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When it comes to building controllers for robots or agents, high-level programming languages like
Golog and ConGolog offer a useful compromise between planning-based approaches and low-level
robot programming. However, two serious problems typically emerge in practical implementations
of these languages: how to evaluate tests in a program efficiently enough in an open-world setting,
and how to make appropriate nondeterministic choices while avoiding full lookahead. Recent
proposals in the literature suggest that one could tackle the first problem by exploiting sensing
information, and tackle the second by specifying the amount of lookahead allowed explicitly in the
program. In this paper, we combine these two ideas and demonstrate their power by presenting
an interpreter, written in Prolog, for a variant of Golog that is suitable for efficiently operating in
open-world setting by exploiting sensing and bounded lookahead.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution, formation, and generation; I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving—Logic Programming
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1. INTRODUCTION

When it comes to building controllers for robots or agents, high-level programming
languages like Golog [Levesque et al. 1997] and ConGolog [De Giacomo et al. 2000]
offer a useful compromise between planning-based approaches and low-level robot
programming. By a high-level program, we mean one whose primitive instructions
are domain-dependent actions of the robot, whose tests involve domain-dependent
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fluents affected by these actions, and whose code may contain nondeterministic
choice points.

Two serious problems typically emerge in practical implementations of these lan-
guages, however: (1) to evaluate tests in a program efficiently enough, a Prolog-
style closed-world assumption (CWA) is required, and (2) to make appropriate
nondeterministic choices, an execution trajectory of the entire program needs to be
calculated offline.

In De Giacomo and Levesque [1999b], guarded action theories, which do not
require a CWA but still permit efficient evaluation by using sensing information,
are introduced; while in De Giacomo and Levesque [1999a], an incremental version
of Golog is proposed which would allow a programmer to specify which parts of a
program should be run offline (using an explicit search operator), and which should
be run online (foregoing full lookahead for efficiency purposes).

In this paper, we study an amalgamation of these two ideas and a version of
Golog, namely IndiGolog (incremental deterministic Golog), which has all the lan-
guage features of ConGolog, but which also (i) works in an open-world setting with
guarded action theories, (ii) allows for programmer control over online and offline
execution, and in the online case, allows sensing information to affect subsequent
computation. Based on such amalgamation, we propose a simple implementation
in Prolog of an IndiGolog interpreter that incrementally execute programs w.r.t.
to guarded theories. Such an implementation is provably correct under suitable
conditions.

The structure of the rest of the paper is as follows. In Section 2, we briefly review
the situation calculus and basic action theories. Section 3 is devoted to guarded
action theories and Section 4 to ConGolog programs. Next, in Section 5, we discuss
how those programs can be executed incrementally. In Section 6, we talk about
“well-behaved” histories and programs with sufficient information to be executed.
In Section 7, we describe our Prolog implementation of an IndiGolog interpreter,
and we prove its correctness in Section 8. We draw conclusions and discuss future
work in Section 9.

2. SITUATION CALCULUS AND BASIC ACTION THEORIES

The situation calculus [McCarthy and Hayes 1969] is a second-order language specif-
ically designed for representing dynamically changing worlds in which all changes
are the result of named actions. The language has a special constant S0 used to
denote the initial situation where no actions have yet occurred; there is a distin-
guished binary function symbol do where do(a, s) denotes the successor situation
to s resulting from performing action a; relations whose truth values vary from sit-
uation to situation are called fluents, and are denoted by predicate symbols taking
a situation term as their last argument;1 and there is a special predicate Poss(a, s)
used to state that action a is executable in situation s. For instance, the fluent
F loor(n, s) may indicate that the elevator is in the floor n in situation s, and
Poss(up, s) says whether it is possible to go one floor up in situation s.

Within this language, we can formulate action theories that describe how the
world changes as the result of the available actions. In Reiter [1991] action theories

1We only deal with relational fluents in this paper.
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of a special form, called basic action theories, were introduced. Basic action theories
have the following form:

—D0 is the set of axioms describing the initial situation S0.

—DPoss contains one precondition axiom for each action A, characterizing the
relation Poss(A, s), of the following form:2

Poss(A, s) ≡ ψ(s)

where Poss does not occur in ψ(s).

—DSSA is the set of all successor state axioms, one for each fluent F , of the following
form:

F (~x, do(a, s)) ≡ γ(~x, a, s)

which state under what conditions F (~x, do(a, s)) holds as function of what holds
in situation s. These take the place of the so-called effect axioms, but also provide
a solution to the frame problem [Reiter 1991].

—Duna is the set of unique names axioms for actions.

—DFUN is the set of foundational, domain independent axioms.

Successor state axioms are the key to such theories given that they provide an
axiomatization of the effects and noneffects of actions, i.e., they encapsulate the
causal laws of the world.

Example 2.1. For example, the successor state axiom

ControllerOn(do(a, s)) ≡ (a = turnOnController ∧ ¬ControllerBroken(s)) ∨
(a 6= turnOffControler ∧ a 6= breakController ∧ ControllerOn(s))

states that a specific controller is functioning after doing action a if a is turning it
on and the controller is not broken, or it was already functioning, and a is not the
action of turning it off nor breaking it.

One of the most fundamental tasks concerned with reasoning about actions is the
projection task: determining whether a fluent does or does not hold after performing
a sequence of actions. Projection is clearly a prerequisite to both planning and the
high-level program execution task [Levesque et al. 1997]. Now, observe that in basic
action theories successor state axioms can be thought as defining the truth-value
of a fluent in a given situation in terms of the truth-value of fluents in the previous
situation. This characteristic has a notable impact on reasoning with basic action
theories: it allows us to base projection on a special form of evaluation, regression
[Reiter 1991], which is a central computational mechanism in AI [Waldinger 1977],
plus inference about the initial situation. As a result we have a convenient way of
reasoning when we have complete information about the initial situation.

3. GUARDED ACTION THEORIES

Recently, basic action theories have been extended to guarded action theories (GATs)
in which causal laws may not be complete, and sensing is formalized explicitly in the

2From now on, free variables are assumed to be universally quantified from the outside.
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theory [De Giacomo and Levesque 1999b]. We assume that a robot has a number
of on-board sensors that provide sensing readings at any time. Formally, we intro-
duce a finite number of sensing functions, which are unary functions whose only
argument is a situation. Syntactically, sensing functions look like functional fluents;
however, it is assumed that sensed values, i.e., the values returned by the sensing
functions, belong to a concrete domain, i.e., a possibly infinite domain such that
every element of the domain has a unique term that denotes it. Examples of sensing
functions modeling available sensors in a robot might be thermometer(s) returning
the readings of an onboard thermometer, sonar(s) returning values from the robot
sonar, depthGauge(s) returning the depth measured by an onboard gauge, etc. We
observe that with this approach we change the way we look at sensing, moving
from the well-known sensing actions (Golden et al. [1996], Baral and Son [1997],
and Levesque [1996]) to online on-board sensors whose data may or may not be
applicable.

We define a sensor-fluent formula to be a formula of the language that uses at
most one situation term, which is a variable, and that this term only appears as
the final argument of a fluent or sensor function. We write φ(~x, s) when φ is a
sensor-fluent formula with free variables among the ~x and s, and φ(~t, ts) for the
formula that results after the substitution of ~x by the vector of terms ~t and s by
the situation term ts. A fluent formula is one that mentions no sensor functions.
A sensor formula is a sensor-fluent formula that does not mention fluents. In the
following we restrict our attention to sensor formulas that are easily evaluable given
the values of the sensors.

A guarded action theory is like a basic action theory where the set of successor
axioms DSSA is replaced by two new sets of axioms DGSSA and DGSFA:

—DGSSA is the set of guarded successor state axioms (GSSAs), i.e., axioms of the
following form:

α(~x, a, s) ⊃ [F (~x, do(a, s)) ≡ γ(~x, a, s)]

where α is a fluent formula called the guard of the axiom, F is a relational fluent,
and γ is a fluent formula.3

—DGSFA is the set of guarded sensed fluent axioms (GSFAs), i.e., axioms of the
following form:

β(~x, s) ⊃ [F (~x, s) ≡ ρ(~x, s)]

where β is a sensor-fluent formula called the guard of the axiom, F is a relational
fluent, and ρ is a sensor formula.

In a guarded action theory, each fluent has any number of GSSAs and GSFAs. We
denote with GSSA(F ) and GSFA(F ) the sets of GSSAs and GSFAs for fluent F .

Example 3.1. In an application for an elevator controller, the following axioms
are used to reason about the state of the lights at each floor:

ControllerOn(s) ⊃ (Light(x, do(a, s)) ≡ (a = on(x) ∨ Light(x, s) ∧ a 6= off (x)))

F loor(x, s) ⊃ (Light(x, s) ≡ sensor floor(s) > 50)

3Observe that α and γ are completely general, except for the fact that their situation argument
s is the predecessor of the situation argument do(a, s) of F .
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The first axiom is a GSSA that gives a complete characterization of the fluent Light
whenever the light controller is working. In such a case, a floor light is on after
an action a if a is turning the floor light in question on, or it was already on and
a is not the action of switching it off. The second axiom is a GSFA that gives the
state of the light at the floor the elevator is on (given by the fluent F loor(x, s))
by interpreting the value of an on-board sensor modeled via sensor floor(s). If
the elevator is on floor x, it is possible to conclude whether the light of floor x is
on by checking if the value of the on-board sensor related to the sensing function
sensor floor(s) is more than 50. Similarly, fluent F loor(x, s) would have its own
GSSA and GSFA as well. Notice that GSSA not only can solve the frame problem,
but can also compile others restrictions such as F loor(x, s) being functional.

Observe that the general form of guarded action theories allows for ill-formed
theories. In this paper, we restrict our attention to guarded action theories that
are consistent and, moreover, that are acyclic.

Definition 3.2 (Acyclic Guarded Action Theories). We say F1 ≺ F2 (F2 depends
on F1) if there exists a GSFA {α(~x, s) ⊃ [F2(~x, s) ≡ ρ(~x, s)]} in D where F1 is
mentioned in the guard α(~x, s). A GAT D is said to be acyclic iff the relation ≺ is
well-founded.

