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Abstract

We proposealogical framework for describing, reasoningabout, and simul ating transaction mod-
els that relax some of the ACID (Atomicity-Consistency-lsolation-Durability) properties of classi-
cal transactions. Such extensions, usually called advanced transaction models (ATMs), have been
proposed for dealing with new database applicationsinvolving long-lived, endless, and cooperative
activities. Our approach appealsto non-Markovian theories, in which one may refer to past states
other than the previous one. We specify an ATM as a suitable non-Markovian theory of the situation
calculus, and its properties, including the relaxed ACID properties, as formulas of the same calcu-
lus. We use our framework to formalize classical transactions and closed nested transactions. We
first formulate each ATM and its properties as atheory of acertain kind and formulas of the situation
calculus, respectively. We then define alegal databaselog as one whose actions are all possibleand
inwhich all the Comrmnit and Rollback actions must occur whenever they are possible. After that,
we show that the known properties of the ATM, including the relaxed ACID constraints, are prop-
erties of legal logs and logical consequences of the theory corresponding to that ATM. Finally, we
also indicate how to implement such a specification as abackground theory for transaction programs
written in the situation cal culus based programming language GOL OG.

1 Introduction

Transaction systems that constitute the state of the art in database systems have aflat structure defined
intermsof the so-called ACID (Atomicity-Consistency-1solation-Durability) properties. From the sys-
tem point of view, adatabase transaction isasequence of operationson the database state, which exhibit
the ACID propertiesand are bracketed by Begin and Commit or Begin and Rollback ([10]). A trans-
action makes the results of its operations durable when nothing goes wrong before its normal end by
executing a C'ommit operation, upon which the database cannot be rolled back. Should anything go
wrong before the commitment, the transaction rolls the database back to the state before beginning.

Various transaction model s have been proposed to extend the classicd flat transactions by relaxing
some of the ACID properties (see[8],[11] for acollection of the best examples of these models). Such
extensions, generally caled advanced transaction models (ATMs), are proposed for dealing with new
applicationsinvolving long-lived, endless, and cooperative activities. The ATMs aim at improving the
functionality and the performance of the new applications.

The ATMs, however, have been proposed in an ad hoc fashion, thuslacking in generality in away
that it is not obvious to compare the different ATMs, to exactly say how they extend the traditional
flat model, and to formulate their propertiesin away that one clearly sees which new functionality has
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been added, or which one has been subtracted. To address these questions, thereis aneed for a general
and common framework within which to specify ATMs, simulate these, specify their properties, and
reason about these properties. Thus far, ACTA ([6],[5]) seems to our knowledge the only framework
addressing these questions at a high level of generdity. In ACTA, afirst order logic-likelanguage is
used to capture the semantics of any ATM.

In this paper, we address the problem of specifying database transactions at the logical level using
the situation calculus ([21]). Our approach appesals to non-Markovian theories([9]), in which one may
refer to past states other than the previous one. We provide the formal semantics of an ATM by spec-
ifying it as atheory of the situation calculus called basic relational theory, whichisa set of sentences
suitablefor non-Markovian control in the context of database transactions; the properties of the ATM,
includingtherelaxed ACID properties, are expressed asformul asof the same calculusthat logically fol -
low fromthe basic relationa theory. Weillustrate our framework by formalizing classical transactions
([10]) and closed nested transactions ([ 22]). Wefirst formulateeach transaction model and itsproperties
as abasic relationd theory and formulas of the situation calculus, respectively. We then define alegal
database 0g as one whose actions are al possibleand in which al the Commit and Rollback actions
must occur whenever they are possible. After that, we show that the known propertiesof thetransaction
model, including the relaxed ACID constraints, are properties of lega logs and logical consequences
of the basic relationa theory corresponding to that transaction model. Finally, we also indicate how to
implement such a specification as abackground theory for transaction programswritten in the situation
calculus based programming language GOLOG.

Oursisan ongoing work whose main contributionsreported in this paper can succintly be summa-
rized as follows:

1. We construct logical theories called basic relational theoriesto formalize ATMs adong the tradition
set by the ACTA framework ([5]); basic relationd theories are non-markovian theories in which one
may explicitly refer to al past states, and not only the to the previous one. They provide the formal
semantics of the corresponding ATMs. They are an extension of theclassical relational theoriesof [19]
to the database transaction setting.

2. We extend the notion of legal databaselogsintroduced in [20] to accomodate transactional actions
such as Begin, Commit, etc. These logsare first class citizen of the logic and properties of the ATM
are expressed asformulas of the situation cal culusthat logicaly follow from the basic relational theory
representing that ATM.

3. Our approach goesfar beyond constructinglogical theories, asit providesonewith animplementable
specification, thus alowing one to automatically check many properties of the specification using an
interpreter. Our implementabl e specifications are written in an extension of GOLOG that includes par-
alelism ([7]). We specify an interpreter for running these specifications and show that thisinterpreter
generates only legal logs.

2 Logical Foundations

We use a basic relational language, which is afragment of the situation calculus ([21],[9]) that is suit-
able for modeling relational database transactions. The language is a many-sorted second order lan-
guage with sortsfor actions, situations, and objects. Actions arefirst order terms consisting of an
action function symbol and its arguments, situations are first order terms denoting finite sequences
of actions, and objects represent domain specific individua s other than actions and situations. In for-
malizing databases, actions correspond to the elementary database operations of inserting, deleting and
updating relational tuples, and situations represent the database log. Relations and functions whose
truth values vary from situation to situation are called fluents, and are denoted by predicate symbols
and function symbolswith last argument a situation term.

The language has an a phabet with variables and afinite number of constantsfor each sort, afinite



number of function symbolscalled action functions(e.g., a_del(accid, branchid, accbal , tellerid, t)),
afinitenumber of functionsymbols called functional fluents, afinite number of function symbolscalled
situation independent functions, a finite number of predicate symbols caled relational fluents (e.g.,
accounts(aceid, branchid, acchal  tellerid, t, s)), and afinitenumber of predicate symbolscalled sit-
uation independent predicates. Situationsare represented using abinary function symbol do: do(a, s)
denotes the sequence resulting from adding the action a to the sequence s. There is a distinguished
congtant Sy denotingtheinitial situation; Sy stands for the empty action sequence. The language also
includes special predicates Poss, and C; Poss(a, s) meansthat theaction a ispossiblein the situation
s,and s C s’ states that the situation s’ is reachable from s by performing some sequence of actions.
In database terms, s C s’ means that s isa proper sublog of thelog s'.

For simplicity, we consider basic relational |anguages whose only primitive update operations cor-
respond to insertion or deletion of tuplesinto relations. For each such relation F(Z,, s), where £ isa
tuple of objects, ¢ is atransaction argument, and s is a situation argument, a primitive internal action
isaparameterized primitiveaction of the situation calculus of theform F iins(Z, t) or F' del(Z,t). In-
tuitively, F_ins(Z,t) and F'_del(¥,t) denote the actions of inserting the tuple # into and deleting it
from therelation F' by the transaction ¢, respectively; for convenience, we will abbreviate long sym-
bols when necessary (e.9., account_ins(Z,t) will be abbreviated as a_ins(Z,t)). Below, we will use
the following abbreviation:

writes(a, F\t) =4 (3%).a = F_ins(¥,1) V a = F_del(¥,1),

onefor each fluent. We distinguishthe primitiveinternal actions from primitive external actionswhich
are Begin(t), Commit(t), End(t), and Rollback(t), whose meaning will beclear inthesequel of this
paper; these are externa as they do not specifically affect the content of the database. The argument ¢
isauniquetransaction identifier.

