ⇒ primed(I)]

together with some assurances that no other action has occured.
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We emphasize again that here it is the responsibility of the specifier to write down the change axioms, and
that these may need to be modified as new procedures are added or old ones are altered.  For example, if we
now were to add a procedure dropCourse, with its own specification

dropCourse(st,crs)

  PRE  : EnrolledIn(st,crs)

  POST  : size'(crs) = size(crs)-1     ∧    ¬EnrolledIn'(st,crs)

then we would have to add appropriate clauses to the change axioms of EnrolledIn  and size . This can
be done quite cleanly by adding disjuncts:

∀α∀st, crs .
EnrolledIn(st,crs) ∧ ¬EnrolledIn'(st,crs)  ∧  Occur( α) ⇒

false ∨  ( α = dropCourse(st,crs))

         ∀α∀crs .
size(crs) ≠ size'(crs)   ∧  Occur (α) ⇒

                     [ ∃st. α = enrolInCourse(st,crs) ∨
                      ∃st. α = dropCourse(st,crs)]

It is worth noting that although the frame axioms about a single procedure are now spread over possibly
several change axioms, the process of thinking about these axioms is  systematic. In particular, if there is a
change in the  postcondition of some procedure p, then we must only consider  the change axioms for those
predicates which were added, dropped or modified by the change; and even here, we only need to consider
that sub-formula of the explanation axiom which starts with  ∃   z   (α = p...). Furthermore, any time the state is
extended with another predicate or function, there is no concern that this now might be inadvertently be left
open to change by some procedure specification.

In order to reason appropriately with the above axioms, we will need to add two additional axioms dealing
with the reification of procedures: one stating that the only one action occurs at one time

∃!α.Occur (α)
and another one that the actions are distinct iff their names and arguments are distinct (the so called unique
name axioms):   for i≠j,

∀  x  ,   y  [(p i (   x  ) ≠ p j (   y  )) ∧  (p i (   x  )=p i (   y  ) ⇒   x  =  y  )]

Details of the axiomatization and a discussion of its limitations can be found in [Reiter95]. In particular, as
described here, change axioms do not always have their intended effects, for instance in cases involving
non-deterministic procedures. For an approach to change axioms in the presence of non-determinism, see
[Reiter95].

4.2  Frame Problem Variations Revisited

To show how this approach handles the problems raised earlier, consider again the examples of sections
2.3-2.5.

With the frame axioms out of the way,   the specification of the more complex enrolment's post-
condition  in Section 2.3 would be  as at the beginning of  that  section:

size(crs) < classLimit(crs) ⇒
(size'(crs) = size(crs) + 1  ∧  EnrolledIn'(st,crs))       ∧

size(crs) ≥ classLimit(crs) ∧ Year(st, 4) ⇒
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(waitSize'(crs) = waitSize(crs) + 1  ∧  Waiting'(st,crs))   ∧
size(crs) ≥ classLimit(crs) ∧ ¬Year(st, 4) ⇒

(rejectSize'(crs) = rejectSize(crs) + 1  ∧  Rejected'(st,crs))

The change axioms for EnrolledIn   and size  would be:

∀α ∀st, crs
 ¬EnrolledIn(st,crs)  ∧  EnrolledIn'(st,crs)  ∧  Occur( α) ⇒

          ( α = enrolInCourse(st,crs) ∧ size(crs) < classLimit(crs))

∀α∀st, crs
   EnrolledIn(st,crs) ∧ ¬EnrolledIn'(st,crs)  ∧  Occur( α) ⇒

  false

         ∀α ∀crs
  size(crs) ≠ size'(crs)   ∧  Occur (α)          ⇒

                     ∃st( α=enrolInCourse(st,crs) ∧  size(crs)<classLimit(crs))

We would have similar change axioms for waiting, sizeWaiting, etc.