Informally, acyclic guarded action theories are those in which the guards of the
GSFAs for a fluent F do not logically depend circularly on F itself. This allows
us to safely consider the evaluation of guards as subprojection tasks to be solved
again by generalized regression (see below).

In order to take into account the values actually sensed by the sensors (sensing
functions), we make use of the so-called histories [De Giacomo and Levesque 1999b].
A history is a sequence ( ~µ0) · (A1, ~µ1) · · · · · (An, ~µn) where Ai is a ground action
term4 (0 ≤ i ≤ n) and ~µi = (µi1, . . . , µim), for 0 ≤ i ≤ n, is a vector of sensed
values, with µij understood as the reading of the jth sensor after the ith action.
If σ is a history, we define a ground situation term end[σ] as follows: end[ ~µ0] =
S0, and end[σ · (A, ~µ)] = do(A, end[σ]). We also define a ground sensor formula
Sensed[σ] as

∧n
i=0

∧m
j=1 hj(end[σi]) = µij , where σi is the subhistory up to action

i, ( ~µ0) · · ·(Ai , ~µi), and hj is the jth sensor function. So end[σ] tells us all the actions
performed in σ, and Sensed[σ] tells us the sensing information.

In De Giacomo and Levesque [1999b], a form of generalized regression that
roughly follows the one for basic action theories, but takes into account guards
and sensed values, is presented for guarded action theories. Such a form of gen-
eralized regression is a sensible compromise between syntactic transformation and
logical reasoning that allows us to solve (in certain cases) the projection task in an
efficient way. Later on in this paper, we will present a Prolog evaluation procedure
based on such a mechanism.

4By a history we mean no more than a situation term extended to encode sensing information.
Thus, it should not be confused with similar notions in other narrative-based formalisms like
Kowalski and Sergot [1986] and Baral et al. [1997]. In fact, the situation calculus itself is not
a narrative-based approach, but a hypothetical reasoning one. For narratives in the situation
calculus we refer to Miller and Shanahan [1994] and Reiter [2000].
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In general, we cannot expect generalized regression to be a complete form of rea-
soning: a tautological sensor-fluent formula might be entailed even though nothing
is entailed about the component fluents and hence regression cannot be applied.
Nonetheless, in a practical setting, we can imagine never asking the robot to evalu-
ate a formula unless the history is such that it knows enough about the component
fluents, using the given GSSAs and GSFAs, and their component fluents. In general,
we call a history just-in-time (JIT) for a formula, if the actions and sensing readings
it contains are enough to guarantee that suitable formulas (including guards) can
be evaluated at appropriate points to determine the truth value of all the fluents
in the formula.

Definition 3.3 (Just-in-time Histories for a formula). A history σ is a just-in-
time-history (JIT-history) for a (possibly open) sensor-fluent formula φ(~x, s) w.r.t.
a background GAT D iff

—φ(~x, s) is a sensor formula (directly evaluable over the history σ);

—φ(~x, s) = ¬φ1(~x, s), or φ(~x, s) = φ1(~x, s) ∧ φ2(~x, s), and σ is a JIT-history for
φ1(~x, s) and φ2(~x, s);

—φ(~x, s) = ∃y.φ1(~x, y, s) and σ is a JIT-history for φ1(~x, y, s);

—φ(~x, s) = F (~t, s), where F is a fluent and σ is an initial history ( ~µ0), and either
D0 |= ∀F (~t, S0) or D0 |= ∀¬F (~t, S0);

5

—φ(~x, s) = F (~t, s), where F is a fluent, and there is a GSFA β(~z, s) ⊃ [F (~z, s) ≡
ρ(~z, s)] in D such that σ is a JIT-history for formula β(~t, s), and such that
D ∪ Sensed[σ] |= ∀β(~t, end[σ]);

—φ(~x, s) = F (~t, s), where F is a fluent, σ = σ′ · (A, ~µ), and there is GSSA
α(~z, a, s) ⊃ [F (~z, do(a, s)) ≡ γ(~z, a, s)] in D, such that σ′ is a JIT-history for
both α(~t, A, s) and γ(~t, A, s), and D ∪ Sensed[σ′] |= ∀α(~t, A, end[σ]).

Although guarded action theories are assumed to be open-world, a JIT-history
provides a sort of dynamic closed-world assumption in that it ensures that the truth
value of any fluent will be known whenever it is part of a formula whose truth value
we need to determine. This allows us to evaluate complex formulas as we would if
we had a normal closed-world assumption.

4. CONGOLOG: OFFLINE EXECUTION

So far, we have considered the kind of theory we intend to use to model the world
and its dynamics. What we have not addressed so far is the strategy used to control
the sequence of actions to perform. One possibility is to define suitable goals and
to use planning to achieve them. However, Levesque [1997] argued that high-
level program execution offered a practical alternative in complex domains to plan
synthesis. Instead of looking for a legal sequence of action achieving some goal, the
task is to find a legal execution of a high-level program that possibly includes some
nondeterministic steps. High-level programs provide a blueprint (just a blueprint

5We use ∀.φ to denote the formula obtained from φ by quantifying universally all free variables
occurring in it.
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because of nondeterminism) of the solution where the user gets to control the search
effort required.

Here we focus on the high-level language ConGolog [De Giacomo et al. 2000]
which is an extension of Golog [Levesque et al. 1997] that allows for (interleaved)
concurrency. ConGolog includes the following constructs (δ, possibly sub-scripted,
ranges over ConGolog programs):

a, primitive action
φ?, wait for a condition6

(δ1; δ2), sequence
(δ1 | δ2), nondeterministic choice between actions
πv.δ, nondeterministic choice of arguments
δ∗, nondeterministic iteration
proc P (~v) δ , (recursive) procedures7 if φ then δ1 else δ2,
synchronized conditional
while φ do δ, synchronized loop
(δ1 ‖ δ2), concurrent execution
(δ1 〉〉 δ2), concurrency with different priorities
δ||, concurrent iteration
<φ→ δ>, interrupt8

The primitive instructions of a ConGolog/Golog program are primitive actions
which are domain dependent and whose effects, noneffects, and preconditions are
modeled in a background action theory. Nondeterminism is achieved mainly with
programs of the form (δ1 | δ2) and πx.δ(x). Programs (δ1 | δ2) are executed by
nondeterministically choosing δi (with i = 1 or i = 2) and executing it, while pro-
grams πx[δ(x)] are executed by nondeterministically picking an individual x, and
for that x, performing the program δ(x). The constructs if φ then δ1 else δ2 and
while φ do δ are the synchronized versions of the usual if-then-else and while-
loop. They are synchronized in the sense that the evaluation of the condition and
the first action of the branch chosen are executed as an atomic unit. So these
constructs behave in a similar way to the test-and-set atomic instructions used to
build semaphores in concurrent programming.9

The construct (δ1 ‖ δ2) denotes the (interleaved) concurrent execution of the
actions δ1 and δ2. (δ1 〉〉 δ2) denotes the concurrent execution of the actions δ1 and
δ2 with δ1 having higher priority than δ2. This restricts the possible interleavings
of the two processes: δ2 executes only when δ1 is either done or blocked. Observe
that this is a very general form of prioritized concurrency. For a full illustration of
the various constructs, refer to De Giacomo et al. [2000].

6Because there are no exogenous actions or concurrent processes in Golog, waiting for φ amounts
to testing that φ holds in the current state.
7For the sake of simplicity, we will not discuss recursive procedures in this paper.
8In fact, interrupts can be defined in terms of the other constructs in the language.
9In Levesque [1997], nonsynchronized versions of if-then-elses and while-loops are introduced. The
synchronized versions of these constructs introduced here behave essentially as the nonsynchro-
nized ones in absence of concurrency. Nevertheless, the difference is striking when concurrency is
allowed.
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Example 4.1. The following ConGolog (and Golog since it does not involve
concurrency) program for an elevator serves all the floors whose lights are on:

(πx.[Light(x)?; (goUp∗|goDown∗); serve(x)])∗; (¬∃f.Light(f))?

By using the nondeterministic choice of arguments operator π, the procedure non-
deterministically picks up a floor x, tests whether the light of floor x is on, and
if it is, goes to such floor (by going up or down some nondeterministic number of
times) and serves it (maybe by opening the door, closing it, and switching off its
light). Finally, the program uses the nondeterministic iteration operator to repeat
the above behavior zero or more times until there is no floor requesting to be served.

Notice that the situation term is removed from all fluents in high-level programs,
since they are assumed to be the “current” situation as it happens in any con-
ventional programming language. Formally, ConGolog executions are captured by
introducing two predicates Trans and Final that together define a single-step tran-
sition semantics [Nielson and Nielson 1992; Hennessy 1990; Plotkin 1981]:

—Trans(δ, s, δ′, s′) is intended to say that program δ in situation s may legally
execute one step, ending in situation s′ with program δ′ remaining.

—Final(δ, s) is intended to say that program δ may legally terminate in situation
s.

Using these two predicates we can define what it means to execute a program.
One possibility is to define a so-called offline interpreter, i.e., an interpreter that
searches for a successful execution of the entire program before actually executing
any action [Levesque et al. 1997; De Giacomo et al. 2000]. Observe that this is the
way to execute the program required by the example above, since nondeterminism
has to be resolved favorably, typically by backtracking, to get the program to
termination.10

To define an offline interpreter we first define a predicate Do(δ, s, s′) as follows:

Do(δ, s, s′) ≡ ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

where Trans∗ is the second-order definition of the transitive closure of Trans (con-
sidering it as a binary relation between pairs of program-situation).

Thus, an offline interpreter looks for a situation Sf such that Do(δ, S0, Sf ) is
logically implied by the action theory and the definitions of Trans and Final.
From the situation Sf which has the form do(An, . . . (do(A1, S0)) . . .) the sequence
of actions, A1, . . . , An, to actually execute is extracted.

