
Programming Hierarchical Task Networks in the Situation Calculus

Alfredo Gabaldon
Department of Computer Science

University of Toronto
alfredo@cs.toronto.edu

Introduction
Hierarchical Task Network (HTN) planning (Sacerdoti
1974) is an approach to planning where problem-specific
knowledge is used to remedy the computational intractabil-
ity of classical planning. This knowledge is in the form of
task decomposition directives, i.e. the planner is given a set
of methods that tell it how a high-level task can be decom-
posed into lower-level tasks. The HTN planning problem
consists in computing a sequence of primitive tasks that cor-
responds to performing the initial set of high-level tasks.

Our purpose in this paper is 1) to give an account of HTN-
planning as high-level programming in the situation cal-
culus (McCarthy 1963) based languages Golog/ConGolog
(Levesque et al. 1997; De Giacomo, Lesperance, &
Levesque 2000) and 2) to illustrate our approach with a Con-
Golog encoding of a logistics domain HTN-planning prob-
lem. The Golog/ConGolog languages have been extended to
deal with explicit time, sensing actions, exogenous events,
execution monitoring, incomplete knowledge of the initial
state, stochastic actions and others. Thus the range of prob-
lems that can be tackled with this approach is potentially
much larger. As an example, we modified the logistics do-
main encoding to execute on-line and deal with run-time ex-
ogenous delivery requests.

Preliminaries
The Situation Calculus
The situation calculus (McCarthy 1963) is a logical lan-
guage for axiomatizing dynamic worlds. Intuitively, it has
three basic components: actions: responsible for all the
changes in the world; situations: sequences of actions which
represent possible histories of the world; and fluents: rela-
tions and functions which represent properties of the world
and whose values change from situation to situation.

We will use the definition of the situation calculus and the
axiomatization of situations as it appears in (Levesque, Pirri,
& Reiter 1998; Reiter 2001). The language of the situation
calculus includes function symbols for actions, for exam-
ple, loadTrk(obj, trk) could stand for the action of loading
obj into truck trk. It includes a special constant S0 that
denotes the initial situation and a function symbol do(α, s)
that denotes the situation that results from doing action α in
situation s. For example, the situation term

do(driveTrk(Trk1, Loc1, Loc2), do(loadTrk(A, Trk1), S0))

denotes the history of the world consisting of the sequence
of actions

[loadTrk(A, Trk1), driveTrk(Trk1, Loc1, Loc2)].

Relational fluents and functional fluents are relations and
functions, resp., whose last argument is a situation. Exam-
ples of these are a relation atT ruck(Trk1, Loc1, S0) mean-
ing that Trk1 is at Loc1 in the initial situation, and function
temperature(Room1, s) denoting the temperature value of
Room1 in situation s.

A situation calculus axiomatization of a domain in-
cludes1:

1. Action precondition axioms: For each action function
A(~x) an axiom of the form Poss(A(~x), s) ≡ ΠA(~x, s)
where ΠA(~x, s) is a formula with free variables among
~x, s and s is its only situation term. These axioms charac-
terize the (situation dependent) preconditions for the exe-
cution of primitive actions.

2. Successor state axioms: For each relational fluent F (~x, s)
an axiom of the form F (~x, do(a, s)) ≡ ΦF (~x, a, s) where
ΦF (~x, a, s) has free variables among ~x, a, s and s is its
only situation term. Similar axioms are included for func-
tional fluents. These axioms characterize the value of flu-
ents after executing a primitive action a in situation s.
These axioms embody Reiter’s solution to the frame prob-
lem for deterministic actions (Reiter 1991).

3. Unique names axioms for actions.

4. Axioms describing the initial situation: A finite set of sen-
tences whose only situation term is S0 and which describe
what is initially true, before any actions have occurred.

Example 1 Our main example through out this paper will
be a logistics domain problem. There are objects that are to
be moved between locations by truck or plane. Cities con-
tain different locations some of which are airports. Primitive
actions include loading/unloading an object onto a truck or

1Arguments in predicates and formulas starting with a lower-
case letter denote variables. Free variables are implicitly univer-
sally quantified.

plane, driving a truck and flying a plane. The following is
an axiomatization of this domain:
Action Precondition Axioms:

Poss(loadTruck(o, tr), s) ≡
atT ruck(tr, l, s) ∧ atObj(o, l, s).

