
Simulation of Advanced Transaction Models Using
GOLOG

�

Iluju Kiringa
Department of Computer Science

University of Toronto, Toronto, Canada
kiringai@cs.toronto.edu

Abstract

We proposea logical framework for describing, reasoningabout, and simulating transaction mod-
els that relax some of the ACID (Atomicity-Consistency-Isolation-Durability) properties of classi-
cal transactions. Such extensions, usually called advanced transaction models (ATMs), have been
proposed for dealing with new database applications involving long-lived, endless, and cooperative
activities. Our approach appeals to non-Markovian theories, in which one may refer to past states
other than the previous one. We specify an ATM as a suitable non-Markovian theory of the situation
calculus, and its properties, including the relaxed ACID properties, as formulas of the same calcu-
lus. We use our framework to formalize classical transactions and closed nested transactions. We
first formulate each ATM and its properties as a theory of a certain kind and formulas of the situation
calculus, respectively. We then define a legal database log as one whose actions are all possible and
in which all the ���������
	 and ������������� actions must occur whenever they are possible. After that,
we show that the known properties of the ATM, including the relaxed ACID constraints, are prop-
erties of legal logs and logical consequences of the theory corresponding to that ATM. Finally, we
also indicate how to implement such a specification as a background theory for transaction programs
written in the situation calculus based programming language GOLOG.

1 Introduction

Transaction systems that constitute the state of the art in database systems have a flat structure defined
in terms of the so-called ACID (Atomicity-Consistency-Isolation-Durability)properties. From the sys-
tem point of view, a database transaction is a sequence of operations on the database state, which exhibit
the ACID properties and are bracketed by ��������� and �!�"#"$��% or ��������� and &'!�(
(*),+.-,/ ([10]). A trans-
action makes the results of its operations durable when nothing goes wrong before its normal end by
executing a �!�"#"$��% operation, upon which the database cannot be rolled back. Should anything go
wrong before the commitment, the transaction rolls the database back to the state before beginning.

Various transaction models have been proposed to extend the classical flat transactions by relaxing
some of the ACID properties (see [8],[11] for a collection of the best examples of these models). Such
extensions, generally called advanced transaction models (ATMs), are proposed for dealing with new
applications involving long-lived, endless, and cooperative activities. The ATMs aim at improving the
functionality and the performance of the new applications.

The ATMs, however, have been proposed in an ad hoc fashion, thus lacking in generality in a way
that it is not obvious to compare the different ATMs, to exactly say how they extend the traditional
flat model, and to formulate their properties in a way that one clearly sees which new functionality has
0
An extended abstract reporting on this work appears in Proceedings of the 8th International Workshop on Knowledge Rep-

resentation meets Databases (KRDB-2001), Rome, September, 2001.

1

been added, or which one has been subtracted. To address these questions, there is a need for a general
and common framework within which to specify ATMs, simulate these, specify their properties, and
reason about these properties. Thus far, ACTA ([6],[5]) seems to our knowledge the only framework
addressing these questions at a high level of generality. In ACTA, a first order logic-like language is
used to capture the semantics of any ATM.

In this paper, we address the problem of specifying database transactions at the logical level using
the situation calculus ([21]). Our approach appeals to non-Markovian theories([9]), in which one may
refer to past states other than the previous one. We provide the formal semantics of an ATM by spec-
ifying it as a theory of the situation calculus called basic relational theory, which is a set of sentences
suitable for non-Markovian control in the context of database transactions; the properties of the ATM,
including the relaxed ACID properties, are expressed as formulas of the same calculus that logically fol-
low from the basic relational theory. We illustrate our framework by formalizing classical transactions
([10]) and closed nested transactions ([22]). We first formulate each transaction model and its properties
as a basic relational theory and formulas of the situation calculus, respectively. We then define a legal
database log as one whose actions are all possible and in which all the �!�"$"#� % and & !�((*) + - / actions
must occur whenever they are possible. After that, we show that the known properties of the transaction
model, including the relaxed ACID constraints, are properties of legal logs and logical consequences
of the basic relational theory corresponding to that transaction model. Finally, we also indicate how to
implement such a specification as a background theory for transaction programs written in the situation
calculus based programming language GOLOG.