Conjoining of procedure specifications  also works out without surprises, as long as we state the post-
conditions in a "loose" way. The specification of   enrolInCourse, dropCourse   and
switchCourse   in  Z might  then be

enrolInCourse = def  [st:Student, crs:Course, ∆ enrolledIn,size |

 size(crs) < classLimit(crs) ∧
(st,crs) ∈  enrolledIn' ∧  size'(crs) = size(crs) + 1]

dropCourse = def  [st:Student, crs: COURSE, ∆ enrolledIn,size |

(st,crs) ∈ enrolledIn ∧
(st,crs) ∉  enrolledIn' ∧  size'(crs) = size(crs) − 1]

switchCourse(st, crs 1, crs 2) = def
    dropCourse(st,crs 1) || enrolInCourse(st,crs 2)

and the  change axioms could be stated as12

∀α ∀st,crs . (st,crs) ∈  enrolledIn'- enrolledIn   ∧  Occur( α)  ⇒
α = enrolInCourse(st,crs) ∨

                       ∃ crs 1 . α   = switchCourse(st,crs 1, crs)

∀α ∀st,crs . (st,crs) ∈  enrolledIn - enrolledIn'  ∧   Occur( α)  ⇒  
 α   = dropCourse(st,crs)      ∨

∃ crs 2 . α = switchCourse(st,crs, crs 2)

         ∀α∀crs . size(crs) ≠ size'(crs)   ∧  Occur (α)       ⇒
               ∃st. α = enrolInCourse(st,crs)  ∨
                 ∃st. α = dropCourse(st,crs)  ∨
          ∃st,crs 3 .( α=switchCourse(st,crs,crs 3) ∨

                                          α=switchCourse(st,crs 3,crs))

                                                                        
12 The exact syntax of  change axioms for various specification languages should  be the subject of further
study.
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Note that only the disjunctive clauses involving switchCourse  are contributed by the introduction of the
switchCourse  procedure (four clauses in all).

For the object-oriented specification of Section 2.4,  we explicitly name the function and put the
"privileged" argument self back into the function  call in order to simplify the presentation. In the case of
courses with co-requisites, the specifications of actions for drop would be

  class    COURSE
  drop(self: COURSE, st: STUDENT)

    PRE  :   HasEnrolled(self,st)
    POST  : ¬HasEnrolled'(self,st) 

  class    COURSE-WITH-COREQ    subclass of     COURSE
  drop(self: COURSE-WITH-COREQS, st:STUDENT)

    POST  : ∀x . Coreq(self,x) ⇒  ¬HasEnrolled(x,st)

and change axioms for HasEnrolled would state

    ∀α∀st, crs
¬HasEnrolled(crs,st) ∧  HasEnrolled'(crs,st)  ∧  Occur( α) ⇒
     α = COURSE::add(crs,st) ...

    ∀α∀st
HasEnrolled(crs,st) ∧ ¬HasEnrolled'(crs,st)  ∧  Occur( α) ⇒

( α = COURSE::drop(crs,st) ∧  (crs ∉ COURSE-WITH-COREQ)∧...) ∨
                 ( α = COURSE-WITH-COREQ::drop(crs,st) ∧  HasEnrolled(crs,st))

In the case of employees moving, the specifications would be

     EMPLOYEE.
move(self: EMPLOYEE, new:ADDRESS)

  MOD  :  livesAt
   POST  : livesAt'(self)=new

  MARRIED_EMPLOYEE.
move(self: MARRIED_EMPLOYEE, new:ADDRESS)

  POST  :  livesAt'(spouse(self))=new

and the change axioms for livesAt would state

    ∀α∀x . livesAt(x) ≠ livesAt'(x)   ∧  Occur (α) ⇒
                     ∃n . α = EMPLOYEE::move(x, n)

∨
   ∃n . α = MARRIED_EMPLOYEE::move(x, n)
∨
   ∃n,y . α = MARRIED_EMPLOYEE::move(y, n) ∧  x=spouse(y)

Finally, for the case of honors students, the specifications would look like

  class    Course
 findHonors(self:COURSE)

PRE:  domain grade = enrolment
    POST: { s |  grade(s)(self) > 85} ⊆  honors'(self)
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  class    SENIOR-COURSE    subclass of    COURSE
findHonors(self:SENIOR-COURSE)