A dynamic domain isaxiomatized in the situation cal culus with non-Markovian axioms which de-
scribe how and under what conditionsthe domain ischanging or not changing as aresult of performing
actions. Such axioms are called basic action theory in [21]. They comprise the following: domain
independent foundational axioms for situations; action precondition axioms, one for each action term,
stating the conditionsof change; successor state axioms, onefor each fluent, stating how change occurs,
unigue names axioms for action terms; and axioms describing the initia situation. Findly, by conven-
tioninthispaper, afree variablewill aways beimplicitly bound by aprenex universa quantifier. Basic
action theories of [21] are capturing Markovian control. they have been extended to non-Markovian
control in [9].

3 The Specification Framewor k

In [6], five building blocks for ATMs are identified: history, intertransaction dependencies, visibility
of operations on database objects, conflict between operations, and del egation of responsibility for ob-
jects visibleto atransaction. We now show how these building blocks are represented in the situation
calculus.

In the situation calculus, the history of [6] corresponds to thelog. We extend the basi ¢ action theo-
ries of [21] to include a specification of relational database transactions, by giving action precondition
axioms for external actions such as Begin(t), End(t), Commit(t), Rollback(t), Spawn(t,t'), ec.
Commit(t) and Rollback(t) are coercive actionsthat must occur whenever they are possible. Wealso
give successor state axiomsthat state how change occurs in databases in the presence of both interna
and externa actions. All these axioms provide the first dimension of the situation ca culus framework
for axiomatizing transactions, namely the axiomatization of the effects of transactions on fluents; they
also comprise axioms indi cating which transactions are conflicting with each other, and what sublogs
of the current log are visible; which visible sublogs are del egated to the transactions is expressed im-
plicitely in successor state axioms.



A useful concept that underlies most of the ATMs is that of responsibility over changes operated
on data items. For example, in a nested transaction, a parent transaction will take responsibility of
changes done by any of its committed children. The only way we can keep track of those reponsi-
bilitiesis to look at the transaction arguments of the actions present in the log. To that end, we in-
troduce a fluent responsible(t, a, s), which intuitively means that transaction ¢ is responsible for the
action a in the log s, which we characterize with an appropriate successor state axiom of the form
responsible(t,a’,do(a,s)) = P (t,a,d, s), where®,,, (¢, a, a’, s) isatransaction model -dependent
first order formulawhose only free variables are among ¢, a, @’,, and s. For example, in the flat trans-
actions, we will have the following, simple axiom:

responsible(t,a, s) = (Ja')a = o' (¥, 1);

i.e., each transaction is considered responsiblefor any action whose last argumment bears its name.
To express conflicts between transactions, we need the predicate termAct(a, t) and the fluents
updCon flict(a,a’, s) and transCon flict(t,t', s), whose intuitive meaning is that the action a isa
termina action of ¢, theaction a isconflictingwiththeaction a’ in s, and thetransaction ¢ isconflicting

with thetransaction#’ in s; their characterization is as follows:

termAct(a,t) =4 a = Commit(t) V a = Rollback(t)

updConflict(a,d’, s) =4 \/ (37)=[F(Z,t,do(a,do(d’, s))) = F(Z,t,do(d’,do(a, s)))];
FeF

here, F isthe set of fluents of the relational language; the later definition says that two internal actions
a and a’ conflict in thelog s iff the value of the fluents depends on the order in which @ and o’ appear
ins;

transConflict(t,t',do(a, s)) =t £ t' Aresponsible(t’,a,s) A

(3d’, §')[responsible(t,a’, s) Ado(a’,s') C s AupdConflict(a’,a,s)]V (1)
transConflict(t,t',s) A ~termAct(a,t);

i.e, transactiont conflictswithtransactiont’ inthelog s iff ' executes aninternal action a after ¢ has ex-
ecuted aninternal actiona’ that conflictswitha inthelog s. Noticethat wedefineupdCon filct(a, a’, s)
in terms of performing action a and action «’ one immediately after the other and vice-versa; in the
definition of transCon flict(t,t', s), however, we alow action ¢’ to be executed long before action
a. This does not mean that actions that are performed between «’ and a are irrelevant with respect to
update conflicts. Rather, (3) just means that actionsa and o’ conflicts whenever executing one imme-
diately after the other would results in a discrepancy in the truth value of at leat one of the relational
fluents; and (1) allows for the possibility of other update conflicts arising between o’ and other actions
before the execution of a.

A further useful fluent that we provide in the general framework is readsFrom(t,t’, s). Thisis
used in most transaction model s as a source of dependencies among transactions, and intuitively means
that the transaction ¢ reads a value written by the transaction ¢’ in the log s. The axiomatizer must
provide a successor state axiom for thisfluent depending on the application.

Thevisihility of portionsof thelogischaracterized by atransaction model-specific fluent visible(t, s),
whichintuitively meansthat thetransaction ¢ seesthelog s. Ingenerd, it hastheformuwisible(t, s) =4
H(t,s), where?(t, s) isaconditionon thelog s depending on thetransaction?. Inthe transaction mod-
elsformalized this paper, we have visible(t, s) = true. Inthesequel, we will no longer deal with this
aspect.

The second dimension of the situation cal culus framework is made of dependencies between trans-
actions. All the dependencies expressed in ACTA ([6]) can aso be expressed in the situation calculus.
Asan example, we have:

Commit Dependency of ¢ on ¢’



do(Commit(t),s) C s* D
[do(Commit(t'),s') E s* D do(Commit(t'),s") C do(Commit(t), s)];

i.e, If t commitsinalog s*, then, whenever ¢’ also commitsin s*, ¢ commits beforet.
Strong Commit Dependency of ¢ on ¢/
(3s")do(Commit(t'),s') C s* D (Is)do(Commit(t),s) C s*;
i.e, If ¢/ commitsinalog s*, then ¢ must aso commit in that log.
Rollback Dependency of ¢ on ¢/
(3s")do(Rollback(t'),s") C s* D (Is)do(Rollback(t), s) C s*;
i.e, If t' rollsback inalog s*, thent must a'so roll back in that log.
Weak Rollback Dependency of ¢ on ¢/

do(Rollback(t'),s') C s* D
{(Vs)[s C s* A do(Commit(t), s) i do(Rollback(t'), s')] D
(HSN)dO(Rollback( ) ”) E S*};

i.e, If ¢ rollsback inalog s*, then, whenever ¢ does not commit beforet’, t must also roll back in s*.

Aswe shall see below, al these dependencies are propertiesof legal database logs of varioustrans-
action models.

To control dependencies that may devel op among running transactions, we use a set of predicates
denoting these dependencies. For example, we use c_dep(t,t', s), sc_dep(t,t', s), r_dep(t, ', s), and
wr_dep(t,t’', s) to denote the commit, strong commit, rollback, and wesk rollback dependencies, re-
spectively. These are fluentswhose truth value is changed by the relevant transaction model s by taking
into account dependencies generated by the execution of its external actions (external dependencies)
and those generated by the execution of itsinternal actions (internal dependencies). Asan example, in
the nested transaction model, we have the following successor state axiom for wr dep(t,t’, s):

wr_dep(t,t',do(a, s)) = a = Spawn(t,t') V
wr_dep(t,t’, s) A =termAct(a,t) A —termAct(a,t’).