P oss(unloadTruck(o, tr), s) ≡ inTruck(o, tr, s).
P oss(loadAirplane(o, p), s) ≡

atObj(o, l, s) ∧ atAirplane(p, l, s).
P oss(unloadAirplane(o, p), s) ≡ inAirplane(o, p, s).
P oss(driveTruck(tr, orig, dest), s) ≡

atT ruck(tr, orig, s) ∧ inCity(orig, city)∧
inCity(dest, city).

P oss(fly(p, orig, dest), s) ≡
atAirplane(p, orig, s) ∧ airport(dest).

Successor State Axioms:

atObj(o, l, do(a, s)) ≡
a = unloadTruck(o, tr) ∧ atT ruck(tr, l, s) ∨
a = unloadAirplane(o, p) ∧ atAirplane(p, l, s) ∨
atObj(o, l, s) ∧ a 6= loadTruck(o, tr)∧

a 6= loadAirplane(o, p).
atT ruck(tr, l, do(a, s)) ≡

a = driveTruck(tr, o, l) ∨
atT ruck(tr, l, s) ∧ (a 6= driveTruck(tr, o, d) ∨ d = l).

atAirplane(p, apt, do(a, s)) ≡
a = fly(p, oapt, apt) ∨ atAirplane(p, apt, s)∧

(a 6= fly(p, oapt, dapt) ∨ dapt = apt).
inTruck(o, tr, do(a, s)) ≡

a = loadTruck(o, tr) ∨
inTruck(o, tr, s) ∧ a 6= unloadTruck(o, tr).

inAirplane(o, p, do(a, s)) ≡
a = loadAirplane(o, p) ∨

inAirplane(o, p, s) ∧ a 6= unloadAirplane(o, p).

Unique names axioms for actions:

loadTruck(o, tr) 6= unloadTruck(o, tr),

loadTruck(o, tr) 6= loadAirplane(o, p), etc.

Initial situation:

atAirplane(p, l, S0) ≡
p = P lane1 ∧ l = Loc5,1 ∨ p = P lane2 ∧ l = Loc2,1.

atT ruck(t, l, S0) ≡
t = Truck1,1 ∧ l = Loc1,1 ∨
t = Truck2,1 ∧ l = Loc2,1 ∨ . . .

airport(loc) ≡
loc = Loc1,1 ∨ loc = Loc2,1∨
loc = Loc3,1 ∨ loc = Loc4,1 ∨ loc = Loc5,1.

inCity(l, c) ≡
l = Loc1,1 ∧ c = City1 ∨
l = Loc2,1 ∧ c = City2 ∨ . . .

atObj(p, l, S0) ≡
p = Package1 ∧ l = Loc3,3 ∨
p = Package2 ∧ l = Loc3,1 ∨ . . .

The above set of axioms forms a complete situation calcu-
lus primitive action theory for our logistics domain example.

Golog and ConGolog
The situation calculus based programming languages Golog
(Levesque et al. 1997) and ConGolog (De Giacomo, Les-
perance, & Levesque 2000) allow us to define complex ac-
tions in terms of the actions in a primitive action theory. The
constructs of Golog are the following:

• Test condition: φ?. Test whether φ is true in the current
situation.

• Sequence: δ1; δ2. Execute δ1 followed by δ2.

• Nondeterministic action choice: δ1|δ2. Execute δ1 or δ2.

• Nondeterministic choice of arguments: (πx)δ. Choose a
value for x and execute δ for that value.

• Nondeterministic iteration: δ∗. Execute δ zero or more
times.

• Procedure definitions: proc P (~x) δ endProc. P (~x) is the
name of the procedure, ~x its parameters, and δ is the body.

ConGolog has the above constructs plus the following:

• synchronized conditional: if φ then δ1 else δ2.

• synchronized loop: while φ do δ.

• concurrent execution: δ1 ‖ δ2.

• prioritized concurrency: δ1〉〉δ2. Execute δ1 and δ2 con-
currently but δ2 executes only when δ1 is blocked or done.

• concurrent iteration: δ‖. Execute δ zero or more times in
parallel.

• Interrupt: φ → δ. Execute δ whenever condition φ is true.