Ours is an ongoing work whose main contributions reported in this paper can succintly be summa-
rized as follows:

1. We construct logical theories called basic relational theories to formalize ATMs along the tradition
set by the ACTA framework ([5]); basic relational theories are non-markovian theories in which one
may explicitly refer to all past states, and not only the to the previous one. They provide the formal
semantics of the corresponding ATMs. They are an extension of the classical relational theories of [19]
to the database transaction setting.

2. We extend the notion of legal database logs introduced in [20] to accomodate transactional actions
such as ��������� , �!�"#"$��% , etc. These logs are first class citizen of the logic and properties of the ATM
are expressed as formulas of the situation calculus that logically follow from the basic relational theory
representing that ATM.

3. Our approach goes far beyond constructing logical theories, as it provides one with an implementable
specification, thus allowing one to automatically check many properties of the specification using an
interpreter. Our implementable specifications are written in an extension of GOLOG that includes par-
allelism ([7]). We specify an interpreter for running these specifications and show that this interpreter
generates only legal logs.

2 Logical Foundations

We use a basic relational language, which is a fragment of the situation calculus ([21],[9]) that is suit-
able for modeling relational database transactions. The language is a many-sorted second order lan-
guage with sorts for + -�%��*!�� � , � � %�� +�%���!�� � , and !�) � ��-�% � . � -�%���!�� � are first order terms consisting of an
action function symbol and its arguments, � � %�� +�%���!�� � are first order terms denoting finite sequences
of actions, and !�) � � -�% � represent domain specific individuals other than actions and situations. In for-
malizing databases, actions correspond to the elementary database operations of inserting, deleting and
updating relational tuples, and situations represent the database log. Relations and functions whose
truth values vary from situation to situation are called fluents, and are denoted by predicate symbols
and function symbols with last argument a situation term.

The language has an alphabet with variables and a finite number of constants for each sort, a finite

2

number of function symbols called action functions (e.g., + � � (��*+ - - ������)���+ � -�� ���	� + - -) + (
� %��,(
(*��������� %�),
a finite number of function symbols called functionalfluents, a finite number of function symbols called
situation independent functions, a finite number of predicate symbols called relational fluents (e.g.,
+ - - ! � � % � �*+ - - ������)���+ � -�� ���	� + - -) + (
� %��,(
(*��������� %�� �), and a finite number of predicate symbols called sit-
uation independent predicates. Situations are represented using a binary function symbol � ! : � !��*+�� �
denotes the sequence resulting from adding the action + to the sequence � . There is a distinguished
constant ��� denoting the initial situation; ��� stands for the empty action sequence. The language also
includes special predicates ��! � � , and � ; � ! � � �*+�� � means that the action + is possible in the situation
� , and � � ��� states that the situation ��� is reachable from � by performing some sequence of actions.
In database terms, � � ��� means that � is a proper sublog of the log ��� .

For simplicity, we consider basic relational languages whose only primitive update operations cor-
respond to insertion or deletion of tuples into relations. For each such relation ������ � %�� � , where �� is a
tuple of objects, % is a transaction argument, and � is a situation argument, a primitive internal action
is a parameterized primitive action of the situation calculus of the form � ��� � ���� � %� or � �.�,(
���� � %� . In-
tuitively, � ��� � ���� � %� and � � � (
���� � %� denote the actions of inserting the tuple �� into and deleting it
from the relation � by the transaction % , respectively; for convenience, we will abbreviate long sym-
bols when necessary (e.g., + - - ! � � % �*� � ���� � %� will be abbreviated as + �*� � ���� � %�). Below, we will use
the following abbreviation:

� ��� %�� � �*+������ %�! #"%$&��'(�� �) +* +� �*� � ���� � %�-, +. +� � �,(
���� � %���
one for each fluent. We distinguish the primitive internal actions from primitive external actions which
are ��� � �*�/� %� , �!�"$"#� %���%� , 0��-����%� , and &'!�(
(*) + - /���%� , whose meaning will be clear in the sequel of this
paper; these are external as they do not specifically affect the content of the database. The argument %
is a unique transaction identifier.