POST: { s |  grade(s)(self) > 80} ⊆  honors'(self)

so the conjunction of the post conditions for SENIOR-COURSE::findHonors  would yield
{ s |  grade(s)(self) > 80} ⊆  honors'(self). T he initial value of honors  would be
the empty set, and the effect axiom for  honors could read

   ∀α ∀c∀s. s ∈ honors'(c)-honors(c)   ∧  Occur (α)       ⇒
                α = COURSE::findHonors(c) ∧   (grades(s)(c) > 85)

∧ domain grade = enrolment
∨
  α = SENIOR-COURSE::findHonors(c) ∧   (grades(s)(c) > 80)

∧ domain grade = enrolment

3.3  A  Syntactic Technique for Generating  Explanation Axioms (...Sometimes)

The astute reader may have noticed that we followed a relatively mechanistic process in building the
change axioms. For the predicate EnrolledIn , for instance, we looked at the postcondition of each
procedure p, such as enrolInCourse and dropCourse, and if it asserted EnrolledIn'(   w  )
(respectively, ¬EnrolledIn'(   w  ) ) for some argument   w  , then we added the clause

(α = p(   w  ) )

as an additional disjunct to the positive (respectively, negative) change axiom.  For conditional
postconditions with cases of the form:

γ(   x  )  ⇒ EnrolledIn'(   w  )

where γ only includes unprimed predicates and functions, we added a disjunctive clause of the form

∃  x  ( α = p(   x  ) ∧   γ(   x  ) ∧    y   =   w  )

where   w   consists of constants and variables from   x   , to the positive change axiom for Q, whose antecedent
is   ¬Q (  y  ) ∧  Q'(   y  ) ∧ Occur( α).  This process can be easily translated into an algorithm which
generates change axioms. In the spirit of our earlier arguments concerning the need for flexibility, we
would however only advocate the use of such an algorithm as a tool that would assist   the specifier in
adding more quickly the change axioms.

3.4  Semantic Aspects of the Approach

A problem that can arise with  any purely syntactic approach, such as the one suggested in the previous
section, is that it is often affected by the particular syntax chosen to express postconditions and is not
necessarily self-consistent.  Logicians rely on model theory, and proofs of soundness and completeness to
avoid such pitfalls for their syntactic manipulations. As it happens, it is possible to provide a model-
theoretic foundation for frame axioms, as explored in the literature on non-monotonic reasoning.13

Recall  that the problem with the “loose” reading of  a post-condition such as   EnrolledIn'(st,crs)
is that it does not rule out  any other changes. In other words, among the models  of the formula,  we find
some in which  the  student's name has changed (i.e., where name(st)  and name'(st)  differ), as well
as ones where they do not. Model-theoretically, we would therefore like to select out those models  of the
postcondition  in which "things changed only if they had to". In other words, differences between primed

                                                                        
13  This section  is somewhat more technical, and assumes that the reader is familiar with the model  theory of First
Order Predicate Logic.
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and unprimed versions of predicates are minimized. in the sense that there is no model  of the postcondition
that has fewer changes.

For this, we can turn to the technique of circumscription [McCarthy86], which has in fact been used to
attack the frame problem in AI. Circumscription  essentially selects only those models of a theory which
minimize the extents of certain specified predicate(s). Circumscription may be illustrated by showing how
it captures the notion of "negation by failure"  familiar to Prolog programmers:  given the clauses

 P(1).
Q(x):- P(x).

negation by  failure would allow one to conclude the following list of atoms

Q(1),  ¬Q(2),  ¬Q(3),...

while classical logic only entails the first atom. This is achieved by making all predicates have  the smallest
(positive) extent necessary to satisfy the originally given facts  {P(1), ∀  x  .P(   x  ) ⇒ Q(   x  ) }

In our case, since we have stated that we are interested in minimizing changes, we can introduce for every

predicate R two new predicate symbols  ∆+R and ∆−R, with defining axiom

∆+R(   y  )  = def  ¬R(   y  ) ∧ R'(   y  )        ∆−R(   y  )  = def  R(   y  ) ∧ ¬R'(   y  )

Technically, we are then interested in circumscribing  (minimizing) the predicates in the set {∆+R, ∆−R},
subject to the constraint that the effect axioms  of procedures hold, as do the axioms defining ∆R, and the
various unique name  axioms.  This minimization is to be done while keeping the extents of unprimed
predicates fixed but varying the extents of primed ones.