Example 2 The following is a procedure definition for the
logistics domain:

proc moveObj(o, loc)
(π oloc, ocity).
if atObj(o, oloc) ∧ inCity(oloc, ocity) then
%% if obj. is to be moved within the same city
if inCity(loc, ocity) then inCityDeliver(o, oloc, loc)
else %% else must go by air to destination city
(π dcity).
if inCity(loc, dcity) ∧ dcity 6= ocity then
(π oaprt, daprt).
(inCity(oaprt, ocity) ∧ inCity(daprt, dcity))? ;
inCityDeliver(o, oloc, oaprt) ;
airDeliver(o, oaprt, daprt) ;
inCityDeliver(o, daprt, loc)

else False?
else False?

endProc

The formal semantics of ConGolog is defined in terms
of relations Trans(δ, s, δ′, s′) and Final(δ, s).2 Intuitively,
Trans(δ, s, δ′, s′) holds if after executing a single step of
program δ in situation s, δ′ is what remains of δ to be ex-
ecuted and s′ is the resulting situation. Final(δ, s) means
that δ can be considered in a terminating state in situation s.

2For the original, simpler semantics of Golog see (Levesque et
al. 1997; Reiter 2001).

These are some of the axioms for Trans and Final from
(De Giacomo, Lesperance, & Levesque 2000):

Trans(nil, s, δ′, s′) ≡ False.
T rans(a, s, δ′, s′) ≡

Poss(a, s) ∧ δ′ = nil ∧ s′ = do(a, s).
T rans(φ?, s, δ′, s′) ≡

φ[s] ∧ δ′ = nil ∧ s′ = s.
T rans(δ1; δ2, s, δ

′, s′) ≡
(∃γ)δ′ = (γ; δ2) ∧ Trans(δ1, s, γ, s′)∨
Final(δ1, s) ∧ Trans(δ2, s, δ

′, s′).
T rans((πx)δ, s, δ′, s′) ≡

(∃x)Trans(δ, s, δ′, s′).
T rans(if φ then δ1 else δ2, s, δ

′, s′) ≡
φ[s] ∧ Trans(δ1, s, δ

′, s′)∨
¬φ[s] ∧ Trans(δ2, s, δ

′, s′)
Trans(while φ do δ, s, δ′, s′) ≡

(∃γ).(δ′ = γ ; while φ do δ)∧
φ[s] ∧ Trans(δ, s, γ, s′).

T rans(δ1 ‖ δ2, s, δ
′, s′) ≡

(∃γ)[δ′ = (γ ‖ δ2) ∧ Trans(δ1, s, γ, s′)]∨
(∃γ)[δ′ = (δ1 ‖ γ) ∧ Trans(δ2, s, γ, s′)].

F inal(nil, s) ≡ True.
F inal(a, s) ≡ False.
F inal(φ?, s) ≡ False.
F inal(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).
F inal((πx)δ, s) ≡ (∃x)Final(δ, s).
F inal(if φ then δ1 else δ2, s) ≡

φ[s] ∧ Final(δ1, s) ∨ ¬φ[s] ∧ Final(δ2, s).
F inal(while φ do δ, s) ≡ ¬φ[s] ∨ Final(δ, s).
F inal(δ1 ‖ δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).

An abbreviation Do(δ, s, s′), meaning that executing δ in
situation s is possible and it legally terminates in situation
s′, can be defined in terms of the transitive closure of Trans
and predicate Final:

Do(δ, s, s′)
def
= (∃δ′).T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′).

T rans∗ is defined by a second order situation calcu-
lus formula. For details see (De Giacomo, Lesperance, &
Levesque 2000).

A Prolog interpreter for ConGolog can be obtained almost
directly from these axioms and a primitive action theory (De
Giacomo, Lesperance, & Levesque 2000).

HTN Planning
In this section we briefly review HTN-planning. Our discus-
sion is based on the definitions of HTN-planning from (Erol,
Hendler, & Nau 1996). For the primitive tasks, however, we
will use situation calculus notation, i.e. we use primitive ac-
tions instead of STRIPS-style HTN operators. Moreover, we
use situations instead of states.