A dynamic domain is axiomatized in the situation calculus with non-Markovian axioms which de-
scribe how and under what conditions the domain is changing or not changing as a result of performing
actions. Such axioms are called basic action theory in [21]. They comprise the following: domain
independent foundational axioms for situations; action precondition axioms, one for each action term,
stating the conditionsof change; successor state axioms, one for each fluent, stating how change occurs;
unique names axioms for action terms; and axioms describing the initial situation. Finally, by conven-
tion in this paper, a free variable will always be implicitly bound by a prenex universal quantifier. Basic
action theories of [21] are capturing Markovian control. they have been extended to non-Markovian
control in [9].

3 The Specification Framework

In [6], five building blocks for ATMs are identified: history, intertransaction dependencies, visibility
of operations on database objects, conflict between operations, and delegation of responsibility for ob-
jects visible to a transaction. We now show how these building blocks are represented in the situation
calculus.

In the situation calculus, the history of [6] corresponds to the log. We extend the basic action theo-
ries of [21] to include a specification of relational database transactions, by giving action precondition
axioms for external actions such as ���������/��%� , 0��-����%� , �!�"$"#� %���%� , &'!�(
(*) + - /���%� , �	1 + � �/��%�� % � , etc.
 �!�"$"#� %���%� and & !�((*) + - /-� %� are coercive actions that must occur whenever they are possible. We also
give successor state axioms that state how change occurs in databases in the presence of both internal
and external actions. All these axioms provide the first dimension of the situation calculus framework
for axiomatizing transactions, namely the axiomatization of the effects of transactions on fluents; they
also comprise axioms indicating which transactions are conflicting with each other, and what sublogs
of the current log are visible; which visible sublogs are delegated to the transactions is expressed im-
plicitely in successor state axioms.

3

A useful concept that underlies most of the ATMs is that of responsibility over changes operated
on data items. For example, in a nested transaction, a parent transaction will take responsibility of
changes done by any of its committed children. The only way we can keep track of those reponsi-
bilities is to look at the transaction arguments of the actions present in the log. To that end, we in-
troduce a fluent ��� � 1 !�� � �*) (�� � %���+�� � , which intuitively means that transaction % is responsible for the
action + in the log s, which we characterize with an appropriate successor state axiom of the form
��� � 1 !�� � ��) (*� ��%�� + � ���.!���+�� �
 ������� � %���+�� + � � � , where ����� � %���+�� + � � � is a transaction model-dependent
first order formula whose only free variables are among %�� +���+ � � , and � . For example, in the flat trans-
actions, we will have the following, simple axiom:

��� � 1 !�� � �*)�(*� � %���+�� � � ��' + � + + � ���� � %�
	
i.e., each transaction is considered responsible for any action whose last argumment bears its name.

To express conflicts between transactions, we need the predicate %�����" � -�%��*+�� %� and the fluents
� 1	� �!���� (*��-�%��*+�� + � � � and %���+.� � �!���� (*��-�%���%�� % � � � , whose intuitive meaning is that the action + is a
terminal action of % , the action + is conflicting with the action + � in � , and the transaction % is conflicting
with the transaction % � in � ; their characterization is as follows:

%�����" � -�%��*+�� %�("%$ + �!�"#"$��%�� %� , +* &'!�(
(*) + - /���%�
� 1	� �!���� (*�*-�%��*+���+ � � � / #"%$������ ��'(�� ���� � ���� � %���� !���+	��� !��*+ � � �
� � � ���� � %���� !���+ � ��� !���+	� �

���	

here, � is the set of fluents of the relational language; the later definition says that two internal actions
+ and + � conflict in the log � iff the value of the fluents depends on the order in which + and + � appear
in � ;

%���+ � � �!���� (��*-�%�� %�� % � ��� !��*+�� � � � %�� % ��� ��� � 1 !�� � �*) (�� � % � ��+�� � �
��' + � � � �
� ��� � 1 !�� � �*) (�� � %���+ � � � � � !��*+ � � � � � � � � 1	� �!���� (*�*-�%��*+ � ��+�� � �� ,
%���+ � � !���� (*��-�%�� %�� % � � � � � %�����" � -�%���+	� %��	