We say that a program δ admits a successful offline execution from a situation
s if there exists a ground situation term st such that Do(δ, s, st) is entailed by the
action theory.

5. INDIGOLOG: ONLINE EXECUTION

The usual ConGolog offline interpreter described above cannot make use of actual
sensed values exactly because it works offline. An alternative approach is defining a

10This form of nondeterminism is sometimes call angelic nondeterminism (e.g., Best [1996].)
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so-called online interpreter that searches for a next legal step, executes it, and then
continues [De Giacomo and Levesque 1999a; De Giacomo et al. 1998]. It is clearly
possible in this schema to take into account sensed values. Hence this approach is
much more suitable for our context. In particular, we can define online execution
in our context as follows.

Definition 5.1 (Online Execution of Programs w.r.t. GAT). An online execution
of a program δ0 starting from a history σ0 is a sequence (δ0, σ0), . . . , (δn, σn), such
that for i = 0, .., n− 1

Axioms ∪ Sensed[σi] |= Trans(δi, end[σi], δi+1, end[σi+1])

σi+1 =







σi, if end[σi+1] = end[σi]
σi · (a, ~µ), if end[σi+1] = do(a, end[σi])

and ~µ is the sensor results after a

The online execution is successful if

Axioms ∪ Sensed[σn] |= Final(δn, end[σn]).

The online execution is unsuccessful if

Axioms ∪ Sensed[σn] 6|= Final(δn, end[σn])

and there is no program δn+1 and situation s such that

Axioms ∪ Sensed[σn] |= Trans(δn, end[σn], δn+1, s)

where Axioms denotes the background theory D plus a set of axioms defining the
predicates Trans, Final (see De Giacomo et al. [2000]).

It can be shown that, in the absence of sensing, whenever there is a successful
(i.e., legally terminating) online execution, there is also a successful offline one.
However, the converse is not true, as the following example shows.

Example 5.2. Consider the simple program δ = (φ?; a) | (¬φ?; a), such that
Axioms 6|= φ[S0], Axioms 6|= ¬φ[S0], but Axioms |= Poss(a, S0). Then, δ ad-
mits a successful offline execution: indeed Axioms |= Do(δ, S0, do(a, S0)), in other
words, the offline interpreter may return a as the sequence to actually execute.
However, there is no successful online execution of δ in S0, since there is no single
transition logically implied by Axioms: indeed, we have that neither Axioms |=
∃δ′.T rans((φ?; a), S0, δ

′, S0) nor Axioms |= ∃δ′.T rans((¬φ?; a), S0, δ
′, S0).

Although we are usually interested in finding successful executions, it is also
interesting to know whether there is an unsuccessful one, namely a sequence of
(bad) transitions that derives to a dead-end. Even when there is a successful online
execution of a program, without some form of lookahead, or any provision for
backtracking after a nondeterministic choice, we cannot guarantee that we will be
able to follow it, or in other words, we cannot guarantee that we will avoid reaching
an unsuccessful execution as shown by the next example.

Example 5.3. Consider the program δ = ((a;φ?) | a) and assume that Axioms |=
Poss(a, S0) ∧ ¬φ[do(a, S0)]. Without any form of lookahead, nothing prevents an
online interpreter from choosing to execute the first program (a;φ?), execute the
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10 · De Giacomo, Levesque, Sardiña

action a, and then get blocked due to the fact that φ does not hold in the resulting
situation. Observe that this may happen is spite of the fact that the second program
a does admit a successful online execution.

Now observe that backtracking is out of the question in online executions, since
actions are performed in the real world. Hence we have to concentrate on some
form of lookahead. One possibility is to perform a full lookahead on the entire
program as in De Giacomo et al. [1998]. However in general it is appropriate to
put the amount of lookahead under the control of the programmer. In this way, the
programmer may ask to explore a search space that is significantly smaller than all
possible nondeterministic executions of the entire program.

Work on interleaving planning with execution of actions in the world and sensing
[Jonsson and Backstrom 1995; Shanahan 1999; Kowalski 1995; Kowalski and Sadri
1999; Baral et al. 1997] suggests that a combination between online and offline
execution of programs arises as a practical and powerful approach to high-level
programs. Following De Giacomo and Levesque [1999a], we add to ConGolog a
local lookahead construct that is based on looking for a successful offline execution
of parts of the program specified by the programmer. The construct is called the
search operator (Σ), and Trans and Final for it are defined as follows:

Trans(Σδ, s, δ′, s′) ≡
∃γ, γ′, s′′.δ′ = Σγ ∧ Trans(δ, s, γ, s′) ∧ Trans∗(γ, s′, γ′, s′′) ∧ Final(γ′, s′′)

Final(Σδ, s) ≡ Final(δ, s)

Roughly speaking, Σδ selects from all possible transitions of δ in the situation s

those for which there exists a sequence of further transitions leading to a final
configuration (and hence a successful completion). Moreover, the Σ operator is
propagated to the remaining program so that this restriction is enforced throughout
the execution of δ.

Example 5.4. Let us consider the program δ = [goUp∗; (Light(floor)∧¬∃x.x >
floor ∧ Light(x))?] which says to go up for a nondeterministically chosen number
of times and then check whether the highest floor with the light on has been reached.
And let us assume that we have enough information in Axioms that the value of the
test is correctly determined in each reachable situation. Obviously there are several
unsuccessful online executions of δ, all those that result in getting to some floor that
does not satisfy the test. Instead executing Σδ online would result in keeping going
up until the test is satisfied, i.e., would result in a successful online execution.

Observe that in principle we can nest search operators. It can be shown however
that nesting search operators is equivalent to applying the search operator only
once. Hence in the following we will assume that no nested search operators are
present in our programs.

We call IndiGolog (incremental deterministic Golog) the high-level programming
language resulting from extending ConGolog with a search operator, and with the
proviso that programs are to be designed to be executed in an online style. Below
we study such language w.r.t. background theories that are guarded action theories.
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6. HISTORIES AND INDIGOLOG

What kinds of histories make sense for our purposes? First of all, a sequence of
actions should be such that each particular action in the sequence can indeed be
executed.11

Definition 6.1. A history σ is executable w.r.t. a GAT D iff either σ = ~µ0, or
σ = σ′ · (A, ~µ), σ′ is an executable history, and D ∪ Sensed[σ′] |= Poss(A, end[σ′]).

Furthermore, not only should a history be executable, but it should also be
consistent with the conclusions drawn. Since we may have multiple axioms per
fluent, we have to make sure that those axioms are all consistent with each other.
In particular, sensors must provide information reflecting the real state of the world:
if a robot knows the door is closed after closing it, then the sensors should not tell
it about the door being open after the closing action!

Definition 6.2 (Coherent Histories). A history σ is coherent w.r.t. a GAT D iff
it is an executable history and D ∪ Sensed[σ] is satisfiable.

Coherent histories have the property that they do not rule out all possible sensor
readings after performing an action whose preconditions are satisfied. After some
legal sequence of action, there must be at least one reading of the sensors not
contradicting the state of the world after the action.

Proposition 6.3. If σ is a coherent history w.r.t. a GAT D, then for every
action A such that D ∪ Sensed[σ] |= Poss(A, end[σ]) there exists a sensor-reading
vector ~µ such that the history σ′ = σ · (A, ~µ) is coherent w.r.t. D.

Indeed, given a model M of D ∪ Sensed[σ], M |= Poss(A, end[σ]), and moreover
M gives an interpretation to all sensors in situation do(A, end[σ]). Now considering
that D ∪Sensed[σ] |= Poss(A, end[σ]), and that sensed values are interpreted over
concrete domains, we can use that interpretation to build a sensor-reading vector
~µ such that σ′ = σ · (A, ~µ) is coherent w.r.t. D. Observe that as a consequence of
this proposition we have that if a guarded action theory D is consistent then there
exists an initial coherent history.

Next, we formalize what is meant by a guarded action theory in which the rea-
soning about sensors is restricted up to some situation. After that situation the
sensors are not taken into account.

Definition 6.4. Given a GAT D and a situation s′, the GAT Ds′

is obtained
by replacing each GSFA {α(~x, s) ⊃ F (~x, s) ≡ ρ(~x, s)} in D by the new GSFA
{α(~x, s) ∧ s v s′ ⊃ F (~x, s) ≡ ρ(~x, s)}.

Here, the relation s v s′ means that s is a prefix of s′, maybe s′ itself [Reiter 1991].

Observe that the kind of GSFAs Ds′

are not allowed in guarded action theories
because of the presence of the relation v. In fact, this special form of GSFAs is
used below only to suitably restrict reasoning on sensors when needed.

Using such definition we can introduce the notion of JIT-histories w.r.t. Dst as
a revised version of Definition 3.3.

11Note that we say that an action is executable if Poss for that action holds. That is, we are not
considering the possibility for the action to fail when executed in the real world. See De Giacomo
et al. [1998] for ways to deal with such failures.
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Definition 6.5 (Just-in-time Histories for a Formula (Revised)). A history σ is
a just-in-time-history (JIT-history) for a sensor-fluent formula φ(~x, s) w.r.t. Dst iff

—φ(~x, s) is a sensor formula with the proviso that if st v end[σ] it does not mention
any sensing function;

—φ(~x, s) = ¬φ1(~x, s), or φ(~x, s) = φ1(~x, s) ∧ φ2(~x, s), and σ is a JIT-history for
φ1(~x, s) and φ2(~x, s) w.r.t. Dst ;

—φ(~x, s) = ∃y.φ1(~x, y, s) and σ is a JIT-history for φ1(~x, y, s) w.r.t. Dst ;

—φ(~x, s) = F (~t, s), where F is a fluent, and σ is an initial history ( ~µ0), and either
D0 |= ∀F (~t, S0) or D0 |= ∀¬F (~t, S0);

—φ(~x, s) = F (~t, s), where F is a fluent, and there is a GSFA β(~z, s) ⊃ [F (~z, s) ≡
ρ(~z, s)] in Dst such that σ is a JIT-history for formula β(~t, s) w.r.t. Dst , and
such that Dst ∪ Sensed[σ] |= ∀β(~t, end[σ]).