This says that awesak rollback dependency of ¢ ont’ arisesin do(a, s) when either « is the action of ¢
spawning ¢/, or that dependency existed aready in s and neither ¢ nor ¢’ terminated with the action a.

4 Flat Transactions

Flat transactions exhibit ACID properties. Thissectionintroducesacharacterization of flat transactions
interms of theories of the situation cal culus. These theories give axioms of flat transaction models that
constrain databaselogsinsuch away that these | ogs sati sfy important correctness propertiesof database
transaction, including the ACID properties.

A sequence of database actionsisa flat transaction iff it isa sequence [aq, . . ., an] , where the a;
must be Begin, and a,, must be either Commit(t), or Rollback(t); a;,i = 2, - —1, may beany
of theprimitiveactions, except Begin(t), Rollback(t), and Commit(t); here, as before theargument
t isauniqueidentifier for the atomic transaction. Flat transactions can be sequenced or runin parallel.
Noticethat we do not introduceaterm of anew sort for transactions, asisthecase in[3]; wetreat trans-
actions as run-time activities, whose compile-time counterparts will be GOLOG programs introduced
in Section 6. We refer to transactions by their names that are of sort object.

The axiomatization of adynamic relational database with flat transaction properties comprises the
following classes of axioms:



Foundational Axioms. These are constraintsimposed on the structure of database logs:

do(ay, s1) = do(as, s2) D a; = ag A s1 = sa, 2
(VP).P(So) A (Va, s)[P(s) D P(do(a, s))] D (¥s)P(s), (3)
=(s C So), 4
sCdo(a,s')=sCs. (5)

They characterize databasel ogs asfinite sequences of updates. Noticethat the second axiomisasecond-
order induction axiom; the third and fourth axioms characterize the subsequence relation .

Integrity Constraints. These are constraintsimposed on the datain the database at agiven situation s;
their set isdenoted by ZC. for constraintsthat must be enforced at each update execution, and by Z¢C,,
for those that must be verified at the end of theflat transaction.

Update Precondition Axioms. There isonefor each internal action A(Z, ), with syntactic form
Poss(A(Z,t),s) = (314 (Z,t',s) A TC®(do(A(Z, 1), s)) A running(t, s). (6)

Here, 14 (&, ¢, s) is a formulawith free variables among #, ¢, and s. These axioms characterize the
preconditions of the update A; 7C*¢(s) and running(t, s) are defined as follows:

ICe(s) =g\ IC(s). )
ICezC,
running(t, s) =4 (3s').do(Begin(t),s') C s A

(Va, s")[do(Begin(t),s') C do(a,s") C s D a # Rollback(t) A a # End(t)]. ®)

In abanking Credit/Debit example formalized bel ow, the following states that it is possible to insert a
tupleintotheteller relation relaiveto the database log s iff, as aresult of performing theactionsinthe
log, that tuple would not aready be present intheteller relation, the integrity constraintsare satisfied,
and transaction ¢ is running.

Poss(t_delete(tid, thal, t),s) = (3t )teller(tid, thal,t', s) A

9
IC*(do(t-delete(tid, thal,t), s)) A running(t, s). ©

Successor State Axioms. These have the syntactic form
F(Z,t,do(a,s)) = (3)®r(Z, a1, 5) A~(3t")a= Rollback(t") v 10)

(3t"Ya= Rollback(t"") A restore Begin Point(F, %,t" s),

where ® (7, a, 1, s) isaformulawith free variablesamong #, a, 7, s. Thereisonesuch axiom for each
relational fluent F', and restore Begin Point(F, Z,t, s) isdefined as follows:

restore Begin Point(F, % ,t,s) =4
[(3a*,s',s*,t").do(Begin(t),s') C do(a*,s*)C s Awrites(a™, F,t) A F(Z,1',s")] v
[(Va*,s*,s").do(Begin(t),s') C do(a®, s ) C s D ~writes(a”™, F )] A (3t')F (2,1, 5) (1)

Intuitively, restore Begin Point(F, Z,t, s) means that the system restores the value that the fluent 7
with arguments Z had before the execution of the Begin action of the transaction ¢ inthelog s if the
transaction ¢ has updated F'; it keeps the value it had in s otherwise. Given the actual situation s, the
successor stateaxioms characterize thetruth valuesof thefluent 7' inthenext situationdo(a, s) interms
of al the past situations. In the banking example, the following states that the tuple (¢id, tbal) will be
intheteller relation relative to the log do(a, s) iff the last database operation a in the log inserted it



there, or itwasaready intheteller relationreativetothelog s, and a didn’'t deleteit; al this, provided
that the operation a is not rolling the database back. In the case the operation a isrolling the database
back, thetellers relation will get avalue according to thelogic of (11).

tellers(tid, thal,t, do(a, s)) = ((3t1)a = t_insert(tid, thal, t1) V

(Tts)tellers(tid, thal i, s) A =(Ftz)a = t_delete(tid, thal, t3)) A —~(Ft')a = Rollback(t') vV
(3t").a = Rollback(t') A restore Begin Point(tellers, (tid, thal), ', s).
Precondition Axiomsfor External Actions. Thisisaset of action precondition axiomsfor the trans-

action specific actions Begin(t), End(t), Commit(t), and Rollback(t). The externd actions of flat
transactions have the following precondition axioms:

Poss(Begin(t),s) = =(3s")do(Begin(t),s’) C s, (12
Poss(End(t), s) = running(t, s), (13)
Poss(Commit(t),s) = (3s').s = do(End(t), s') A /\ IC(s) A

Icezc, (19

(Vt')[sc-dep(t,t',s) D (Is")do(Commit(t'),s") C s],

Poss(Rollback(t), s) = (3s')[s = do(End(t),s') A = /\ IC(s)] Vv
ICe1C, (15)
(3t',s")[r_dep(t, ', s) A do(Rollback(t'),s") C s].

Dependency axioms. These are transaction model-dependent axioms of the form

dep(t,t',do(a,s)) = C(¢,t',a,s), (16)
where C(¢,t’, a, s) is a condition involving the conflict relation between internal actions of any two
transactionst andt’, and dep(t, t', s) isoneof thedependency predicatesc_dep(t,t', s), se_dep(t,t', s),
etc. These axiomsare used to capturethe notion of recoverability, avoiding cascading rollbacks, etc, of
theclassica concurrency control theory ([2]). For example, to achieve recoverability, avoid cascading
rollbacks, the following axioms are used, respectively:

r_dep(t,t',s) =4 transConflict(t,t',s), a7)
sc_dep(t,t',s) =qr readsFrom(t,t',s). (18)

Thefirst axiom says that a transaction conflicting with another transaction generates arollback depen-
dency, and the second says that a transaction reading from another transaction generates a strong com-
mit dependency.

Unique Names Axioms. These state that the primitive updates and the objects of the domain are pair-
wise unequd.