(1)

i.e., transaction % conflicts with transaction % � in the log � iff % � executes an internal action + after % has ex-
ecuted an internal action + � that conflicts with + in the log � . Notice that we define � 1	� �!���� �
(*-�%��*+���+ � � �
in terms of performing action + and action + � one immediately after the other and vice-versa; in the
definition of %���+ � � �!���� (*��-�%���%�� % � � � , however, we allow action + � to be executed long before action
+ . This does not mean that actions that are performed between + � and + are irrelevant with respect to
update conflicts. Rather, (3) just means that actions + and + � conflicts whenever executing one imme-
diately after the other would results in a discrepancy in the truth value of at leat one of the relational
fluents; and (1) allows for the possibility of other update conflicts arising between + � and other actions
before the execution of + .

A further useful fluent that we provide in the general framework is ����+ � � � ��!�" � %�� % � � � . This is
used in most transaction models as a source of dependencies among transactions, and intuitivelymeans
that the transaction % reads a value written by the transaction % � in the log � . The axiomatizer must
provide a successor state axiom for this fluent depending on the application.

The visibilityof portionsof the log is characterized by a transaction model-specific fluent � � �*)�(*� � %�� � ,
which intuitivelymeans that the transaction % sees the log � . In general, it has the form � � �*)�(*� � %�� � � ."%$! � %�� � , where

! ��%�� � is a conditionon the log � depending on the transaction % . In the transaction mod-
els formalized this paper, we have � � ��) (*� ��%�� � � %�� � � . In the sequel, we will no longer deal with this
aspect.

The second dimension of the situation calculus framework is made of dependencies between trans-
actions. All the dependencies expressed in ACTA ([6]) can also be expressed in the situation calculus.
As an example, we have:

Commit Dependency of % on % �

4

�.!��� �!�"#"$��%�� %��� � � �����
� � !��* �!�"$"#� %���% � �� ��� �� ����� � !��� �!�"#"$��%�� % � �� ��� � � !��* !�"#"#� %���%��� � � ;

i.e., If % commits in a log ��� , then, whenever % � also commits in ��� , % � commits before % .
Strong Commit Dependency of % on % �
��' ���
� !��� �!�"#"$��%�� % � �� ��� � ����� ��' � �� !��* �!�"$"#� %���%��� � �� ��� ;

i.e., If % � commits in a log ��� , then % must also commit in that log.

Rollback Dependency of % on % �
��' ���
� !���& !�((*) + - /-� % � �� ��� � ���	� ��' �
� !���& !�((*) + - /-� %��� � �� ��� ;

i.e., If % � rolls back in a log ��� , then % must also roll back in that log.

Weak Rollback Dependency of % on % �
�.!���&'!�(
(*) + - /-� % � �� ��� (� ���	�

 ��� �
� � � ��� � �.!��� �!�"#"$��%�� %��� � �� � !��*&'!�(
(�) + - /-��% � �� ��� �� �
��' ��� �
� !���& !�((*) + - /-� %��� ��� � �� ���� ;

i.e., If % � rolls back in a log � � , then, whenever % does not commit before % � , % must also roll back in � � .
As we shall see below, all these dependencies are properties of legal database logs of various trans-

action models.
To control dependencies that may develop among running transactions, we use a set of predicates

denoting these dependencies. For example, we use - �.��1 � %�� % � � � , � - � ��1 ��%�� % � � � , � � �
1���%�� % � � � , and� � �.��1 � %�� % � � � to denote the commit, strong commit, rollback, and weak rollback dependencies, re-
spectively. These are fluents whose truth value is changed by the relevant transaction models by taking
into account dependencies generated by the execution of its external actions (external dependencies)
and those generated by the execution of its internal actions (internal dependencies). As an example, in
the nested transaction model, we have the following successor state axiom for � � � ��1 � %�� % � � � :

� � � ��1 � %�� % � ��� !��*+�� � � � + ��1 + � �/� %�� % � -,
� � � �
1���%�� % � � � � � %�����" �'-�%��*+�� %� � � %�����" � -�%���+	� % � �)

This says that a weak rollback dependency of % on % � arises in � !��*+�� � when either + is the action of %
spawning % � , or that dependency existed already in � and neither % nor % � terminated with the action + .