In our example, the theory would therefore have the effect axioms for enrolInCourse , dropCourse
etc., such as

∀x, y[ Occur(enrolInCourse(x,y)) ⇒
(size(y) < classLimit(y)  ∧
                                                 ¬( [EnrolledIn(x,y)])) ∧
(size'(y) = size(y) + 1   ∧ 
                                                  EnrolledIn'(x,y))]

plus the unique name axioms

∀  x  ,   y  [(enrol(   x  ) ≠ drop(   y  )) ∧  (enrol(   x  )=enrol(   y  ) ⇒   x  =  y  ) ∧ ...]  

Appropriate circumscription using the above theory would restrict us to consider only those of its models in

which the predicates ∆+EnrolledIn,   ∆−EnrolledIn, ∆+size,  etc. have minimal extents (in the
sense that if any tuple is removed from any of their denotations, the resulting valuation is no longer a model
of the theory derived from the specification.)  The invariant would then have to be proven to be maintained
only in these specially selected models.

At first glance, such  a model-theoretic description would appear to be of only  purely theoretical  interest.
However, there is the possibility of finding some syntactic formulation that can be proven to be sound, and
possibly even complete with respect to it. In fact, the change axioms  generated from  the effect axioms  by
the algorithm sketched in the previous section  can be shown to select out exactly the  models  that would
be chosen by the circumscription scheme outlined in this section,  for a limited class of specifications.  This
should increase considerably our confidence in the syntactic treatment of the frame problem discussed
earlier.



- 19 -

4.   Other Approaches to the Frame Problem

4.1.  Approaches in  Artificial  Intelligence

The  frame problem in AI has been studied  within a different formal framework, called the situation
calculus  [McCarthy63],  which makes explicit the relationship between the predicates describing the
program state before and after the procedure -- a relationship maintained purely by the priming convention
in our approach. This is done  by  also reifying states  as follows:  for each function f (   x  )  in the
specification, introduce a function f(   x  ,s) , called a “fluent”,  where s is a term of sort  state (or
situation). Likewise, for each predicate R(  x  )  of the specification let there be a fluent R(  x  ,s) .  Given this
formulation, it is then possible to consider the primed-predicate notation as simply an abbreviation: in
specifying procedure p,  every occurrence of an unprimed atom or term f(   y  ) should be read as f(   y  ,
s),  while every atom or term of the form f'(   y  ) stands for f(   y  ,do( p(  x  ),s)) , where do  is a special
function symbol intended to the denote the state obtained by executing  an action -- its first argument --  in
the start state -- its second argument. The full situation calculus is therefore more expressive in that it
allows one to reason about sequences of actions/procedures,  e.g.,   "Mary  is enrolled in cs2, after  Mary
added cs2 in state s0, and then Ann  dropped cs1".

      EnrolledIn(mary,cs2, do(drop(ann,cs1), do( added(mary,cs2), s 0)))   

Since it was first pointed out by McCarthy and Hayes (1969), the frame problem has been the subject of
intense investigation in AI.  During the 1980's and early 1990's, nonmonotonic reasoning has been the
formal approach of choice (see  (Reiter87) for a review of this field). The intuition underlying this appeal
to nonmonotonic logics is that the frame  axioms are the product of a form of “closed world assumption”
with respect to the  causal laws (what we have been calling “effect axioms”).  In other words, it is assumed
that the causal laws specified by the axiomatizer are all, and only, the causal laws for the domain, and
therefore, if there is no law specifying that action p  affects a given predicate’s truth value,  then that
predicate  must be  unaffected   by p. The technical problem is to provide a formal account of this closed
world assumption, and since circumscription  [McCarthy86] is the most general  formalization of closed
world reasoning, the majority of approaches to the frame problem have focussed on it [Lifschitz91],
[Lin91]).