Initial Database. Thisisaset of first order sentences specifying the initial database state. They are
compl etion axioms of the form

(V& 1).F(Zt,S)=d=Cv. . vi=C0), (19)

one for each fluent F. Here, the C' are tuples of constants. Also, D g, includes unique name axioms
for constants of the database, and axioms stating the conflicting updates. Axioms of the form (19) say
that our theories accommodate a complete initial database state, which is commonly the case in rela
tional databases as unveiled in [19]. This requirement is made to keep the theory ssimple and to reflect
the standard practice in databases. It has the theoretical advantage of simplifying the establishment of
logical entailmentsintheinitial database; moreover, it hasthe practical advantage of facilitating rapid



prototyping of the ATMs using Prolog which embodies negation by failure, a notion close to the com-
pletion axioms used here,

One striking feature of our axiomsisthe use of the predicate — on theright hand side of action pre-
condition axioms and successor state axioms. That is, they are capturing the notion of asituation being
located in the past relative to the current situation which we express with the predicate C in the situa-
tion calculus. Thus they are capturing non-Markovian control. We call these axiomsa basic relational
theory, and define arelational database as apair (2R, D), where R is arelational languageand D isa
basic relational theory.

A fundamental property of Rollback(t) and Commit(t) actionsisthat, the database system must
execute them in any database state in which they are possible. In this sense, they are coercive actions,
and we call them system actions:

systemAct(a,t)=q4 a=Commit(t) V a= Rollback(t).

We constrain lega logsto include these mandatory system actions, as well as the requirement that all
actionsin thelog be possible:

legal(s) =4 (Va,s")[do(a,s™) C s D Poss(a,s™)] A
(Va',a", s t)[systemAct(a’,t) A responsible(t, A (20)
responsible(t,a”’) A Poss(a',s') ANdo(a”",s') C s D a’ = a"].

Simple properties such as well-formedness of atomic transactions ([16]) can be formulated and
proven.

Theorem 1 (Well-Formedness) SupposeD isabasicrelational theory. Then no transactionmay com-
mit and then roll back, and conversdly; i.e.,

D [ legal(s) D
(Vs'){[do(Commit(t),s") C s D ~(3s")do(Rollback(t),s") C s] A
[do(Rollback(t),s") C s D =(3s")do(Commit(t),s") C s]}.

These propertiesare similar to thefundamental axioms, applicableto all transactions, of [6]. They rule
out all theill-formed transactions such as
[Begin(t), a_ins(Aq, By, —1000,T}),
Commit(t), a_del(Ay, By, —1000, T1), Rollback(t)], etc
Theorem 2 SupposeD isabasic relational theory. Then any legal log satisfies the strong commit and
rollback dependency properties; i.e.,

D E legal(s) D
(Vt, ") {sc_dep(t,t',s) D [(Is")do(Commit(t'),s') C s D (Is*)do(Commit(t), s*) C s] A
edep(t,t’,s) D [(Is')do(Rollback(t'),s") C s D (Is*)do(Rollback(t), s*) C s]}.

Now we turn to the ACID properties, which are the most important properties of flat transactions.

Theorem 3 (Atomicity) SupposeD isarelational theory. Then for every relational fluent F

D k= legal(s) D
(Vt, 81, 89){do(Begin(t), s1) C do(a, s2) C s A

(Ja*, s*)[do(Begin(t), s1) C do(a*, s*) C do(a, s2) A writes(a®, F,t)] D
[(a = Rollback(t) D ((3t1)F(Z,t1,do(a,sq)) = (3¢ ) (f $1))) A
(a = Commit(t) D ((3t1)F(Z,t1,do(a, s2)) = (Ft2) F(Z, )))]}



Thissaysthat rolling back restores any modified fluent to the valueit had just before thelast Begin(t)
action, and committing endorses the value it had in the situation just before the C'ommit (t) action.

Theorem 4 (Consistency) SupposeD isarelational theory. Then All integrity constraintsare satisfied
at committed logs; i.e.,

D k= legal(s) D {do(Commit(t),s') C s D Arceze,uze, IC(do(Commit(t), s'))}.

Theorem 5 D issatisfiableiff Ds, U Dyna U Drc[So] is! In other words, provided the constraints
are consistent with the initial database state and unique names for actions, then the entire relational
theory is satisfiable, and conversely.

Some properties of transactions need the notions of committed and rolled back updates. With the
predicates committed(t, s) and rolled Back(t, s), we express these notionsin the situation calculus
using the following axioms:

committed(a’, do(a, s)) = (3t).responsible(t,a’) A a = Commit(t) V committed(a’, s);

rolledBack(a’, do(a, s)) = (3t).responsible(t,a’) A a = Rollback(t) V rolled Back(d', s).
Theorem 6 (Durability) SupposeD isarelational theory. Then whenever an updateis committed or
rolled back by a transaction, another transaction can not change this fact:

D Elegal(s) D
{do(Rollback(t),s') C s A —responsible(t,a) D
[Committed(a, s') = Committed(a, do(Rollback(t), s'))] A

[rolledBack(a, s') = rolled Back(a, do( Rollback(t), s'))].

Definition 1 (Serializability)

transConflict* (t,t',s) =4 (VO)[(Yt)C(t,1,5) A
(Vs,t, 1", #")[C(t,t",s) AtransConflict(t",t',s) D C(t,t,s)] D C(¢,¢,s)],
serializable(s) =4 (Vt).do(Commit(t),s") C s D —transConflict* (t,t,s).

Theorem 7 (Isolation) Suppose D isa relational theory. Then
D [ legal(s) D serializable(s).

5 Closed Nested Transactions

Nested transactions ([17]) are the best known example of ATMs. A nested transaction isaset of trans-
actions(called subtransactions) forming atree structure, meaning that any given transaction, the parent,
may spawn asubtransaction, thechild, nestedinit. A child commitsonly if its parent has committed. If
aparent transaction rollsback, all itschildren arerolled back. However, if achild rollsback, the parent
may execute arecovery procedure of itsown. Each subtransaction, except theroot, fulfillstheA, C, and
| among the ACID properties. The root (level 1) of the tree structure is the only transaction to satisfy
all of the ACID properties. Thisversion of nested transactionsis called closed because of thisinability
of subtransactionsto durably commit independently of the outcome of the root transaction ([22]).

A root transactiont isasequence[as, . .. , a,] of primitiveactions, wherea; must be Begin(t), and
a, must be either Commit(t), or Rollback(t); a;,i = 2,--- ,n — 1, may beany of the primitiveac-
tions, except Begin(t), Commit(t), and Rollback(t), but including Spawn(t,t'), Rollback(t'), and

IHere, D¢ [So] isthe set D¢ relativized to the situation Sy .



Commit(t'), witht # t'. A child transaction ¢ isasequence [a1, . . . , a,] Of primitiveactions, where
a; must be Spwan(t’,t), and a, must be either Commit(t), or Rollback(t); a;,t = 2,--- ,n — 1,
may beany of the primitiveactions, except Spawn(t,t’), Commit(t), and Rollback(t), butincluding
Spawn(t*,4**), Rollback(t**), and Commit(t**), witht # ¢**. We capture thetypical relationships
that hol d between transactionsin the hierarchy of anested transactionwith thefluentstransOf(t, a, s),
parent(t,t', s) and ancestor(t, ', s), which areintroduced in the following successor state axiom and
abbreviation, respectively:
transOf(t,a,s) = (a’).a = d'(Z,1), (21)
parent(t,t', do(a,s)) = a = Spawn(t,t') V 22)
parent(t,t’, s) A ~termAct(a,t) A ~termAct(a,t’),
ancestor(t, t',s) =4 (VA)[(Vt)A(t,t,s) A
(Vs,t, ¢ t")[A(t, 1", s) A parent(t”,t',s) D A(t,t',s)] D A(t, 1, s)]. 23)