4 Flat Transactions

Flat transactions exhibit ACID properties. This section introduces a characterization of flat transactions
in terms of theories of the situation calculus. These theories give axioms of flat transaction models that
constrain database logs in such a way that these logs satisfy important correctness properties of database
transaction, including the ACID properties.

A sequence of database actions is a flat transaction iff it is a sequence � +�����)�)�) � +�� � , where the +��
must be ��������� , and +�� must be either �!�"#"$��%�� %� , or &'!�(
(*) + - /-� %� ; +���� � �� ��������������� , may be any
of the primitive actions, except ���������/��%� , &'!�(
(*) + - /���%� , and !�"#"#� %���%� ; here, as before, the argument
% is a unique identifier for the atomic transaction. Flat transactions can be sequenced or run in parallel.
Notice that we do not introduce a term of a new sort for transactions, as is the case in [3]; we treat trans-
actions as run-time activities, whose compile-time counterparts will be GOLOG programs introduced
in Section 6. We refer to transactions by their names that are of sort object.

The axiomatization of a dynamic relational database with flat transaction properties comprises the
following classes of axioms:

5

Foundational Axioms. These are constraints imposed on the structure of database logs:

� !���+ � � � � / � !��*+�� � � �� � + � +�� � � � � � � (2)

��� � �) � ���-�� � � � +	� � �� ��� � � � ��� !��*+�� � � � � � � �
� � � �� (3)

� � � � �-���� (4)
� � � !���+	� � � � � � � �) (5)

They characterize database logs as finite sequences of updates. Notice that the second axiom is a second-
order induction axiom; the third and fourth axioms characterize the subsequence relation � .

Integrity Constraints. These are constraints imposed on the data in the database at a given situation � ;
their set is denoted by

�����
for constraints that must be enforced at each update execution, and by

���	�
for those that must be verified at the end of the flat transaction.

Update Precondition Axioms. There is one for each internal action �.���� � %� , with syntactic form

��! � � � �.���� � %��� � � ��' % � �
������ � % � � � ��� � ��� !�� �.���� � %��� �
 � � � � � �*� �-��%�� � �) (6)

Here,
�� ���� � %�� � is a formula with free variables among �� � % , and � . These axioms characterize the
preconditions of the update � ; �

�
� � and � � � � ��� � ��%�� � are defined as follows:

�
�
� � #"%$

�
��� ������� � �� � �) (7)

� � � � ��� � ��%�� � " $ ��' � � �) � !��*���������/��%��� � � �� � �
� � +�� � � � �� � !��*���������/��%��� � � �+� !��*+�� � � � (� �	� + � & !�((*) + - /-� %� � + � 0��-����%� �
) (8)

In a banking Credit/Debit example formalized below, the following states that it is possible to insert a
tuple into the %�� ((*��� relation relative to the database log � iff, as a result of performing the actions in the
log, that tuple would not already be present in the %��,(
(*��� relation, the integrity constraints are satisfied,
and transaction % is running.

��! � � ��% � �,(*��%�� � %������ %�) + (
� %��� � � ��' % � �%��,(
(*������%������ %�) + (
� % � � � �
�

�
���.!�� % � � (*��%�� ��%����	� %�) + (
� %��� � � � � � � � ��� � � %�� � �) (9)

Successor State Axioms. These have the syntactic form

������ � %���� !���+	� �
 � ��' �% � � � ���� ��+�� �% � � � � ����' % � � �+/ &'!�(
(�) + - /-��% � � ,
��' % � � +/ & !�((*) + - /-� % � � � ��� � %�! ��� ���������-��!���� %������ �� � % � � � � �� (10)

where � � ���� � +�� �%�� � is a formula with free variables among �� ��+�� �%�� � . There is one such axiom for each
relational fluent � , and ��� � %�! �������������-��!���� %��������� � %�� � is defined as follows:

��� � %�! ������� � �*�-� !��*� %��������� � %�� � ! "%$
� ��' + � � � � � � � � % � �) �.!������������/��%��� � � (� � !��*+ � � � � � � � � ��� %�� � ��+ � ����� %� � ������ � % � � � � � ,
� � � + � � � � � � � �) �.!������������/��%��� � � (� � !��*+ � � � � �� �	� � � ����%�� � ��+ � ����� %� � � ��' % � ������� � % � � � �) (11)