Despite this emphasis on circumscription, a few attempts were made to solve the frame problem without
appealing to nonmonotonic logics, notably [Haas87], [Schubert89] and [Pednault89]. In particular, Haas
and Schubert first proposed the concept of an explanation closure axiom  (or, as we have been calling them,
change axioms) for specifying the frame axioms, while Pednault was the first to formulate a mechanism for
automatically obtaining the frame axioms given only the causal laws for the domain of application. By
combining and extending the ideas of Haas, Schubert and Pednault, [Reiter91]  provided the solution to the
frame problem that underlies the proposal of this paper. This proposal was recently semantically
characterized [Lin94], by showing that the circumscription described in [Lin91] characterizes Reiter's
solution. Accordingly, we now have both semantic and syntactic characterizations of the frame problem in
the situation calculus, and a proof of their equivalence.

An additional source of difficulties for solutions to the frame problem is the presence of state constraints
(what we have called  “state invariants”, or what are known as integrity constraints in data bases).  Unlike
the stance adopted in this paper (where the specifier is expected to prove that the procedure specification is
sufficiently complete to re-establish any state invariants), in AI it is considered desirable to derive from
causal laws and state constraints new  causal laws, which then affect the frame axioms.  This version  of the
frame problem,  known as the ramification problem ,  is  considerably more difficult and cannot yet be said
to have a satisfactory solution. For an attempt to reconcile Reiter's solution to the frame problem with the
presence of state constraints,  see [Lin94] .

4.2.   Alternate Approaches  in Software Specification

Even with appropriate language enhancements, program specifiers may forget to state the ubiquitous frame
axioms. For this reason, some specification languages have opted for a richer semantics which implicitly
adds the "...nothing else changes" clause to every procedure specification. In other words, such languages
support an interpretation of the initial specification of enrolInCourse  that is consistent with the “tight”
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reading mentioned in Section 2.  The advantage of such implicit frame axioms is that if we apply them to
procedure specifications after  inheritance, conjunction, etc. have been expanded, then we get the desired
effect of  things not changing “unless otherwise stated”.

Several systems, such as INSCAPE [Perry89], make the meta-assertion that variables are not changed
unless explicitly said so, and then implement it operationally  in the sense that the specific reasoning done
by the system take this into account. In the case of INSCAPE, the system  concerns itself mostly with
propagating necessary or possible changes to the interfaces, and does not support constructing  proofs that
invariants are  maintained.

The ASLAN specification  language [Auernheimer86] introduces into the language special connectives if-
then-else and alternate, which have a “procedural reading” of the kind familiar to programmers. The aim
is to provide an explicit (declarative) and formal  expression of the intuitive statement that “nothing else
changes”.  The aforementioned paper offers algorithms for computing such assertions in this limited case,
and provides ample evidence of the difficulties one runs into because of context and subscripted variables -
- difficulties related to the meaning of the procedural reading, as well as the correctness of the
implementation.

To their credit, Schuman and Pitt [Schuman87] discovered the frame problem for object-oriented
specifications in Z 14, and proposed a technique for defining a "completing'' assertion that can be added to a
postcondition in order to capture the frame axioms.  Their approach  is based on the observation  that in a
set-theoretic notation  s' = s ∪ {1}   can be equivalently stated as

(1 ∈ s') ∧ (s' - {1} = s - {1}) ,

so that with a postcondition of the form (1 ∈ s'),  we are looking for a weaker version of the frame
axiom  s' = s .  Their scheme relies on finding maximally consistent subsets of so-called "neutral"
assertions.   Unfortunately, this approach suffers from the problem that it is computationally  intractable (in
fact, not even semi-decidable), since it relies on proving  consistency of subsets of formulas.