—φ(~x, s) = F (~t, s), where F is a fluent, σ = σ′ · (A, ~µ), and there is GSSA
α(~z, a, s) ⊃ [F (~z, do(a, s)) ≡ γ(~z, a, s)] in Dst , such that σ′ is a JIT-history for
both α(~t, A, s) and γ(~t, A, s) w.r.t. Dst , and Dst ∪Sensed[σ′] |= ∀α(~t, A, end[σ]).

This definition differs from Definition 3.3 in that it does not assume complete
sensing information, but only up to a certain (past) situation. Indeed, the agent
may have already committed only to some prefix of σ, and after that the agent
is reasoning hypothetically and without any feedback from its on-board sensors.
Finally, we extend the notion of JIT-histories to whole IndiGolog programs.

Definition 6.6 (Just-in-time Histories for a Program). A history σ is a said to
be a JIT-history for a program δ w.r.t. to a GAT D iff

—δ = a, where a is an action, with precondition axiom Poss(a, s) ≡ φ(s), and σ is
a JIT-history for formula φ(s) w.r.t. D;

—δ = φ? and σ is a JIT-history for formula φ(s) w.r.t. D;

—δ = δ1; δ2, σ is a JIT-history for δ1 w.r.t. D, and σ is also a JIT-history for δ2
w.r.t. D only if it the case that D ∪ C ∪ Sensed[σ] |= Final(δ1, end[σ]);

—δ = (δ1 | δ2), or δ = (δ1‖ δ2), or δ = (δ1〉〉 δ2), or δ
‖
1 , or δ = πx.δ1, and σ is a

JIT-history for programs δ1 and δ2 w.r.t. D;

—δ = if φ then δ1 else δ2 | while φ do δ1 |< φ → δ1 >, σ is a JIT-history for
condition φ(s) and programs δ1 and δ2 w.r.t. D;

—δ = Σδ1, σ is a JIT-history for program δ1 w.r.t. D, and for every pair (δ′, s′)

such that Dend[σ] ∪ C ∪ Sensed[σ] |= Trans∗(δ1, end[σ], δ′, s′), and for every σ′

that is an extension of σ such that end[σ′] = s′, σ′ is a JIT-history for δ′ w.r.t.

the GAT Dend[σ].

In other words, a history is just-in-time for a program if it is a JIT-history for every
formula that needs to be evaluated at the next step. For the search operator, we
impose a more sophisticated requirement that takes into account that the search
typically involves several steps and that it is done offline and hence sensed values are
not available. This guarantees that we can determine the truth-value of each test
in the program, as needed using regression and avoiding general theorem-proving.
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In particular, when performing a lookahead we require all the information needed
to do the search on the program. In other words, every possible configuration that
is reachable from the beginning of the search should be “just in time,” even if it
belongs to a (bad) branch of execution not reaching any final configuration.

7. AN INCREMENTAL INTERPRETER

We have developed a simple incremental interpreter in Prolog that implements the
online execution of high-level programs based on guarded theories of action includ-
ing sensing, and an approximation of the search operator. Observe that the task
is fundamentally a theorem proving one: does a certain Trans or Final formula
follow logically from the axioms of the action theory and the sensing information
obtained so far? We exploit the sort of dynamic closed-world assumption provided
by JIT-histories to simplify such a theorem-proving task to evaluation. The in-
terpreter can be divided into three parts: the evaluation of test conditions, the
implementation of Trans and Final, and the main loop.

7.1 Evaluating Test Conditions

As already said, an evaluation procedure to compute the projection task is needed.
In previous implementations [Levesque et al. 1997; De Giacomo et al. 2000; De Gia-
como and Levesque 1999a], a procedure holds(c, s) was used to test whether c held
in situation s. Those implementations relied on a CWA over the formulas being
evaluated. Here, we do not want to rely on a strict CWA, but still we want to have
correct execution of programs. In De Giacomo and Levesque [1999b], an evaluation
procedure eval/3 for guarded theories was given. Here we give an alternative one
for which we prove soundness and completeness in the next section.

We assume the user provides the following set of clauses D corresponding to the
domain description, i.e., the background guarded action theory:

—fluent(F), for each relational fluent F .

—sensor(hi), for each sensor function hi.

—init(F)/init(neg(F )), for each fluent F with D0 |= F (S0) or D0 |= ¬F (S0).

—closed(F), whenever D0 |= F (S0) or D0 |= ¬F (S0).

—gsfa(F (~x),β(~x),ρ(~x)), for each GSFA β(~x, s) ⊃ [F (~x, s) ≡ ρ(~x, s)]. We assume
each sensor formula ρ(~x, s) is formed from atomic formulas mentioning at least
one sensing function.

—gssa(A,F (~x),α(~x, a),γ(~x, a)), for each GSSA α(~x, a, s) ⊃ [F (~x, do(a, s)) ≡
γ(~x, a, s)] .

Observe that the predicates gsfa/3 and gssa/4 represent respectively GSFAs and
GSSAs with the situation argument suppressed.

To deal with sensing, we assume we have a database of all sensor results up
to history σ. In Prolog, this database consists of clauses has sensor(hi, vi, s)

where vi is the value of the sensor function hi in history σ (s = end[σ]), i.e.,
D ∪ Sensed[σ] |= hi(s) = vi. In practice, we would use an efficient data structure
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storing only changes to sensor values.12 Finally, we represent the sequence of actions
in the current history as Prolog lists.

With these predicates in place, the code for the evaluation procedure is as fol-
lows (we deal with negation, conjunction, and existential quantification only, and
consider the other logical operators as abbreviations):

eval(neg(P),H,true) :- eval(P,H,false).

eval(neg(P),H,false) :- eval(P,H,true).

eval(and(P1,P2),H,true) :- eval(P1,H,true) , eval(P1,H,true).

eval(and(P1,P2),H,false) :- eval(P1,H,false) ; eval(P1,H,false).

eval(some(V,P),H,Bool_P) :- varsort(V,D), eval(some(V,D,P),H,Bool_P).

eval(some(V,D,P),H,true) :- domain(D,O), subv(V,O,P,P1), eval(P1,H,true).

eval(some(V,D,P),H,false):- not alltrue(P,V,D,H).

alltrue(P,V,D,H):- domain(D,O), subv(V,O,P,P1), not evalfalse(P1,H).

evalfalse(P,H) :- eval(P,H,false).

/* P is fluent */

eval(P,H,Bool_P) :- fluent(P), bool(P,Bool_P,H).

/* P is a relational operator (like =, <, >, etc.) */

eval(P,H,Bool_P) :-

rel(P,OP,S,V), subf(S,S1,H), subf(V,V1,H), has_value(OP,S1,V1,Bool_P).

/* bool(F,V,H): Relational fluent F has value V in H */

bool(F,true,[]) :- init(F).

bool(F,false,[]):- (closed(F), not init(F)) ; init(neg(F)).

bool(F,V,H) :- gsfa(F,G,P), eval(G,H,true), eval(P,H,V).

bool(F,V,[A|H]) :- gssa(A,F,G,P), eval(G,H,true), eval(P,H,V).

/* P2 is P1 with sensors replaced by their values in H*/

subf(P1,P2,H):- sensor(P1), has_sensor(P1,P2,H).

subf(P1,P1,H):- not sensor(P1).

In this program, the predicate varsort(var,sort) is provided by the user and as-
serts that variable var ranges over the set of elements sort. Similarly, the predicate
domain(sort,obj) is also provided by the user and denotes the objects obj that are
of sort sort. The predicate subv(v,x,p,p′) implements the substitution for both
program and formulas where p′ is obtained by substituting x for v in p. The predi-
cate rel(p,op,s,v) asserts that the term p denotes a binary predefined relational
operator op applied to the operands s and v. The predicate has value(op,s,v,b)

asserts that applying the relational operator op to the operands s and v one gets
the truth value b. A possible implementation of these last two predicates is the
following:

rel(P,OP,S,V) :- P =..[OP,S,V].

has_value(OP,S,V) :- P =..[OP,S,V], call(P).

12In addition, both the sensor database and the initial database should be progressed after some
number of actions.
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The predicate eval/3 determines the truth value of a formula, by first recursively
reducing and, neg, and some formulas to the atomic cases: either fluents or a
relational operator possibly involving sensors. Notice how existential is handled
by retrieving the possible elements for the free variable. For fluents, eval/3 uses
bool/3 to determine the value of a fluent in any history: for the initial situation,
bool/3 tries to use the user-provided value; otherwise, it attempts to find a GSFA
or GSSA whose guard recursively evaluates to true. For relational operators, the
last clause of eval/3 first replaces sensing functions appearing as operands with
their values in the history. Note that this code only deals with relational fluents,
but that it is straightforward to accommodate functional fluents in a modular way.

7.2 Implementation of Trans and Final

Clauses for Trans and Final are needed for each of the program constructs. Since
many language constructs involve conditions, we use an evaluation procedure for
guarded action theories shown above. However, in the presence of prioritized con-
currency, we cannot use it, since unsound transition may arise. To see why, consider
the program (φ? 〉〉 δ2) where Axioms 6|= φ(S0) and Axioms 6|= ¬φ(S0). It is easy
to see that there should be no execution of this program in S0. Indeed, the wait
action φ? cannot succeed, because φ is not known to hold, and moreover, δ2 cannot
be used, since ¬φ is not know to hold either. Recall, that in order to execute the
lower-priority program, all higher-priority process should be completely blocked.
Nevertheless, if the evaluation of φ merely fails, then so would the transition for
φ?, and we would be free to execute δ2, allowing unsound transitions. To tackle this
problem we use a “secure evaluation” procedure evalsec/3 that aborts its execu-
tion to the top level whenever it cannot determine the truth value of the formula
being evaluated.

evalsec(P,H,B):- eval(P,H,B1)-> B1=B ; (write(’Unknown:’),write(P), abort).