A primitive task is an action term A(~x). A compound task
is a term of the form tname(~x). A task network is a pair
(T, φ) where T is a list of tasks and φ a boolean formula
of constraints of the forms (t ≺ t′), (t, l), (l, t), (t, l, t′),
(v = v′) and (v = c) where t, t′ are tasks from T , l is a
fluent literal, v, v ′ are variables and c is a constant. An HTN

method is a pair (h, d) where h is a compound task and d is
a task network. Methods are the HTN construct for building
complex tasks from primitive ones.

An HTN planning problem is a tuple (d, s, D) where d is
a task network, s is a situation, and D is a planning domain
consisting of a primitive action theory plus a set of methods.
A plan is a sequence of ground primitive tasks.

Let d be a primitive task network, s be a situation, and
D a planning domain. A sequence of primitive tasks σ is a
completion of d in s, denoted by σ ∈ comp(d, s, D), if σ
is a total ordering of a ground instance of the primitive task
network d and is executable in s.

Let d be a task network that contains a compound task
t and m = (h, d′) be a method such that θ is a most gen-
eral unifier of t and h. Define reduce(d, t, m) to be the task
network obtained from dθ by replacing tθ with d′θ and in-
corporating (see (Erol, Hendler, & Nau 1996) for details) the
constraints in d′ with those in d. Define red(d, s, D) as the
set of all reductions of d by methods of D.

A solution sol(d, S0, D) to a planning problem (d, S0, D)
is the set of all plans that can be computed in a finite number
of reduction steps:

sol1(d, S0, D) = comp(d, S0, D)
soln+1(d, S0, D) =

soln(d, S0, D) ∪
⋃

d′∈red(d,S0,D) soln(d′, S0, D)
sol(d, S0, D) =

⋃
n<ω soln(d, S0, D)

Example 3 The following are methods for moving an ob-
ject in the logistics domain that correspond to the Golog pro-
cedure example above. The first method works for moving
an object within the same city. The second is for moving an
object between cities.

(moveObj(o, loc)
[t = inCityDeliver(o, oloc, loc)]

(atObj(o, oloc), t)∧
(inCity(oloc, ocity), t)∧
(inCity(loc, ocity), t)

)

(moveObj(o, loc)
[t1 = inCityDeliver(o, oloc, oaprt),
t2 = airDeliver(o, oaprt, daprt),
t3 = inCityDeliver(o, daprt, loc)]

(atObj(o, oloc), t1) ∧ (inCity(oloc, ocity), t1)∧
(inCity(loc, dcity), t1) ∧ (ocity 6= dcity, t1)∧
(inCity(oaprt, ocity), t1)∧
(inCity(daprt, dcity), t1)∧
(t1 ≺ t2) ∧ (t2 ≺ t3)

)

Programming HTNs in Golog/ConGolog
In this section we show how HTN-planning problems can
be encoded in Golog/ConGolog. Let us first consider task
networks which are totally ordered and with a constraint for-
mula φ that is a conjunction of constraints of the form (l, t).
This is the type of task networks the HTN-planning system
SHOP (Nau et al. 1999) is designed to solve.

Totally ordered task networks can be encoded in Golog
since there is no concurrency among the tasks.

Totally ordered task networks
Consider an HTN-planning problem P = (d, S0, D). We
encode the methods (h, d1), (h, d2), . . . , (h, dk) of each
compound task h as a Golog procedure as follows:

proc h
(L1,1)? ; t1,1 ; . . . ; (L1,i1)? ; t1,i1 |
(L2,1)? ; t2,1 ; . . . ; (L2,i2)? ; t2,i2 |
· · ·
(Lk,1)? ; tk,1 ; . . . ; (Lk,ik

)? ; tk,ik

endProc

where ti,j is the jth task in di and Li,j is a conjunction of
the literals l such that (l, ti,j) is a constraint in di.

Let ∆P denote the resulting set of Golog procedures. To
complete the encoding of the HTN planning problem P we
include a Golog program δT obtained from the task net-
work d. This program has the same form as that of a single
method: (L1)? ; t1 ; . . . ; (Ll)? ; tl.

The HTN planning problem can now be reformulated in
terms of the logical semantics of Golog:

DP |= (∃s)Do(∆P ; δT , S0, s)

Here, DP is the primitive action theory of P plus the axioms
of Golog.