Responsibility over actions that are executed and conflicts between transactions are specified with
the following axioms:
responsible(t,a’,do(a,s)) = transOf(t,d’, s) A =(Ft*)parent(t,t*,s) V
(3t ) [parent(t,t*, s) A a = Commit(t*) A responsible(t™,a’)] v (29)
responsible(t,a’, s) A ~termAct(a,t),
transConflict NT(t,t',do(a,s)) =t # t' Aresponsible(t',a,s) A
(3d', s')[responsible(t,a’, s) A updConflict(a',a,s) Ado(a',s') C s A
—responsible(t, a, s)Arunning(t', s)N((3t" )parent(t, 1", s) D ~ancestor(t,t', s))V (25)
transConflict NT'(t,t', s) A —termAct(a,t);
Intuitively, (25) means that transaction ¢ conflicts with transaction ¢ in the log s iff ¢ and ¢’ are not
equd, internal actions they are responsible for are conflicting in s, ¢ is not responsible for the action
of ¢ itisconflicting with, ¢’ isrunning; moreover, a transaction cannot conflict with actions his ances-
tors are responsible for. Due to the presence of the new externa action Spawn, we need to redefine
running(t, s) asfollows:
running(t, s) =4 (3s').{do(Begin(t),s’) C s A
(Va, s")[do(Begin(t),s') C do(a,s") C s D a # Rollback(t) Aa # End(t)] V
(3t").do(Spawn(t',t),s') C s A (26)
(Va, s")[do(Spawn(t',t),s") C do(a,s") C s D a # Rollback(t) A a # End(t)]}.
Now the externa actions of nested transactions have the following precondition axioms:

Poss(Begin(t), s) = —(3t")parent(t’, t,s) A

[s=So V (3s',t').t £t Ado(Begin(t'),s') C s], @
Poss(Spawn(t, t'),s)=t #t'A 29)
(3s',t")[do(Begin(t),s') C sVdo(Spawn(t",t),s') C s],
Poss(End(t), s) = running(t, s), (29)
Poss(Commit(t),s) = (Is').s = do(End(t),s’) A /\ IC(s) A
IceIC,
(Vt")[sc_dep(t,t', 5) D (Is")do(Commit(t'),s") E s] A (30)

(Vt')[e_dep(t,t’, s) A =(3s*)do( Rollback(t'),s*) C s D
(3s"Ydo(Commit(t'), s') C s)],
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Poss(Rollback(t), s) = (3s').s = do(End(t),s") A — /\ IC(s) V
rceze,

(3t',s").rdep(t,t’, s) A do(Rollback(t'),s") C s’ v (31)
(3, s*).wrdep(t,t',s) A do(Rollback(t'),s*) C s A
=(3s**)do(Commit(t), s**) C do(Rollback(t'),s*),

Dependency axioms characterizing the fluentsr dep, c_dep, sc_dep, and wr _dep are:

r_dep(t,t',s) = transConflictNT(t,t',s), (32)
sc_dep(t,t',s) = readsFrom(t,t',s), (33)
c-dep(t,t',do(a, s)) = a = Spawn(t,t') Vv (34)

cdep(t,t', s) A —~termAct(a,t) A —termAct(a,t'),
wr_dep(t,t' do(a, s)) = a = Spawn(t',t) V

35
wr_dep(t,t', s) A —termAct(a,t) A —termAct(a,t'). (35)
p ) )

Asan example of what they mean, the last axiom says that atransaction spawning another transaction
generates aweak rollback dependency of thelater one on thefirst one, and this dependency ends when
either transactions execute a terminating action.

The successor state axioms for nested transactions are of the form:

F(Z,t,do(a,s)) = (3)®p(Z,a,t, s) A =(3t")a = Rollback(t") Vv
[(3t").a = Rollback(t") A =(3t*)parent(t*,t", s) A restore BeginPoint(F, %,t",s)]V
[(3t").a = Rollback(t")A(3t*)parent(t*, 1", s) ArestoreSpawn Point(F, Z,t", s)], (36)

onefor each fluent of therelational language. Here ® (7, a, 1, s) isaformulawithfree variablesamong
# a,t, and s; restore Begin Point(F, #,t, s) isdefined in (11), and restoreSpawn Point(F, #,t, 5)
isthefollowing abbreviation:

restoreSpawnPoint(F, I t,s) =4
[(Fa”, s, s*,t',t*).do(Spawn(t',t),s") C do(a*,s*) C s A writes(a*, F,t) A F(Z,t*,5")] Vv
[(Va*,s*, s, t").do(Spawn(t',t),s') C do(a*,s*) C s D ~writes(a®, F,t)] A (It*)F(Z,t*, 5).

A basic relational theory for nested transactionsis defined asin Section 4, but where the relational
language includes Spawn(t,t') as afurther action, and the axioms (27) — (28) replace axioms (12) —
(15), the axioms (32) — (35) replace the axioms (17) — (18), and the set D isaset of successor state
axioms of theform (36). All the other axioms of Section 4 remain unchanged.

Now we state some of the propertiesof nested transactionsas an illustration of how such properties
are formulated in the situation calculus. Similarly to Theorem 2, we can show that a basic relationa
theory for nested transactionslogically implies the commit and weak rollback dependency properties.

Theorem 8 (Atomicity of Nested Transactions) Suppose D isarelational theory for nested transac-
tions. Then for every relational fluent #

D Elegal(s) D
(Vt, s1,52){[s" = do(Begin(t),s1) Vs’ = do(Spawn(t),s1)] A
s’ Cdo(a, s2) C s A (Fa*, s*)[s' C do(a*,s™) C do(a, s2) A writes(a”, F, )] D
[(a = Rollback(t) D ((Ft1)F (¥, t1,do(a, s2)) = (Tt2) F(Z,12,51))) A
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Definition 2 (Serializability of Nested Transactions)

transCon flict NT* (t,t',s) =q (YO)[(Vt)C(t,t,s) A (Vs t,t' ") [C(t,1",s) A
transConflict NT ("', s) D C(t,t',s)] D C(t,t,s)],
serializable NT(s) =4 (Vt).do(Commit(t),s') C s D —transConflict NT*(t,t, s).

Theorem 9 (Isolation of Nested Transactions) Suppose D isa relational theory for nested transac-
tions. Then

D E legal(s) D serializable NT(s).

6 Smulating ATMs

GOLOG, introduced in [13] and enhanced with parallelismin [7] (ConGolog), isasituation cal culus-
based programming language for defining complex actions in terms of a set of primitive actions ax-
iomatized in the situation calculus. It has the following Algol-like control structures Sequence ([« ; 5];
Do action «, followed by action 3); Test actions (p?; Test the truth value of expression p in the current
situation); Nondeterministic action choice (a | 3; Do a or 3); Nondeterministic choice of arguments
((m z)a; nondeterministically pick a value for z, and for that vaue of z, do action «); Conditionals
and whileloops; and Procedures, including recursion. nil represent the empty program. Thefollowing
are ConGolog constructs for expressing parallelism: Concurrency ([« || £]; Do « and 5 in pardll€l);
Concurrent iteration (all; Do o zero or moretimesin paralld). The purpose of this section is to show
how GOLOG programs are used to capture transactionsand how the semantics of thisprogramsisused
to smulate the ATMs.