Let us now consider the code for the Golog constructs: sequence is represented as
a Prolog list; ndet(δ1,δ2) stands for the program (δ1 | δ2); ?(φ) for φ?, star(δ)

for δ∗, and pi(v,δ) stands for πv.δ(v). Finally, if(φ,δ1,δ2) stands for the if-

then-else construct, and while(φ,δ) for the while one.

final([],_).

final(star(E),_).

final([E|L],H) :- final(E,H), final(L,H).

final(ndet(E1,E2),H) :- final(E1,H) ; final(E2,H).

final(if(P,E1,E2),H) :- evalsec(P,H,Bool_P),

( (Bool_P=true, final(E1,H)) ; (Bool_P=false, final(E2,H)) ).

final(while(P,E),H) :- evalsec(P,H,Bool_P), ((Bool_P=false) ; (final(E,H))).

final(pi(V,E),H) :- varsort(V,D), domain(D,O), subv(V,O,E,E2), final(E2,H).

trans([E|L],H,E1,H1) :- not L=[], final(E,H), trans(L,H,E1,H1).

trans([E|L],H,[E1|L],H1) :- trans(E,H,E1,H1).

trans(?(P),H,[],H) :- evalsec(P,H,true).

trans(ndet(E1,E2),H,E,H1) :- trans(E1,H,E,H1).

trans(ndet(E1,E2),H,E,H1) :- trans(E2,H,E,H1).

trans(pi(V,E),H,E1,H1) :- varsort(V,D), domain(D,O),

subv(V,O,E,E2), trans(E2,H,E1,H1).
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trans(if(P,E1,E2),H,E,H1) :- evalsec(P,H,Bool_P),

( (Bool_P=true, trans(E1,H,E,H1)) ; (Bool_P=false, trans(E2,H,E,H1)) ).

trans(star(E),H,[E1,star(E)],H1) :- trans(E,H,E1,H1).

trans(while(P,E),H,[E1,while(P,E)],H1) :- evalsec(P,H,true),

trans(E,H,E1,H1).

trans(E,H,[],[E1|H]) :- prim_action(E1), poss(E1,P), evalsec(P,H,true).

We restrict our attention to programs that are bounded in the sense that they never
evaluate open formulas. To do so, we restrict the variables of the nondetermin-
istic choice construct πx.δ and the existential quantification ∃x.α to range over
a finite domain or sort. Observe how varsort/2 and domain/2 are used for the
nondeterministic choice of argument to select each possible element for a variable.
In addition to varsort/2 and domain/2, the user needs to give the clauses for
prim action/1 and poss/2 to describe the named actions and their corresponding
precondition axioms.

Next, we list the code for the ConGolog constructs. conc(δ1,δ2) stands for the
program (δ1‖ δ2); pconc(δ1,δ2) stands for (δ1〉〉 δ2); and finally, iconc(δ) stands
for δ‖.

final(conc(E1,E2),H) :- final(E1,H), final(E2,H).

final(pconc(E1,E2),H) :- final(E1,H), final(E2,H).

final(iconc(E),H).

trans(conc(E1,E2),H,conc(EE,E2),H1) :- trans(E1,H,EE,H1).

trans(conc(E1,E2),H,conc(E1,EE),H1) :- trans(E2,H,EE,H1).

trans(pconc(E1,E2),H,pconc(EE,E2),H1) :- trans(E1,H,EE,H1).

trans(pconc(E1,E2),H,pconc(E1,EE),H1) :- not existtrans(E1,H),

trans(E2,H,EE,H1).

existtrans(E1,H):- trans(E1,H,_,_).

trans(iconc(E),H,conc(E1,iconc(E)),H1):- trans(E,H,E1,H1).

We do not show here the code for interrupts, but they can be easily defined in
terms of the other constructs. The only tricky part of Trans and Final has to
do with the search operator, because we have to avoid the potential presence of
sensing information inside a local lookahead. Nevertheless, we can obtain a simple,
but quite effective version of the search operator. The Prolog term search(δ)

stands for the corresponding program Σδ.

final(search(E),H) :- final(E,H).

trans(search(E),H,search(E1),H1) :- trans(E,H,E1,H1), path(E1,H1).

/* Look for a good path */

path(E,H):- final(E,H).

path(E,H):- trans(E,H,E1,H1), path(E1,H1).

Briefly, our implementation of the search operator tries to find a finite sequence
of transitions13 leading to a successful execution. However, since this search is
done offline (i.e, no actual action is executed in the real world), no new sensing

13The path it finds can be cached and reused so long as no external actions intervene as it is being
executed.
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results are acquired during it. Among other things, this means that the imple-
mentation is not able to determine whether some currently unknown fluent will
be known when needed. For example, suppose that fluent f is unknown, but that
after performing action a, a sensor will provide its correct value. Then the program
search([a,if(f,p1,p2)]) will fail, given that a is being considered offline. How-
ever, the alternative program [a,search(if(f,p1,p2))] would work fine because
the sensor is consulted before the search. It is precisely to deal with this issue in a
practical way that we use online execution. Relying on the fact that there is, usu-
ally, a limited amount of sensing inside an offline search, we think that conditional
plans could also be calculated efficiently, as suggested in Lakemeyer [1999].

7.3 Main Loop

The top part of the interpreter deals with the execution of actions in the world. It
makes use of Trans and Final to determine the next action to perform and to end
the execution.

indigo(E,H):- trans(E,H,E1,H), !, indigo(E1,H1).

indigo(E,H):- trans(E,H,E1,do(A,H)), execute(A,H), !, indigo(E1,do(A,H)).

indigo(E,H):- final(E,H).

At each step, either we find a legal transition, commit to it, and continue with the
new history, or we terminate successfully. Committing means to execute a new
action in the world, if the transition requires it,14 and executing a new action in
the world implies getting new sensing results.

As mentioned we store these values by adding facts to the predicate has sensor/3.
In a sample implementation we can just ask for the new sensing results to the user.
For example, we may define a predicate ask sensor(s,h) that asks for the value of
a sensor s in the last situation of the history h and asserts it as a new has sensor/3

fact, as in the following code:

execute(A,H) :- exec_act(A), ask_all_sensors(do(A,H)).

exec_act(A) :- write(’Executed action ’), write(A), nl.

ask_all_sensors(H) :- sensor(S), ask_sensor(S,H), fail.

ask_all_sensors(_).

ask_sensor(S,H):- write(’Enter value for sensor: ’), write(S), nl,

write(’At: ’), write(H), nl,

write(’Value: ’), read(V), assert(has_sensor(S,V,H)).

Observe, that instead of retrieving all sensor values after an action is executed in
the world, it may be sensible to ask for them when required the first time (i.e.,
on demand) during the execution of the IndiGolog program. Indeed most of these
values are typically not useful.

We remark that it is easy to modify the interpreter to deal with exogenous events,
i.e., actions that may occur without being part of the program as, for instance,

14Recall that a wait condition step involves no new action.
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actions performed by other agents or even by nature itself. In particular, one may
add to the definition of indigo/2 the following clause:

indigo(E,H):- exog_occurs(Act,H), !, indigo(E,[Act|H]).

In fact, to fully deal with exogenous events one should define a search operator that
anticipates exogenous events, guaranteeing executability whatever the exogenous
events turn out to be. However, defining and implementing a search dealing with
exogenous events in this way still remains an open problem.

8. CORRECTNESS OF THE INTERPRETER

To finish, we show soundness and completeness results for the interpreter. Our
proofs rely on the following assumptions:

—We assume consistent guarded action theories, coherent histories, and (bounded)
programs without nested search operators.

—The domain theory D enforces the unique name assumption (UNA) on both
actions and objects.

—The predicate subv/4 correctly implements the substitution for both programs
and formulas.

We start by centering our attention on soundness and completeness results for
the evaluation procedure. From now on, D is the set of user-provided clauses
describing the domain; PD is the program D union the set of clauses implementing
the evaluation procedure (Section 7.1); P ′

D is PD plus the only clause for evalsec/3;
and TD is P ′

D union all the rules implementing predicates Trans and Final, i.e.,
all the rules given in Section 7.2.

Theorem 8.1 (Soundness of eval/3). Let φ(s) be a sensor-fluent formula
with no free variable except the situation argument s, and let σ be a history. As-
sume sensors are available up to some subhistory σ′ of σ (i.e., end[σ′] v end[σ]).15

Whenever the goal eval(φ, end[σ], B) succeeds w.r.t. program PD with computed
answer B = b:

(i) if b = true, then Dend[σ′] ∪ Sensed[σ] |= φ(end[σ]);

(ii) if b = false, then Dend[σ′] ∪ Sensed[σ] |= ¬φ(end[σ]).

Given that P ′
D includes the only clause for evalsec/3 we have

Corollary 8.2 (Soundness of evalsec/3). Under the same assumptions as
Theorem 8.1, the goal eval(φ, end[σ], B) is sound w.r.t. program P ′

D.

Now, we state a completeness result for the evaluation procedure. For that, we
recall the notion of JIT-histories for formulas introduced in Section 6.

Theorem 8.3 (Completeness of eval/3). Let D be an acyclic GAT; let φ(s)
be a sensor-fluent formula with no free variable except the situation argument s; and

let σ be a JIT-history for φ(s) w.r.t. Dend[σ′] where sensors are available up to the
sub-history σ′ of σ (i.e., end[σ′] v end[σ]). Then, the goal eval(φ, end[σ], B)
succeeds w.r.t. program PD and with answer B = true or B = false.

15Sensing outcomes from σ′ to σ are meaningless, so we can assume any value for such outcomes.
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Corollary 8.4 (Completeness of evalsec/3). Let G1 and G2 be the goals
evalsec(φ, end[σ], B) and evalsec(φ, end[σ], b) (where b stands for true or false)
respectively w.r.t. program P ′

D. Then, the goal G1 does not finitely fail (i.e., G1
may succeed or abort to the top level). What is more, G1 succeeds with answer
B = true or B = false, and goal G2 either succeeds or finitely fails, provided the
assumptions in Theorem 8.3 apply.