The procedure in Example 2 is an encoding of the meth-
ods in Example 3, except that instead of using nondetermin-
istic choice of actions, i.e. operator |, we used if -statements
since the conditions before the first tasks are mutually exclu-
sive.

Partially ordered task networks
Before we move on to partially ordered task networks, let
us comment on enforcing constraints of the values of lit-
erals, i.e. constraints of the forms (l, t), (t, l) and (t, l, t′)
and their boolean combination. Intuitively, one way to think
about these constraints is that their purpose is for eliminating
or “pruning” some of the plan candidates. Their purpose is
similar to that of the temporal constraints used by Bacchus
and Kabanza (1995; 2000) for controlling search in a for-
ward chaining classical planner. Reiter uses this technique
in a Golog implementation of several classical planners (Re-
iter 2001). The idea is to use a predicate badSituation(s)
to encode constraints and check them before adding a prim-
itive action to the plan being computed. So in the remainder
of the paper, we will assume that these constraints have been
suitably encoded by means of a badSituation predicate.

Furthermore, we will assume that the partial order
boolean formula is a conjunction of atoms (t ≺ t′). This
is not a limitation since an unrestricted formula can also be
enforced through the badSituation predicate. However, if
the partial order formula is a conjunction, it is computation-
ally better to enforce it imperatively in the program.

Let us now consider encoding partial order HTN planning
problems in ConGolog. As before, for each method there
will be a procedure, but we also need to introduce two flu-
ents and two actions which are used to enforce the partial
ordering among tasks: fluent executing(p(~x), s) meaning
that the ConGolog procedure p is executing in situation s,

fluent terminated(p(~x), s) meaning that the basic action
or procedure p has executed and terminated in situation s,
action start(p(~x)) which causes executing(p(~x), s) to be-
come true, and end(p(~x)) which causes executing(p(~x), s)
to become false and terminated(p(~x), s) to become true.
Both fluents are initially false for all procedures and actions
and the two actions are the only ones that change these flu-
ents’ truth value. Formally, the successor state axioms for
these fluents are the following:

executing(p(~x), do(a, s)) ≡
a = start(p(~x)) ∨
executing(p(~x), s) ∧ a 6= end(p(~x)).

terminated(p(~x), do(a, s)) ≡
a = p(~x) ∨ a = end(p(~x)) ∨
terminated(p(~x), s).

Let d be a task network and t one of its tasks. Let
nexec(t) stand for ¬executing(t) ∧ ¬terminated(t). Let
pred(t, d) stand for the conjunction:

∧

{t′:(t′≺t)∈d}

terminated(t)

If there is no constraint (t ≺ ti) in d then pred(t, d) =
True.

The ConGolog procedure that encodes the methods
(h, d1), (h, d2), . . . , (h, dk) for a compound task h is:

proc h δ1|δ2| . . . |δk endProc

where

δi
def
=

pred(ti,1) ∧ nexec(ti,1) → ti,1 ||
pred(ti,2) ∧ nexec(ti,2) → ti,2 ||
· · ·
pred(ti,ki

) ∧ nexec(ti,ki
) → ti,ki

The ti,js are the tasks in di. The δis consist of a set of inter-
rupts one for each subtask. As soon as the predecessors of
a task that has not yet executed terminate, the interrupt fires
and the task executes.

Example 4 This is a simple blocks world example method
for moving a block v1 from a block v2 onto a block v3:

(move(v1, v2, v3)
[clear(v1), clear(v3), unstack(v1, v2), stack(v1, v3)]

(clear(v1) ≺ unstack(v1, v2))∧
(clear(v3) ≺ unstack(v1, v2))∧
(unstack(v1, v2) ≺ stack(v1, v3))

)

The encoding as a ConGolog procedure is the following:

proc move(v1, v2, v3)
nexec(clear(v1)) → clear(v1) ||
nexec(clear(v3)) → clear(v3) ||
nexec(unstack(v1, v2)) ∧ terminated(clear(v1)) ∧

terminated(clear(v3)) → unstack(v1, v3) ||
nexec(stack(v1, v3)) ∧ terminated(unstack(v1, v2))