6.1 Waell-formed GOLOG Programs

GOLOG syntax is built using consructs that suppress any reference to situationsin which test are eval-
uated. These will be restore at run time by the GOLOG interpreter. The followingis a restriction to
relational languages of asimilar definition givenin [18].

Definition 3 Suppose R isa reational language. Then the situation-suppressed terms of $R are given
by:
1. Anyvariableor constant of sort actions, objects, or situationsof R isa situation-suppressedterm.

2. If a is an action function symbol of R other than Sy and do, and ¢4, - - - ,¢,, are variables or
congtantsof R, then a(t4, - - - , ¢,,) isa situation-suppressed term.

3. For any situationterm o and any action terma, do(a, ) isa situation-suppressed term.
The situation-suppressed formulas of $R are inductively given as follows:

1. Whenever ¢, ¢ aresituation-suppressedterms of thesame sort, then+ = ¢’ isa situati on-suppressed
formula. Notice that a situation-suppressed formula here, contrary to [18], may mention an
equality between terms of sort situations.

2. Whenever ¢ isa situation-suppressed term of sort actions, then Poss(¢) isa situation-suppressed
formula.

3. Whenever F'isann + 1-aryrelational fluent of R andt4, - - - , t,, are Situation-suppressed terms
of sort objects, then F'(t4, - - - , t,,) isa situation-suppressed formula.
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4. Whenever P isanm-ary situationindependant predicateof R and+, - - - , ¢,, aresituation-suppressed
terms of sort objects, then P (¢4, - - - ,t,) isa situation-suppressed formula.

5. Whenever ¢t and ¢ are situation terms of {R, then¢ C ¢’ isa situation-suppressed formula.

6. Are ¢ and v situation-suppressed formulasof R, so arealso —¢, ¢ A ¢, and (3z)¢ for any vari-
ablezx.

Calling situation terms like Sy, do(A, Sp), etc “situation”-suppressed might sound counterintuitive.
However, thisdefinition just means that situation-suppressed formulasarefirst order and may still men-
tion situationterms, but never aslast argument of relationa fluents; therefore situation-suppressed for-
mulas quantify only over thosesituationsthat arementioned in equalitiesbetween termsof sort situations
andin C atoms. For example, the following is a situation-suppressed formula

So C do(A, (do(B, S0))) A (Yz,y, z,w, t)[accounts(z, y, z,w,t) D z > 0],
whereas the following is not:
So C do(A, (do(B, So))) A (Ya,y, z,w,t, s)[accounts(x, y, z, w,t,s) D z > 0].

Definition 4 (Well formed GOL OG Programs) A GOLOG program has the following syntax:

(prog) = (internal action) | (test action)? | ({prog); (prog)) |
((prog)l(prog)) | ({prog) || (prog)) | (mz){prog) |
(prog)* | (Spawn(t,t'); (prog); End(t')) | (procedure call) |
(proc Py (#1)(prog) endProc; ---; proc P, (Z,)(prog) endProc ; (prog))
Notice that

1. (internal action) isa Situation-suppressed internal action term.
2. (test action) isa sSituation-suppressed formula.

3. Thevariable z in (mz){prog) must be of sort actions or objects, never of sort situations.

4. (procedure call) is a predicate —a procedure name —of theform P(t+, - - - , ¢,) where thet;
are situation-suppressed terms whose sorts match those of the n argumentsin the declaration of
P.

A well formed GOLOG program is syntactically defined as follows:

(wfprog) ::==(proc Py (Z1)(prog) endProc; ---; proc P, (Z,)(prog) endProc ;
Begin(t); (prog); End(t)

6.2 Semanticsof GOLOG Programs

With the ultimate goa of handling database transactions, it is appropriate to adopt an operationa se-
mantics of GOLOG programs based on a single-step execution of these programs; such asemanticsis
introduced in ([7]). First, two special predicates Trans and F'inal are introduced. T'rans(d, s,d’, s")
means that program é may perform one step in situation s, ending up in situation s’, where program §’
remainsto be executed. Final(d, s) means that program § may terminate in Situation s. A single step
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hereis either a primitive or atesting action. Then the two predicates are characterized by appropriate
axioms. These axioms contain, for example, the following cases (See [7] for full details):

Trans(81;082,s,8,s') = Final(81,s) A Trans(82,s,d,s") V
(3v).0 = (v;92) A Trans(d1,s,7,s),
Trans(81|82,s,d,s') = Trans(81,s,6,s") V Trans(82,s,d, s')

to express the semantics of sequences and nondeterministic choice of actions, respectively. Notice that
equivalenceslikethoseabove aretrand ating GOLOG constructsinto formul asof thesituation calculus.

Our definition of Trans differs from that of [7] with respect to the handling of primitive and test
actions:

Definition 5 (Semantics of T'rans)

Trans(a,s,a’,s') =4 Poss(a,s) Ad' = nil A
{(3ad",s" t)[s" = do(a, s) A systemAct(a’’ ;1) A Poss(a",s") Ns' = do(a",s")]V
s' = do(a,s) A [(Va",t)systemAct(a” 1) D —~Poss(a”, s)]}, (37)
Trans(¢?,s,a’',s') =4 Holds(¢,s,s') Aa' = nil. (38)

Inthe definition above, wetake particul aritiesof system actionsinto account when processing primitive
actions. These actions must occur whenever possible, so the interpreter must test for their possibility
upon each performance of aprimitiveaction. The formula(37) captures thisrequirement; it intuitively
means that the primitive action « may legally execute one step inthelog s, endingin log s’ where a’
remains to be executed iff a is possible, the remaining action o’ is the empty transaction, and either
any possible system action a” is executed immediately after the primitive action a has been executed
and thelog s’ contains the action a followed by the system action a”, or no system action is possible
and thelog s’ contains only the action a. The formula (38) says that the test action ¢ may legally be
performed one or more stepsinthelog s, endinginlog s’ where a’ remains to be executed iff ¢ holds
ins, yiedingalog s’ in away to be explained below, and a’ is an empty program.

Given situation cal culus axioms of adomain theory, an execution of aprogramd in situation s isthe
task of finding asituation s’ such that thereisafinal configuration (¢, s'), for some remaining program
4', after performing a couple of transitionsfromd, s to §’, s’. Program execution is captured by using
the abbreviaion Do(4, s, s') ([21]). In the single-step semantics, Do(d, s, s’) intuitively means that
program 4 is single-steped until the remainder of program § may terminate in situation s’; and s’ is
one of thelogsreached by single-stepinging the program é, beginningin agiven situation s. Formally,
Do(d, s, s') isdefined as follows ([7]):

Do(d,s,s") =g (36").Trans*(8,s,0',s") A Final(8', ),

where T'rans* denotesthetransitive closure of T'rans. Finally, a program execution startingin situa-
tion Sy isformally thetask of finding asituation s’ suchthat D |= Do(d, So, s), where D isthedomain
theory.

Definition 6 We use the notation ¢[s] to denote the situation cal culus formula obtained from a given
formula ¢ by restoring the situation argument s in all the fluents (astheir last argument) occurring in

®.