Independently, we stumbled across the problem in our own attempts to develop a specification language
specially suited for information systems.  Since we were aware that expressing “nothing else changes” was
one of the motivating examples of the field of Non-monotonic Reasoning, our language proposal, TaxisDL
[Borgida89], explicitly states the frame axioms using Default Logic --- a particular version of
Nonmonotonic Logic. Unfortunately, this scheme is also not effectively computable since it also relies on
the non-provability relation.

Obviously, the non-effectiveness of the above schemes  severely compromises  a formal specification
language with respect to its capacity to support the formal treatment of specifications, since one of the
prime uses of procedure specifications is to prove that they leave state invariants intact. Such proofs can
then no longer be automated.

In addition to the computational  problem, another major drawback with embedding the frame axioms in
the specification language semantics is that in some circumstances the specifier may want the freedom not
to make them, or to state them in some different way. [Ryan91] and  [Haugelstein92] are other recent
proposals which embed some  frame axioms in the semantics of the specification language by allowing the
specifier to differentiate actions or attributes for which the assumptions are to be made from those for
which they are not.  A different compromise between placing the full responsibility on the specifier, on one
hand, and embedding the frame axioms  in the semantics of the specification language, on the other, is to
provide a computer tool which, once a specification is considered finished,  makes a pass over it, expands
abbreviations, and suggests frame axioms to be added to each specification. If the user is unhappy with the
proposed axioms, she can modify them to her liking.  At the very least, such a tool would be very helpful in
catching omissions. It must be stressed however that such a tool ought to be viewed as a compiler -- when
changes are made to the specification, the tool needs to be re-run.  The work in [Penny90], and to some

                                                                        
14 Regrettably, their insights seem to have been ignored by more recent papers on object-oriented
specifications.
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extent [Auernheimer86],  exemplifies this approach, though it only deals with a restricted subset of
formulas.  Our proposal for syntactically generating change axioms can be viewed in the same light.

5.  Concluding Remarks

We have presented evidence that in specifying procedures in the popular style of pre- and postconditions
defined over program states, it is useful to have some mechanism  to make blanket statements of the form
"...and nothing else changes'', rather than explicitly enumerating the things that do not change. This facility
would seem to be essential if we are to develop a proper notion of object-oriented specifications to support
programming in OOPLs such as C++ and Eiffel.

We critically reviewed some of the mechanisms in extant specification languages that attempt to address
this problem.  Secondly, we have applied a technique that has been recently used in AI to deal with the
frame problem: the idea of axioms explaining what changes could occur to a particular component of the
program state through the application of known procedures. This idea, we have argued, produces short,
effective and relatively modular specifications for software, and deals effectively with a number of
problems that are not properly addressed by other approaches. Moreover, our proposal has the added
advantage of being phrased entirely within Predicate Logic, thus making it unnecessary to build special
theorem provers to reason with specifications. We also note that the specialized  context of  reasoning
about procedure specifications as currently performed in software engineering makes it possible to simplify
considerably the machinery used in AI.

We have also argued that for a small class of specifications, it is possible to generate syntactically some
explanation closure axioms that coincide with those suggested by our intuitions, and that these intuitions
are supported by a model-theory in which the extents of predicates are minimized.

The following are just some of the issues that remain to be explored:

• How large is the class of specifications for which we can generate automatically reasonable change
axioms starting from pre/postconditions?

• What are  appropriate notations that allow these ideas to be incorporated into familiar specification
languages such as Z, VDM, Larch, COLD, etc. without  violating or extending too much their
underlying philosophy?

•  The explicit inclusion of frame axioms into the specification also causes difficulties with
reasoning about concurrency in specification, as observed by [Shuman87]. Our approach can form a
starting point for exploring  new approaches, by allowing the Occur  predicate to hold at more than
one argument/action at a time.

•  In some circles, it has been suggested that in order to support maximal reuse, there should be no
limitation on the kinds of changes that one can make to a  procedure’s specification  when
specializing/refining it to a subclass.  The wider use of Occur  predicate in post-conditions may
allow  for the explicit cancellation of inheritance.

Acknowledgment: We are grateful to Eric Hehner for his comments and much appreciated moral support,
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and to the reviewers.
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