It is important to notice that both results are relative to the slightly modified
theories of Definition 6.4, which are determined by the availability of the sensor
outcomes. It is not hard to propagate the soundness of the evaluation procedure
to trans/4 and final/2 for programs not containing search.

Theorem 8.5 (Soundness of Trans and Final without Search). Let δ be
a bounded program without free variables and not mentioning search, and D the un-
derlying GAT. Let σ be a history, and let P and H be Prolog variables. Assuming
that sensors are available up to some subhistory σ′ of σ (i.e., end[σ′] v end[σ]) and
the program used is TD we have

(1 ) If trans(δ, end[σ], P,H) succeeds with P = δ′, H = s′, then

Dend[σ′] ∪ C ∪ Sensed[σ] |= Trans(δ, end[σ], δ′, s′).

Furthermore, δ′ and s′ do not contain any free variable.

(2 ) If trans(δ, end[σ], P,H) finitely fails, then

Dend[σ′] ∪ C ∪ Sensed[σ] |= ∀δ′, s′.¬Trans(δ, end[σ], δ′, s′).

(3 ) If final(δ, end[σ]) succeeds, then

Dend[σ′] ∪ C ∪ Sensed[σ] |= Final(δ, end[σ]).

(4 ) If final(δ, end[σ]) finitely fails, then

Dend[σ′] ∪ C ∪ Sensed[σ] |= ¬Final(δ, end[σ]).

In general, because programs are mostly executed online, we expect σ′ to be
exactly σ. The exception arises when a search is started, since we do not have future
sensing outcomes, nor do we reason by cases about them. Thus, the next step is
to understand how search really behaves. As already stated, its implementation is
just an approximation of its definition, and therefore it is important to capture in
which sense it is sound.

Lemma 8.6 (Soundness of Search). Let Σδ be a bounded program with no
free variables, and let D be the underlying GAT.

Whenever the goal trans(Σδ, end[σ], P, S) succeeds on program TD with answer
P = Σδ′, S = s′ and with sensors available up to σ itself, the following holds:

Dend[σ] ∪ C ∪ Sensed[σ] |= Trans(δ, end[σ], δ′, s′) and

Dend[σ] ∪ C ∪ Sensed[σ] |= ∃s′′.Do(δ′, s′, s′′).

Furthermore, δ′ and s′ do not contain any free variables. What is more, if goal
final(Σδ, end[σ]) succeeds then

Dend[σ] ∪ C ∪ Sensed[σ] |= Final(Σδ, end[σ]).
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However, if goal final(Σδ, end[σ]) finitely fails then

Dend[σ] ∪ C ∪ Sensed[σ] |= ¬Final(Σδ, end[σ]).

The following Corollary generalizes Theorem 8.5 for IndiGolog programs.

Corollary 8.7 (Soundness of Trans and Final). Let δ be a bounded pro-
gram without free variables, and let D be the underlying GAT. Let σ be a history,
and let P and H be Prolog variables. Assume sensors are available up to his-
tory σ and the program used is TD. Then, the goals trans(δ, end[σ], P,H) and

final(δ, end[σ]) on TD are sound w.r.t. Dend[σ] ∪ C ∪ Sensed[σ]. Moreover, if
trans/4 succeeds both P and H are bound to ground terms.

Finally, we want to study sufficient conditions under which we can successfully
evaluate tests in IndiGolog programs. To do that, we must recall the concept of
JIT-histories for programs (Definition 6.6).

Theorem 8.8 (Weak Completeness of Trans and Final). Let σ be a JIT-
history for a bounded program δ; let D be the underlying acyclic GAT; and assume
that sensors outcomes are available up to σ and the program used is TD.

(1 ) The goal trans(δ, end[σ], P, S) succeeds with P = δ′ and S = s′ or does not
terminate16 whenever

Dend[σ] ∪ C ∪ Sensed[σ] |= Trans(δ, end[σ], δ′, s′).

(2 ) The goal final(δ, end[σ]) succeeds whenever

Dend[σ] ∪ C ∪ Sensed[σ] |= Final(δ, end[σ]).

So for bounded programs we have a sound and a weakly complete implementation of
Trans and Final. We observe that nontermination can only arise due to a search.
Otherwise, termination of trans/4 and final/3 can be guaranteed.

9. CONCLUSIONS

In the present work, we have presented a new high-level programming language of
the Golog family with two main characteristics: (i) the execution framework is more
realistic than previous languages for large programs and complex scenarios where
sensing information can be suitably exploited; (ii) the background theory allows
for more open-world theories where causal laws need not be complete. We consider
IndiGolog as a new step toward a practical programming language for agents.

The IndiGolog interpreter described here is provably correct over guarded action
theories in open-world settings, but, as seen, relies on a number of assumptions. One
serious limitation concerns the use of bounded programs, which would be inconve-
nient when dealing with large sets of elements that are added and deleted dynami-
cally and cannot be enumerated. For instance, we may have a fluent Student(x, s)
denoting that x is a student in situation s and such that students enroll and with-
draw dynamically. In such cases, we clearly need an evaluation procedure that

16Nontermination may arise because of an infinite sequence of legal transitions.
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works with free variables. However, this is not sufficient to guarantee soundness
of Trans and Final. To do so, either we need to drop the prioritized concurrency
construct, or use an evaluation that is complete over free variables. One way might
be to add constraints as a new argument to eval, trans, and final. These proce-
dures would say things like “everything but John, Mark, and Peter is not a student”
or “there is a transition whenever X is not Mark.” With this, we would have a
sound and sometimes complete implementation of Trans and Final, while keeping
the ability to express open formulas.

Last, but not least, we observe that the search operator defined here essentially
returns the next action to execute that is guaranteed to be part of a successful
execution. Alternatively one may define a search operator that actually returns
a new program ready to be executed online and containing no search. Such a
program should resemble a conditional plan and constitute a reasoned course of
action leading to a successful execution as sensing information is gathered. The
work on sGolog [Lakemeyer 1999] as well as that on general forms of planning
[Levesque 1996] may give some insight on how to tackle this issue. The point is
that in one way or another in order to exploit nondeterminism we also need a form
of lookahead like that provided by the search operator.

A. PROOFS

A.1 Occur-Check and Floundering Free Proofs

We will need the following terminology: A mode for an n-ary predicate symbol
p is a function mp : {1, ..., n} → {+,−}. Positions mapped to ′+′ are called
input positions of p, and positions mapped to ′−′ are called output positions of p.
Intuitively, queries formed by predicate p will be expected to have input positions
occupied by ground terms. We write mp in the form p(mp(1), ...,mp(n)). A family
of terms is linear if every variable occurs at most once on it. A clause is (input)
output linear if the family of terms occurring in all (input) output positions of its
body is linear.

An input-output specification for a program P is a set of modes, one for each
predicate symbol in P . A clause (goal) is well-moded if every variable occurring
in an input position of a body goal occurs either in an input position of the head,
or in an output position of an earlier body goal; and every variable occurring in
an output position of the head occurs in an input position of the head, or in an
output position of a body goal. A goal can be viewed as a clause with no head
and we will be interested only in goals with one atom, i.e. G =← A. A program
is called well-moded w.r.t. its input-output specification if all its clauses are. The
definition of well-moded program constrains “the flow of data” through the clauses
of the program. Lastly, a clause (goal) is strictly moded if it is well-moded and
output linear, and a program is strictly moded if every rule of it is.

It was proved in Apt and Pellegrini [1994, Corollary 4.5] that well-moded and
output linear programs (for some input-output specification) are occur-check free
w.r.t. well-moded goals. It was also proven there (Corollary 6.5) that a program P

is occur-check free w.r.t. a goal G if both P and G are strictly moded.

Lemma A.1. Program PD for any domain description D is occur-check free
w.r.t. queries of the form G =eval(φ, h,B) where φ and h are ground terms
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and B is a variable.

Proof. We are to prove that both PD and G are strictly moded. To do that we
select the following mode, and we assume that has value/4, sub v/4, and rel/4

are all correctly implemented.

eval(+,+,-), alltrue(+,+,+,+), varsort(+,-), domain(+,-)

rel(+,-,-,-), has value(+,+,+,-), evalfalse(+,+), has sensor(+,-,+)

subv(+,+,+,-), subf(+,-,+), bool(+,-,+)

fluent(+), sensor(+), init(+), closed(+), gsfa(+,-,-), gssa(+,+,-,-)

In this mode, PD is both well moded and strictly moded. Moreover, the goal G
is both well moded and strictly moded (φ and h are ground terms). Hence, by a
generalization of Corollary 6.5 in Apt and Pellegrini [1994] for general programs,
PD is occur-check free for goal G.

Lemma A.2. A query G =eval(φ, h,B) to PD does not flounder, i.e., the
LDNF-tree of G does not have nodes marked by flounder.

Proof. Here we appeal to Theorem 8.5 in Apt and Pellegrini [1994]: if PD and
G are well moded and all predicate symbols occurring under not in PD and G

are moded completely input, then PD ∪ {G} does not flounder. The only predi-
cate symbols occurring under not in PD are init/1, sensor/1, evalfalse/2, and
alltrue/4 which are all moded completely input.

Lemma A.3. Program TD, for any domain description D, is occur-check free
w.r.t. queries of the form G1 =trans(δ, h, E,H) and G2 =final(δ, h) where φ
and h are ground terms and E,H are variables.

Proof. We extend the input-output specification given in the proof of Lemma
A.1 as follows:

trans(+,+,-,-), final(+,+), existtrans(+,+), =(+,-)

evalsec(+,+,-), path(+,+), write(+), poss(+,-), prim action(+)

By inspecting each rule, we can verify that TD is well moded in this extended
mode. Also, every clause of TD is output linear, and goals G1 and G2 are, clearly,
well moded. Hence, all the conditions for Apt-Pellegrini’s Corollary 4.5 are satisfied,
and TD is occur-check free w.r.t. goals G1 and G2.