The predicate Holds(¢, s, s') captures the revised Lloyd-Topor transformations of [21]; these are
transformations in the style of Lloyd-Topor([14]), but without its auxilliary predicates. The predicate
Holds(¢, s, s') takes a formula ¢ and establish whether it holdsin the log s or not. If ¢ isafluent
literal, then the next log s’ will be do(¢, s); if itisanonfluent literal, then s’ = s; otherwise revised
Lloyd-Topor transformations are performed on ¢ until we reach literals. We capture this semantics as
follows:
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Definition 7 (Semantics of Holds)

Holds(¢,s,s') =4 ¢[s] As' = do(¢, s), when ¢ isafluent literal,

Holds(¢,s,s") =af (/)[5] A s’ = s, when ¢ isa nonfluent literal,

Holds((¢1 A ¢2),s,5") =a4r (3s").Holds(¢1,s,5") A Holds(¢o,s",s'),

Holds((¢1V ¢2)?,s,5") =4 Holds(¢1,s,s") V Holds(¢a,s,s'),

Holds((q51 D ¢o ) s') =4 Holds(—¢q V ¢2,s,5"),

Holds((¢1 = ¢2), 5 ') =g Holds((¢1 D ¢2) A (42 D ¢1),5,5),

Holds((Vl (/),s,s =4 Holds(—(3z)=¢,s,s),

Holds((3z) (/),s,s =qt Holds(¢,s,s'),

Holds(—=¢,s,s') =4 Holds(¢,s,s’),

Holds(=(¢1 A ¢2),s,s') =4t Holds(=é1,s,s") V Holds(=ds, s, s'),

Holds(—(¢1 V ¢2), ') =4 (35").Holds(—¢1,s,s") A Holds(—¢s,s", '),
(
(
(
(

Holds(—(¢1 D ¢2),5,5") =aqr Holds(—=—(¢1V ¢2),5,s"),
= (]S ) ) =af HOldS( ((f)l D) ¢ (¢2 D ¢1)],S,S/),
Holds(— VJ; Vo, s —df Holds((EI.r)—'¢,s,s ),

(

(

(
Holds(—(¢1

(
Holds(—(3x) (/),s,s =4t ~Holds(¢,s,s').

Definition 7 expresses a particular semantics for test actions that is appropriate for handling database
transactions. It isimportant to notice how our test actions are different than those of [7] and why they
are needed. Our test actions differ from those of ConGolog ([7]) in two ways. First of dl, unlikein
ConGolog, ours are genuine actions and not merely tests that may be forgotten as soon asthey are exe-
cuted. Werecord test actionsinthelog; i.e. performing atest changesthesituation. Second, depending
on the syntactic form of theformulain thetest, we may end up executing morethan just a“single step”.
More precisely, morethan one singleactionsare added to thel og whenever morethan onetests of fluent
literalsareinvolvedin theformulabeing tested. Thissemanticsisdictated by thevery nature of ATMs.
Here, test actions correspond to database reading actions. A transaction has no means of remembering
which transaction it had read from other than to record reading actionsin thelog. This cannot be done
with the semantics for test action found in [7]. In other words, in the absence of test actionsin thelog,
the semantics of [ 7] has no strai ghtforward way to express such thingsastransaction 7' reads datafrom
transaction 75.

6.3 Simulation

We use the GOLOG language as a transaction languagefor specifying and ssimulating ATMs at thelog-
ica level. To smulate a specific ATM, we first pick the appropriate basic relational theory D corre-
sponding to that ATM. Then, we writea GOLOG program 7' expressing the desired transactional be-
havior. Now simulating the program 7' amountsto the theorem proving task of establishing the entail-
ment D |= (3s’) Do(prog, So, s'), where Sy istheinitia, empty log.

A Do-based GOLOG interpreter for the situation calculus, written in Prolog, is described in [13].
To run our specification of transactions, we need to modify the GOLOG semantics and interpreter de-
fined in [13] to accommodate the changes described above and aso non-Markovian tests. Thusitis
possibleto test at theinterpreter level whether alog isasublog of another log. Theinterpreter provides
an operator implementing the predicate = which, therefore, needs not be hand-coded by the program-
mer.

We consider a Debit/Credit example which we now describe to illustrate how to formulate arela
tional theory for nested transactions.
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The database involves arelational language with:

Fluents: accounts(aid, bid, abal,t, s), branches(bid, bbal, bname,t, s), tellers(tid, thal t, s), and
served(aid, s).

Situation Independent Predicate: requested(aid, req).

Action Functions: a_insert(aid, bid, abal, tid,t), a_delete(aid, bid, abal  tid,t),tinsert(tid, tbal,t),
t_delete(tid, thal t), b_insert(bid, bbal, bname, ), b_delete(bid, bbal, bname, t), and report(aid).
Constants. Ray, Iluju, Misha, Ho, €c.

The meaning of thearguments of fluentsare self explanatory; and the relational language al so includes
the externa actions of nested transactions. Domain closure and unique name axioms are given in the
usual way; thuswe concentrate ourself on the remaining axioms. We enforce thefollowing ICs (ZC..):

accounts(aid, bid, abal, tid,t, s) A accounts(aid, bid', abal’ tid' /1’ s) D
bid = bid’, abal = abal’,tid = tid’,
branches(bid, bbal,bname,t, s) A branches(bid, bbal’, bname’,t', s) D
bbal = bbal’, bname = bname’,

tellers(tid, thal,t, s) Atellers(tid, thal’ t' s) D thal = thal’;
and we haveto verify the IC (ZC,)
accounts(aid, bid, abal, tid, t,s) D abal > 0

at transaction’s end.
A sample update precondition axiomisgivenin (9).
A sample successor state axiom isthe following for the fluent accounts(aid, bid, abal, tid, t, s):

accounts(aid, bid, abal, tid, t, do(a, s)) = (Ft1)(a = a-insert(aid, bid, abal, tid, 1) V
(Fta)accounts(aid, bid, abal, tid, 15, s) A —=(Ita)a = a_delete(aid, bid, abal, tid)) A
=(3t"Ya = Rollback(t') v
(3t').a = Rollback(t') A =(3t")parent(t” ' s) A
restore Begin Point(F, (aid, bid, abal, tid),t', s) V
a = Rollback(t') A (3" parent(t” 1, s) A

restoreSpawn Point(accounts(aid, bid, abal, tid),t', s).

Thisstatesthat thetuple (aid, bid, abal, tid) will beintheaccounts relationrelativeto thelog do(a, s)
iff the last database operation a in the log inserted it there, or it was already in the accounts relation
relativetothelog s, and a didn’t deleteit; all this, provided that theoperation a isnot rollingthe database
back. If a isrolling the database back, the accounts relation will get avalue according to the logic of
(5).
Finally, the following successor state axiom is used for synchronization purposes:
served(aid, do(a, s)) = report(aid) V served(aid, s).
The action report(aid), whose precondition axiomis
Poss(report(aid), s) = true,
is used to make thefluent by indicating that a request emitted by the owner of the account aid has been
granted. These requests are registered in the situation independent predicate requested(aid, req).
Now we givethefollowing GOLOG procedures which are well-formed and capture the essence of
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the debit/credit example:
proc a_update(t, aid, amt)
(m bid, abal, abal’, tid)[accounts(aid, bid, abal, tid,t)? ;
[abal" = abal 4+ amt]? ; a_del(aid, bid, abal, tid,t) ; a_ins(aid, bid, abal’, tid, t))
endProc
proc execDebitCredit(t, bid, tid, aid, amt)
a_update(aid,amt) ;
(m abal) [accounts(aid, bid, abal tid,t)? ;t_update(t,tid, amt) ; b_update(t, bid, amt)]
endProc

proc processReq(t, tid, aid, amt)
(7 bid, abal)[accounts(aid, bid, abal, tid, t)? ; execDebitCredit(t, bid, tid, aid, amt)] ;
endProc
proc processTrans(t)
Begin(t); [(7 bid, aid, abal, tid, req).
{accounts(aid, bid, abal, tid, t) A
requested(aid, req) A —served(aid)}? ; report(aid) ;
Spawn(t,aid) ; processReq(t, tid, aid, req) ; End(aid)]” ;
—((3 aid, req)requested(aid, req))? ; End(t)
endProc