→ stack(v1, v3)
endProc

It is not always possible but in many cases the partial or-
dering of tasks can be captured without introducing extra
fluents. For instance, the procedure for move(v 1, v2, v3) can
clearly be written in the following simpler way:

proc move(v1, v2, v3)
(clear(v1) || clear(v3)) ;

unstack(v1, v2) ; stack(v1, v3)
endProc

On-line Execution with Exogenous Actions
The situation calculus and Golog/ConGolog are very pow-
erful languages which allow one to solve problems well be-
yond the capabilities of today’s HTN-planners. In this sec-
tion we present an encoding of the logistics domain of the
previous examples for execution on-line and handling of ex-
ogenous delivery requests at run-time. We also show some
sample runs using a ConGolog interpreter in Prolog.

On-line execution of a ConGolog program means that
once the first primitive action is determined according to
the control structure of the program, which due to nonde-
terminism may involve randomly choosing one, this action
is actually executed in the world. This means that our Con-
Golog interpreter should not backtrack after choosing such
an action. Luckily, this behaviour is very easy to realize in
Prolog using a cut. The off-line interpreter includes the rule:

offline(Prog,S0,Sf):-
final(Prog,S0), S0=Sf ;
trans(Prog,S0,Prog1,S1),
offline(Prog1,S1,Sf).

To prevent the interpreter from backtracking on primitive
actions, including exogenous ones, we simply add a cut after
a one step transition is chosen:

online(Prog,S0,Sf):-
final(Prog,S0), S0=Sf ;
trans(Prog,S0,Prog1,S1), !,
online(Prog1,S1,Sf).

This is a brave online interpreter. A cautious one may,
for instance, check offline that the remainder of the program
successfully terminates before committing to an action:

online(Prog,S0,Sf):-
final(Prog,S0), S0=Sf ;
trans(Prog,S0,Prog1,S1),
offline(Prog1,S1,Soff), !,
online(Prog1,S1,Sf).

These issues are further discussed in (De Giacomo, Reiter,
& Soutchanski 1998; Reiter 2001).

Let us now turn to exogenous actions. Although an agent,
or in our case the logistics program, does not have con-
trol over when exogenous actions occur, its background
theory includes axioms informing it what exogenous ac-
tions can occur and what their effects are. In our lo-
gistics example, we only consider one exogenous action:
requestDelivery(obj, loc) meaning that a request to de-
liver obj to loc has been issued. Exogenous actions will
be generated by having the interpreter ask the user to input
them.

Following (De Giacomo, Lesperance, & Levesque 2000),
we will model exogenous actions by defining a special pro-
cedure which will execute in parallel with the logistics main
procedure:

proc exoProg
(πe)(exoActionOccurred(e) → e)

endProc

The condition exoActionOccurred(e) always succeeds
when evaluated and it comes back with a user supplied value
for e which can be an exogenous action, nil which means no
exogenous action occurred, or endSim which is just as nil
but tells the interpreter to stop asking the user for exoge-
nous actions. We could alternatively have had them gener-
ated randomly without complication.

Now, the main logistics procedure is a program
that reacts to the occurrence of exogenous actions
requestDelivery(obj, loc) by triggering the execution of a
moveObj(obj, loc) task:

proc deliveryDaemon
(πpck, loc) deliveryReq(pck, loc) →

startDelivery(pck, loc) ;
[(moveObj(pck, loc) ;

endDelivery(pck, loc)) ‖
deliveryDaemon]

endProc

The main ConGolog program is the parallel execution of
the logistics procedure and the exogenous actions procedure:
exoProg ‖ deliveryDaemon.

Here is a sample run in Eclipse Prolog:

[eclipse 2]: runSim.
startSim
Enter an exogenous action:

requestDelivery(package1, loc5-1).
requestDelivery(package1, loc5-1)
startDelivery(package1, loc5-1)
Enter an exogenous action: nil.

driveTruck(truck3-1, loc3-1, loc3-3)
Enter an exogenous action: nil.

loadTruck(package1, truck3-1)
Enter an exogenous action: nil.

driveTruck(truck3-1, loc3-3, loc3-1)
unloadTruck(package1, truck3-1)
Enter an exogenous action: nil.

fly(plane1, loc5-1, loc3-1)
Enter an exogenous action:
requestDelivery(package2, loc3-2).