Lemma A.4. The queries trans(δ, h, E,H) and final(δ, h) on program TD,
where δ and h are ground terms and E,H are variables, do not flounder.

Proof. The only predicates occurring under not are existtrans/2 and =/2.
First, existtrans/2 is moded completely input. Second, whenever =/2 is used
under not, its output position is grounded.

A.2 Soundness and Completeness Proofs

For this section, we need the following terminology. A mapping from ground atoms
of a general logic program P into the set of natural numbers is called a level mapping
of P . We use ground(P ), A, and Li (i > 0) to refer to the set of all variable-free
instances of the clauses in P , an atom, and an atom or an atom preceded by not
respectively.
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A program P is acceptable if there exists a level mapping | · | and a model I of
P , such that for every clause A ← L1, ..., Ln ∈ ground(P ) and any 0 < i < n it is
the case that I 6|= L1, ..., Li or |A| > |Li+1|.

17 A program P is acyclic if there is a
level mapping | · | such that for every clause A ← L1, ..., Ln ∈ ground(P ) it is the
case that |A| > |Li+1|. It can be proved that every acyclic programs is acceptable.
Finally, a goal G =← A is bounded w.r.t. a level mapping | · | if there exists a
number l such that l ≥ |[A]| where |[L]| denotes the maximum that | · | takes on the
set [A] of variable-free instances of A. If |[A]| is constant, G is called rigid, and G

is bounded.
Apt and Pedreschi [1991, Theorem 4.1] proved that every SLDNF-tree (including,

of course, all LDNF-trees) for a bounded goal G on an acyclic program P is finite.
Later, Apt and Pedreschi [1993, Corollary 4.11] showed that if P is an acceptable
program and G is a bounded goal, then all LDNF-derivations for goal G w.r.t.
program P are finite, and therefore the Prolog interpreter terminates on G.

For the following proofs, we rely on the Lemmas A.1, A.2, A.3, and A.4 to
guarantee that all programs used are occur-check free and floundering free for the
corresponding goals.

Proof of Theorem 8.1. Assume that eval(φ, end[σ], B1) succeeds with B1 =

b. We prove that eval/3 is sound w.r.t. Dend[σ′] by induction on the number of
calls to eval/3 in the finite LDNF-tree. We allow σ′ to be a subhistory of σ or the
converse.

Base Case (only one call to eval/3, the goal call). φ(s) can only be a ground
atomic sensor formula, such us sonar(s) > 20, or a relational fluent at the initial
history.

In the former case, we have to distinguish two different situations: (i) when the
sensor formula mentions no sensing function; (ii) when the sensor formula mentions
at least one sensing function. An example of (i) is when two action terms are
compared (such as openDoor(3) = walk), in which case the soundness of eval/3 is
easily justified by virtue of Clark’s Theorem [Clark 1978]. In the second case, the
evaluation of the sensor formula succeeds only if end[σ] ≤ end[σ′] due to the fact
that has sensor/3 finitely fails for any history extending σ′. Therefore, eval/3
replaces the sensing functions in φ(s) by their values at σ–which are all available–
and soundness follows as well.

Finally, when the formula is a fluent and the history is the initial one, soundness
is justified because of the clauses init/1 implementing D0.

Induction Step (more than one call to eval/3). Here, a new induction on the
structure of the formula φ(s) is performed. The base case can only arise when
φ(s) is a fluent and the history is not the initial one. In such a case, eval/3

reduces to bool/3. This means that either the third or fourth rule of bool/3 has
to succeed. In the latter case, we apply the (first) induction hypothesis on the
evaluation of the guard and the condition of the GSSA selected to get soundness

17More precisely, the model I has to satisfy some other conditions to deal properly with negated
atoms. However, since we do not take advantage of such restrictions through our proofs, we do
not make them explicit.
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for the evaluation of the fluent. On the other hand, when the third clause of bool/3
applies, the induction hypothesis over the formulas of the selected GSFA is used.
In such a case, it is worth pointing out that if the evaluation of the sensor formula ρ
corresponding to the GSFA in question succeeds, then the evaluation is being done
on a history not further than σ′, i.e., end[σ] ≤ end[σ′].

Recall that sensor outcomes are only available up to history σ′ and that sensor
formulas in GSFAs are built from atomic formulas mentioning at least one sensing
function each. To end, the induction step when the formula is not an atomic one
is performed using the first seven rules for eval/3 in which a complex formula is
decomposed up to its atomic components. Clearly, at each step the number of calls
to eval/3 is reduced, and the (first) induction hypothesis can be applied.

Proof of Corollary 8.2. Direct from Theorem 8.1 and the only clause for
evalsec/3.

Proof of Theorem 8.3. We prove this theorem in two parts:
(1) First, we prove that whenever D is acyclic Prolog always terminates18 on goal

G′ =eval(φ, h,B), i.e., the LDNF-tree for G′ is finite. Although the program is
mainly acyclic in the sense of Apt and Bezem [1991], we are forced to use the more
subtle termination condition for acceptable programs [Apt and Pedreschi 1993]. We
now define the level mapping | · | for the program PD, starting with the mapping
for formulas and sequence of actions:

|and(p1, p2)| = |p1|+ |p2|+ 1
|neg(p)| = |p|+ 1
|some(v, p)| = |some(v, d, p)| = |p|+ 3
|f | = level(f) + 3 for each ground fluent f
|a| = |[]| = 1; |[a|r]| = |r| + 1 for each ground action term a

|t| = 0 for all other ground atomic formulas t (including sensing functions)

where level(f) stands for the highest level mapping among the guards and sensor
formulas mentioned in GSFA(f). Formally,

level(f) = max







|GSFA(f)|
⋃

i=1

{|βf
i |, |ρ

f
i |}







where βf
i is the guard of any ground instance of the ith GSFA for fluent f (with

the situation variable suppressed), and ρf
i is its corresponding sensor formula. It is

very important to remark that the above level mapping for formulas is well defined
because the theory of action D is acyclic, and therefore, the dependency relation ≺
between fluents is well founded. Next, we define the level mapping to the remaining
atoms. For that, we first define a constantM for the GAT D denoting the highest
level mapping among all the formulas involved in GSFAs and GSSAs in the theory.

18With termination we mean either succeeding or finitely failing. In other words, we do not
consider floundering or aborting as (legal) termination.
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Formally,

M = max







F
⋃

j=1





|GSFA(fj)|
⋃

i=1

{|β
fj

i |, |ρ
fj

i |} ∪

|GSSA(fj)|
⋃

i=1

{|α
fj

i |, |γ
fj

i |}











where F denotes the number of fluent names in the theory, β
fj

i (α
fj

i ) is the guard
of any ground instance of the ith GSFA (GSSA) (with the situation variable sup-

pressed) of the jth fluent, and ρ
fj

i (γ
fj

i ) is the corresponding sensor-formula (fluent-
formula) for such axiom. We complete the level mapping for PD as follows:

|eval(p, h, b)| = |p|+ |h|(M+ 3) + 2
|alltrue(p, v, d, h)| = (|p|+ 2) + |h|(M+ 3) + 2
|evalfalse(p, h)| = (|p|+ 1) + |h|(M+ 3) + 2
|subf(p, q, h)| = |p|+ |h|(M+ 3) + 1
|bool(p, v, h)| = |p|+ |h|(M+ 3)
|gsfa(f, g, c)| = |gssa(a, f, g, c)| = |subv(v, o, p, q)| = 1
|t| = 0 for all other atoms

It is possible to show that program PD is acceptable w.r.t. the above level
mapping and some model I . What is more, the (stronger) acyclic condition [Apt
and Bezem 1991] is satisfied for all the clauses except for the last two of bool/3.
For instance, for the third and the last two rules for eval/3 we have

|eval(and(p1, p2), h, true)| = |and(p1, p2)|+ |h|(M+ 3) + 2

> |p1|+ |h|(M+ 3) + 2 = |eval(p1, h, true)|

> |p2|+ |h|(M+ 3) + 2 = |eval(p2, h, true)|

|eval(p, h, b)| = |p|+ |h|(M+ 3) + 2

> 0 = |fluent(p, rel)|

> |p|+ |h|(M+ 3) = |bool(p, b, h)|

|eval(p, h, b)| = |p|+ |h|(M+ 3) + 2

> 0 = |rel(p, op, s, v)| = |has value(op, s1, v1, bool)|

> |s|+ |h|(M+ 3) + 1 = |subf(s, s1, h)| (|s| ≤ |p|)

> |v|+ |h|(M+ 3) + 1 = |subf(v, v1, h)| (|v| ≤ |p|)

Finally, the most interesting cases arise with the last two rules for bool/3. There,
we need to use the condition distinguishing acyclic programs from acceptable ones.
Consider now any ground instance A : −B1, B2, B3. of of the last two clauses for
bool/3. In what follows, we prove two facts which imply that the rule satisfies the
appropriate requirements. We do not show here the existence of a model for PD ,
say I , but just point out that I |= gsfa(f, g, p) and I |= gssa(a, f, g, p) iff they
correspond to some GSFA and GSSA respectively in the domain theory D. Notice
that both gssa/4 and gsfa/3 are simply two database clauses.