Similarly to the first procedure, we can give procedures ¢ _update(tid, amt) and b_update(bid, amt)
for updating teller and branch balances, respectively. The ACI(D) properties are enforced by the in-
terpreter that either commits work done so far or rollsit back whenever the database general ICs are
violated. Thus, well formed programs are a specification of transactions with the full scale of a pro-
gramming language at the logical level. Noticethat aformula¢ inatest ¢7 isin fact a situation sup-
pressed formulawhose situation argument isrestored at run-time by theinterpreter. Noticealso the use
of the concurrent iteration in the last procedure; this spawns a new child transaction for each account
that emitted a request but have not yet been served. For simplicity in this example, we have assumed
that each account has a most one request; this alows us to use the account identifiers aid to denote
spawn subtransactions.

Now we can simulate theprogram, say processTrans(T'), by performing thetheorem proving task
of establishing the entail ment

D E (3s') Do(processTrans(T), Sy, s'),

where S istheinitial, empty log, and D isthe basic relationa theory for nested transactions that com-
prisesthe axioms above; thisexactly means that welook for some log that is generated by the program
T. We areinterested in any instance of s resulting from the proof obtained by establishing this entail-
ment. Such an instance is obtained as a side-effect of this proof.

In Definition 5, we take particularities of system actions into account. These actions must occur
whenever possible, so the interpreter must test for their possibility upon each performance of a primi-
tive action. Definition 5 captures this requirement and alows us to show that Do generates only legal
situations:

Theorem 10 Suppose D isa relational theory (either for flat transactionsor for CNTs), and let 7" be
awell formed GOLOG program. Then,

D = (Vs).Do(T, So, s) D legal(s).
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7 Related Work

The inability of the classica model for concurrency control (the serializability theory) to cope with
nested transactions has been addressed in [1]. This work develops a seriaizability theory for nested
transactions. The new serializability model is articulated around the notion of computation, a general-
ization of the notion of history which is central to the classical seridizability theory. Like the history
of the classicad model, a computation involves the execution of database primitive and complex op-
erations. Unlike the history, which is a sequence of primitive operations, a computationisatree. The
interleaving of several computationsconstituteapartialy ordered forest. Similarly totheclassica case,
aforest is correct (i.e. seriaizable) iff it isequivalent to aserid execution of the involved trees. This
criterion is used to prove the correctness of concurrency control agorithms, i.e. schedulers. Correct-
ness is considered as a property of computations generated by a scheduler. Thisisin spirit similar to
what our Theorem 10 conveys, if we view the GOLOG interpreter as a scheduler. However, we do not
go that far in this paper to deal with the proof of correctness of given schedulers. In addition to that,
we gtill consider alinear log. This might have an implicit tree-structure that has yet to be extracted to
compare our logica approach with the tree-approach of [1].

Chrysanthisand Ramamritham ([6],[5]) present aframework called ACTA which alowsto specify
effects of transactions on objectsand on other transactions. Our framework issimilar to ACTA. Infact,
we usethesame buildingblocksfor ATMsasthoseused in ACTA. However, thereasoning capability of
thesituationcal culus exceeds that of ACTA for thefollowingreasons: (1) thedatabaselogisafirst class
citizen of the situation calculus, and the semantics of all transaction operations— C'ommit, Rollback,
etc. — are defined with respect to constraints on thislog. Nowhere have we seen a quantification over
historiesin ACTA, so that there is no straitforward way of expressing closed form formulas involving
historiesin ACTA. (2) Our approach goes far beyond ACTA as it is an implementable specification,
thus alowing one to automatically check many properties of the specification using an interpreter. To
that end, the main implementation theorems needed areformulated in[21]. Findly, (3) althoughACTA
deals with the dynamics of database objects, it is never explicitly formulated as alogic for actions.

In [3], Bertossi et al. propose a situation calculus-based formalization of database transactions.
They extend Reiter’s specification of database updates to transactions. In fact, the idea of using trans-
actiona actionslike Begin, Rollback, End, and Commit for flat transactions was first introduced in
[3], as was the the axiomatization of the notion of consistency verification at the transaction end. Our
approach, however, is based on a situation calculus that is explicitly non-Markovian. Moreover, our
work goes beyond pure flat transactionsto deal with an account of notions such as serializability and
atomicity, and with ATMs which are more complex.

Transaction Logic ([4]) and Satelog ([15]) are languages for database state change that include a
clean model theory. However, these approaches, unlikethe situation calculus, do not view elementary
updates as first order terms; they appeal to specia purpose semantics to account for database trans-
actions; finaly, they are not general enough to be used for modeling any given transaction model or
“inventing” anew onefrom scratch a asufficiently high level asisthe casein ACTA and the situation
calculus.

8 Conclusion and Future Work

One must distingui sh between our approach whichisapurely logical, abstract specificationinwhich all
system properties are formulated relative to the database log, and an implementation which normally
materializes the database using progression ([21]). Thisis the distinguishing feature of our approach.
The database log is afirst class citizen of the logic, and the semantics of all transaction operations —
Commit, Rollback, etc. —are defined with respect to thislog.

As we acknowledged it in the introduction, database transaction processing is now a mature area
of research. However, one needs to know whether our formalization indeed captures any existing the-
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ory, such as ACTA, a the same level of generaity. Therefore, one needs to prove the correctness of
the formalization. For example, we need an effective trandation of our basic relational theoriesinto
ACTA axiomsfor arelational database and then show that the legal logsfor the situation calculus basic
relationa theory are precisely the correct historiesfor itstrandation into arelational ACTA system.

Thus far, we have given axioms that accommodate a complete initial database state. This, how-
ever, isnot arequirement of the theory we are presenting. Therefore our account could, for example,
accommodate initial databases with null values, open initia database states, initial databases account-
ing for object orientation, or initial semistructured databases. These are just aexamples of some of the
generaizationsthat our initial databases could admit.

Finaly, itisimportant to notice that the only place where the second order nature of our framework
isneeded isinthe proof of the properties of the transaction model sthat rely on the second order induc-
tion principle of Section 4. For the Markovian situation calculus, it is shown in [18] that the second
order nature of thislanguageisnot at all needed in simulating basic action theories. It remains to show
that thisis dso the case for the non-Markovian setting.

The framework described in thiswork is currently being implemented using a regression mecha
nism described in [9]. On-going work extending the framework includes: accounting for some of the
recent ATMs, for example those reported in [11] and open nested transactions proposed in the context
of mobile computing, implementing the specifications of significant ATMs, proving the correctness of
the approach, introducing on-line, that is actual execution of transactions, as opposed to off-lineor hy-
pothetical execution. We will also consider modeling active rules and different active rule processing
mechani sms withinthe framework of this paper inthe near future ([12]). Finally, wewill explore ways
of making thisframework part of alogic-based devel opment methodol ogy for ATMs. Such a method-
ology would exhibit the important advantage of uniformity in many of its phases by using the single
language of the situation calculus.
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