requestDelivery(package2, loc3-2)
loadAirplane(package1, plane1)
fly(plane1, loc3-1, loc5-1)
unloadAirplane(package1, plane1)
startDelivery(package2, loc3-2)
Enter an exogenous action: nil.

endDelivery(package1, loc5-1)
loadTruck(package2, truck3-1)
driveTruck(truck3-1, loc3-1, loc3-2)

unloadTruck(package2, truck3-1)
Enter an exogenous action:
requestDelivery(package3, loc1-3).

requestDelivery(package3, loc1-3)
Enter an exogenous action: nil.

startDelivery(package3, loc1-3)
endDelivery(package2, loc3-2)
driveTruck(truck2-1, loc2-1, loc2-3)

Enter an exogenous action: nil.
loadTruck(package3, truck2-1)
driveTruck(truck2-1, loc2-3, loc2-1)
unloadTruck(package3, truck2-1)

Enter an exogenous action: nil.
loadAirplane(package3, plane2)

Enter an exogenous action: nil.
fly(plane2, loc2-1, loc1-1)

Enter an exogenous action: nil.
Enter an exogenous action: endSim.

endSim
unloadAirplane(package3, plane2)
loadTruck(package3, truck1-1)
driveTruck(truck1-1, loc1-1, loc1-3)
unloadTruck(package3, truck1-1)
endDelivery(package3, loc1-3)

Plan length: 32 More? n.

The non-indented lines are primitive tasks appearing in
the order they occur. The user is prompted for an exogenous
action every time the condition exoActionOccurred(e) is
evaluated. This happens every time the interpreter computes
a transition for the exoProg procedure.

Conclusion
Our purpose was two-fold. On one hand we have argued that
HTN-planning can be thought of as a special case of high-
level programming in the sense of Golog/ConGolog. We
have done this by showing an encoding of HTN-planning
problems in these languages. In doing this, we only took
advantage of a few of their constructs and of the techniques
which have been developed for the many problems that have
arisen in cognitive robotics research. These techniques are
obviously relevant to planning given that both problems in-
volve modeling dynamic worlds. The work by the Cognitive
Robotics group at the U. of Toronto includes formalizations
for robotic control that account for explicit time of action
occurrence, sensing and knowledge, execution monitoring,
stochastic actions, action choice based on decision theory,
and others.3 Our second goal was to actually show a gen-
eralization of HTN-planning, after taking this programming
perspective, by taking a classic HTN-planning problem, a
logistics domain problem, and encoding it in ConGolog for
on-line execution and run-time exogenous actions.

We were not the first to point out a connection between
HTN-planning and high-level languages Golog and Con-
Golog. Baral and Son (1999) extended ConGolog with an
HTN construct. In the extended language, a program may
include an HTN-planning problem as a statement. However,
the new construct is limited: the tasks appearing in it cannot

3Much of this work can be found at
http://www.cs.toronto.edu/cogrobo

be ConGolog programs. One has to separately define meth-
ods for the compound tasks mentioned in an HTN-statement.

Acknowledgments
We are thankful to Ray Reiter and Fahiem Bacchus for help-
ful discussions on the subject of this paper.

References
Bacchus, F., and Kabanza, F. 1995. Using temporal logic
to control search in a forward chaining planner. In Pro-
ceedings of the Third European Workshop on Planning.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 16:123–191.
Baral, C., and Son, T. C. 1999. Extending ConGolog
to allow partial ordering. In Proc. of the Sixth Inter-
national Workshop on Agent Theories, Architectures, and
Languages (ATAL-99), volume 1757 of LNCS, 188–204.
De Giacomo, G.; Lesperance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121:109–169.
De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998.
Execution monitoring of high-level robot programs. In
Proceedings of the 6th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’98).
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planning. Annals of
Mathematics and Artificial Intelligence 18:69–93.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1–3):59–83.
Levesque, H.; Pirri, F.; and Reiter, R. 1998. Foun-
dations for the situation calculus. Linköping Electronic
Articles in Computer and Information Science 3(18).
http://www.ep.liu.se/ea/cis/1998/018/.
McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University. Reprinted in Seman-
tic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410–417.
Nau, D. S.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceed-
ings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI-99), 968–975.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. Cambridge, MA: MIT Press.
Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5:115–135.