Fact 1: |A| > |B1|. Because |[]| = 1 it follows trivially that

|bool(f, v, h)| = |f |+ |h|(M+ 3) > 1 = |gsfa(f, g, p)|

|bool(f, v, [a|h])| = |f |+ |[a|h]|(M+ 3) > 1 = |gssa(a, f, g, p)|
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Fact 2: Suppose I |= B1. Then, |A| > |B2| and |A| > |B3|. For the fourth bool/3

rule we have the following inequalities:

|bool(f, v, [a|h])| = |f |+ |h|(M+ 3) + (M+ 3)

> |g|+ |h|(M+ 3) + 2 = |eval(g, h, true)| = B2

|bool(f, v, [a|h])| = |f |+ |h|(M+ 3) + (M+ 3)

> |p|+ |h|(M+ 3) + 2 = |eval(p, h, v)| = B3

Notice, that given I |= B1 = gssa(a, f, g, p), g and p are formulas from a GSSA
in D, and therefore,M≥ |g| and M≥ |p| hold.
Similarly, we have the following inequalities for the last rule of bool/3:

|bool(f, v, h)| = |f |+ |h|(M+ 3) = level(f) + 3 + |h|(M+ 3)

≥ |g|+ 3 + |h|(M+ 3)

> |g|+ |h|(M+ 3) + 2 = |eval(g, h, true)| = B2

|bool(f, v, h)| = |f |+ |h|(M+ 3) = level(f) + 3 + |h|(M+ 3)

≥ |p|+ 3 + |h|(M+ 3)

> |p|+ |h|(M+ 3) + 2 = |eval(p, h, v)| = B3

Again, given that I |= B1 = gsfa(f, g, p), g and p are formulas corresponding to
some GSFA in D. From the definition of level(f) we know that level(f) ≥ |g|
and level(f) ≥ |p|. Intuitively, the key point is that due to the fact that D
is acyclic (Definition 3.2), it is possible to build a well-defined level mapping
where the level of a fluent is always higher than the level of the guards and
sensor formulas mentioned in its GSFAs.

We have shown that program PD is acceptable w.r.t. the level mapping | · | and
a model I . Also, it is easy too check that goal G′ =eval(φ, h,B) is rigid and
hence bounded. Using Corollary 4.11 in Apt and Pedreschi [1993] we argue that
the Prolog interpreter terminates on goal G′. Once again, we are relying on the
fact that the program is occur-check and floundering free (Lemmas A.1 and A.2).

(2) Next, let us prove, that given that σ is a JIT-history for the formula φ(s)

w.r.t. Dend[σ′], the call to eval/3 does not finitely fail. This is proved by induction
on the number of calls to eval/4.

Base Case: Easy given that either the formula being evaluated is an atomic sen-
sor formula or a relational fluent at the initial history.

Induction Step: Assume the theorem holds whenever the tree has n or less calls.
There are two cases: (i) the formula is a compound one; (ii) the formula is a rela-
tional fluent. The first case is straightforward because the formula is decomposed
into simpler formulas and such that the history remains JIT for each subdivision.

The interesting case is when the formula is a relational fluent F (~t, s) and σ is JIT
for for it. Thus, there has to be an applicable GSFA or GSSA in the sense of the
JIT-history definition (Definition 6.5). When a GSFA is applicable, the induction
hypothesis can be applied to the third rule of bool/3. Similarly, when a GSSA is
applicable, the induction hypothesis can be applied to the fourth rule of bool/3.
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In either case, bool/3 will succeed for the relational fluent F (~t, s) at history σ, and
so will the call to eval/3.

By (1) and (2), goal eval(φ, end[σ], B) succeeds with computed answer B = true

or B = false.

Proof of Corollary 8.4. Direct from Theorem 8.3 and the only clause for
evalsec/3.

Proof of Theorem 8.5. By induction on the number of calls to trans/4 and
final/2.

Base Case: For trans/4, the program is either a primitive action or a check
condition; for final/2 the program is an empty program or a nondeterministic
iteration of a program. Take the first case for trans/4 for which the following rule
of TD is used:

trans(E,H,[],[E1,H]):- prim_action(E1), poss(E1,P),

evalsec(P,H,true)

The first two subgoals refer to database relations to retrieve the precondition axiom
for the primitive action. The success of the third subgoal implies, by Corollary 8.2,
that the action is executable. Therefore trans/4 is sound, and both [] and [E1|H ]
are ground given that E1 and H are bound to ground terms. On the other hand, if
trans/4 happens to finitely fail for a primitive action, then its precondition must
be false; for, the third subgoal must have finitely failed (Corollary 8.4), and from
that, it is easy to see that evalsec(P,H,false) would succeed.

Induction Step: Here the LDNF-tree has more than one call, and the program
is a complex one. For all constructs except prioritized concurrency, the proof is
simple and relies on Theorem 8.1 whenever a formula is evaluated via evalsec/3.

The interesting cases happen when trans/4 and final/2 finitely fail and the case
of prioritized concurrency. For the latter, if trans/4 succeeds on a program δ1〉〉 δ2,
it has to be the case that either: (i) trans/4 succeeds on δ1; or (ii) existtrans/2
finitely fails on δ1, but trans/4 succeeds on δ2. For (i), the induction can be applied
easily. For (ii), the finite failure of existtrans/2 allows us to state that there exists
no transition for δ1. In addition, the success of trans/4 on δ2 together with the
induction hypothesis gives us the soundness for the whole program δ1〉〉 δ2.

Finally, let us see a case where trans/4 finitely fails. Suppose then that trans/4
finitely fails on program ?(φ) at history σ. By inspecting the only eligible clause
we know that evalsec(φ, end[σ], true) must have finitely failed. By the same
argument as above, it must be the case that φ(s) is false at σ, and the soundness of
trans/4 follows. Notice that if φ(s) had been unknown at σ, the call to evalsec

would have aborted to the top level instead of finitely failing.

Proof of Lemma 8.6. Assume that goal trans(search(δ), end[σ], P, S) suc-
ceeds with P = search(δ′) and S = s′. This means that trans(δ, end[σ], P1, S)

succeeds with P1 = δ′ and S = s′, and it follows from Theorem 8.5 that Dend[σ] ∪
C ∪ Sensed[σ] |= Trans(δ, end[σ], δ′, s′) where δ′ and s′ do not contain any free
variables.

In addition, the goal path(δ′, s′) must succeed with sensors available up to σ,
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which implies a sequence of zero or more successful calls to trans/4 ended by a
successful call to final/2.

—If the length of the sequence is zero, then final(δ′, s′) succeeds with sensors
available up to σ. By Theorem 8.5 (δ′ has no search), Dend[σ] ∪ C ∪ Sensed[σ] |=

Final(δ′, end[σ]), and hence Dend[σ] ∪ C ∪ Sensed[σ] |= ∃s′′.Do(δ′, end[σ], s′′).

—Assume the length of the sequence is n + 1. Then, trans(δ′, end[σ], E1, H1)
succeeds with E1 = δ′′, H1 = s′′ with sensors available up to history σ, and
by Theorem 8.5, Dend[σ] ∪ C ∪ Sensed[σ] |= Trans(δ′, end[σ], δ′′, s′′). Moreover,
path(δ′′, s′′) succeeds in n steps with sensors available up to σ. By induction,
Dend[σ] ∪ C ∪ Sensed[σ] |= ∃s′′′.Do(δ′′, s′′, s′′′) and Dend[σ] ∪ C ∪ Sensed[σ] |=
∃s′′.Do(δ′, end[σ], s′′) follows.

The soundness of final/2w.r.t. Final is obtained directly from Theorem 8.5.

Proof of Corollary 8.7. It follows directly from the soundness of programs
not containing search (Theorem 8.5) and the soundness of search itself (Lemma
8.6).

Proof of Theorem 8.8. We divide this proof into two parts:
(A) We start by proving that whenever σ is a JIT-history for program δ not

containing search w.r.t. Dend[σ′] (end[σ′] v end[σ]), the Prolog interpreter always
terminates on goals G1 =trans(δ, end[σ], P, S) and G2 =final(δ, end[σ]). Let us
first concentrate on program T ′ = TD −PD −S where S is the set of the four rules
for search (one for trans/4, one for final/2, and two for path/2).

Fortunately, we can appeal here to the acyclicity condition from Apt and Pe-
dreschi [1993]. Given a (ground) program term p, noactions(p) (nocons(p)) is the
number of primitive (complex) actions mentioned in p. We define the following
level mapping | · | for the program T ′ as follows:

|p| = noactions(p) + nocons(p)
|trans(p, h, p′, h′)| = |p|+ 2
|final(p, h)| = |p|
|existtrans(p, h)| = |p|+ 1

All the other atoms are mapped to zero. It can be verified that program T ′ is
acyclic and that goals of the form G1 and G2 are rigid, and hence bounded, w.r.t.
the above level mapping. We can generalize this result to the complete program
TD by giving two simple arguments: (i) we can safely include the set of rules S, i.e.,
all the rules implementing search, given that δ has no search, and hence, no clause
in S will be used; and (ii) we can safely include the whole program PD, i.e., the
code for the evaluation procedure plus the domain description, because whenever
a formula φ(s) needs to be evaluated via evalsec/3, Corollary 8.4 applies in other
words, evalsec/3 would eventually terminate legally. Again, Lemmas A.3 and A.4
assure our programs and goals are occur-check and floundering free.

(B) Next, a weak-completeness result is proved for search itself. Assume a pro-
gram of the form Σδ where δ mentions no search, and a history σ such that sensor
outcomes are available up to it and such that σ is a JIT-history for program Σδ.

The hard part is to realize that if trans(δ, end[σ], P1, S1) succeeds with P1 = δ′

and S1 = s′, the goal G =path(δ′, s′) either terminates or loops forever. Suppose
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that path/2 has already performed a sequence of n consecutive transitions and is
querying for the goal path(δ′′, s′′) once again for some δ′′ and s′′. From soundness
of trans/4 (Theorem 8.5),

Dend[σ] ∪ C ∪ Sensed[σ′′] |= Trans∗(δ, end[σ], δ′′, s′′)

for any extension σ′′ of σ such that end[σ′′] = s′′. What is more, σ′′ is a JIT-history

for program δ′′ w.r.t. Dend[σ]. Under this circumstance and the fact that δ′′ has no
search, we know, by part A, that both goals final(δ′′, s′′) and trans(δ′′, s′′, P, S)

terminate legally (either by finitely failing or succeeding). It follows then that the
goal path(δ′, s′) either terminates legally (by finitely failing or succeeding) or loops
forever, and as a result, so does the original goal trans(Σδ, end[σ], P, S).

Putting parts A and B together, and assuming no nested searches, the weak-
completeness result for general IndiGolog programs follows.
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