Intuitively, ��� � %�! �������������-��!��*� %��������� � %�� � means that the system restores the value that the fluent �
with arguments �� had before the execution of the ��������� action of the transaction % in the log � if the
transaction % has updated � ; it keeps the value it had in � otherwise. Given the actual situation � , the
successor state axioms characterize the truth values of the fluent � in the next situation � !��*+�� � in terms
of all the past situations. In the banking example, the following states that the tuple ��%����	� %�) + (� will be
in the %�� (
(���� relation relative to the log � !��*+�� � iff the last database operation + in the log inserted it

6

there, or it was already in the %��,(
(*��� relation relative to the log � , and + didn’t delete it; all this, provided
that the operation + is not rolling the database back. In the case the operation + is rolling the database
back, the %�� ((*��� � relation will get a value according to the logic of (11).

%��,(
(*��� � � %������ %�) + (
� %���� !��*+�� � � � �
��' % �� +. % �*� � ���,%���%����	� %�) + (
� % � -,
��' % ���%��,(
(*��� � � %������ %�) + (
� % � � � � ����' % � + % � � (*��%�� ��%����	� %�) + (
� % �
 � ����' % � +. &'!�(
(�) + - /-��% � -,
��' % � �) + &'!�(
(*) + - /���% � � ��� � %�! ��� � � � �*�-��!���� %���%��,(
(*��� � ����%����	� %�) + (��� % � � � �)

Precondition Axioms for External Actions. This is a set of action precondition axioms for the trans-
action specific actions ���������/��%� , 0��-����%� , �!�"$"#� %���%� , and &'!�(
(�) + - /-��%� . The external actions of flat
transactions have the following precondition axioms:

� ! � � �*���������/��%��� � � ����' � � �� !��*���������/��%��� � � �� � � (12)

� ! � � ��0��-��� %��� � � � � � � ��� � � %�� � �� (13)

� ! � � �* �!�"$"#� %���%��� � � ��' � � �) � � !���0 �-�	� %��� � � � �
��� ������� � �� � �

� � % � �� � - �.��1 � %�� % � � � � ��' � � �
� !��* !�"#"#� %���% � �� � � � � � � �
(14)

� ! � � �*&'!�(
(*),+.-,/-��%��� � � ��' � � �� � � !���0��-����%��� � � � � �
� ����� ��� � �� � � ,

��' % � � � � �
� � � ��1 � %�� % � � � � �.!���&'!�(
(*) + - /-� % � �� � � � �� � �
)
(15)

Dependency axioms. These are transaction model-dependent axioms of the form

� ��1 ��%�� % � ��� !��*+�� � � � � ��%�� % � � +�� � �� (16)

where
� � %�� % � � +�� � is a condition involving the conflict relation between internal actions of any two

transactions % and % � , and � ��1 ��%�� % � � � is one of the dependency predicates - � �
1���%�� % � � � , � - �.��1 � %�� % � � � ,
etc. These axioms are used to capture the notion of recoverability, avoiding cascading rollbacks, etc, of
the classical concurrency control theory ([2]). For example, to achieve recoverability, avoid cascading
rollbacks, the following axioms are used, respectively:

� � ��1 ��%�� % � � � " $ %���+.� � �!���� (*��-�%���%�� % � � � �� (17)
� - � ��1 � %�� % � � � / "%$ ����+�� � � ��!�" ��%�� % � � � �) (18)

The first axiom says that a transaction conflicting with another transaction generates a rollback depen-
dency, and the second says that a transaction reading from another transaction generates a strong com-
mit dependency.

Unique Names Axioms. These state that the primitive updates and the objects of the domain are pair-
wise unequal.

Initial Database. This is a set of first order sentences specifying the initial database state. They are
completion axioms of the form

��� �� � %��) ������ � %����-�� � �� �
� ��� ,)�)�)�, �� �

�	� � � (19)

one for each fluent � . Here, the � � are tuples of constants. Also,
��� includes unique name axioms
for constants of the database, and axioms stating the conflicting updates. Axioms of the form (19) say
that our theories accommodate a complete initial database state, which is commonly the case in rela-
tional databases as unveiled in [19]. This requirement is made to keep the theory simple and to reflect
the standard practice in databases. It has the theoretical advantage of simplifying the establishment of
logical entailments in the initial database; moreover, it has the practical advantage of facilitating rapid

7

prototyping of the ATMs using Prolog which embodies negation by failure, a notion close to the com-
pletion axioms used here.

One striking feature of our axioms is the use of the predicate � on the right hand side of action pre-
condition axioms and successor state axioms. That is, they are capturing the notion of a situation being
located in the past relative to the current situation which we express with the predicate � in the situa-
tion calculus. Thus they are capturing non-Markovian control. We call these axioms a basic relational
theory, and define a relational database as a pair ���&�
 , where � is a relational language and
 is a
basic relational theory.

A fundamental property of & !�((*) + - /-� %� and �!�"#"$��%�� %� actions is that, the database system must
execute them in any database state in which they are possible. In this sense, they are coercive actions,
and we call them system actions:
��� � %�� " � -�%���+	� %� #"%$ +/ �!�"$"#� %���%�-, +/ &'!�(
(�) + - /-��%��)

We constrain legal logs to include these mandatory system actions, as well as the requirement that all
actions in the log be possible:

(*� � + (
� � "%$ ��� +�� � � �� � !��*+�� � � �� �	� ��! � � ��+	� � � � �
��� + � � + � � � � � � %�
� ��� � %���" �'-�%��*+ � � %� � ��� � 1 !�� � �*)�(*� � %���+ � �

��� � 1 !�� � ��) (*� ��%�� + �%� � � ! � � �*+ � � � � � �.!���+ � � � � � (� ��� + � + � � �
)
(20)

Simple properties such as well-formedness of atomic transactions ([16]) can be formulated and
proven.

Theorem 1 (Well-Formedness) Suppose
 is a basic relational theory. Then no transactionmay com-
mit and then roll back, and conversely; i.e.,

�� (*� � + (
� � �
��� ���
 � � !��* �!�"$"#� %���%��� ��� � �	� ����' ��� � ��.!���&'!�(
(*) + - /-� %��� ��� � � � � �� � !��*&'!�(
(�) + - /-��%��� ��� � ��� ����' ��� �
� !��� �!�"#"$��%�� %��� ���%� (� � �)

These properties are similar to the fundamental axioms, applicable to all transactions, of [6]. They rule
out all the ill-formed transactions such as

� � � � �*�/� %��� + �*� � � � � ��� � � � �����	� ��
 � ��
 �!�"$"#� %���%��� + � �,(
� � � � � � � �	������� ��
 � �� &'!�(
(*) + - /-� %� � , etc.

Theorem 2 Suppose
 is a basic relational theory. Then any legal log satisfies the strong commit and
rollback dependency properties; i.e.,

�� (*� � + (
� � �
��� %�� % �
 � - � �
1���%�� % � � � � � ��' ��� �� !��* �!�"$"#� %���% � �� ��� � �	� ��' ��� ��.!��� �!�"#"$��%�� %��� ��� � � � �

- � ��1 � %�� % � � � � � ��' ���
� !���& !�((*) + - /-� % � �� ��� (� ��� ��' ��� �� !��*&'!�(
(*) + - /���%��� ��� � � �)
Now we turn to the ACID properties, which are the most important properties of flat transactions.

Theorem 3 (Atomicity) Suppose
 is a relational theory. Then for every relational fluent �

� (*����+ (
� � �

� � %�� � � � � ��
 � !������ � �*�/� %��� � � � � !��*+�� � �� � � �
��' + � � � � �� � !��*���������/��%��� � � � � !���+ � � � � �� � !��*+�� � � � � ����%�� � �*+ � ��� � %��� �

� �*+ &'!�(
(*),+.-,/-��%� � �
��' % �
������ � % � ��� !��*+�� � ��
 � ��' % ��
� ���� � % � � � �
� �
�*+. !�"#"#� %���%� � ����' % ��
������ � % ����� !��*+�� � � � � ��'.% � ������� � % � � � �
� �)

8

This says that rolling back restores any modified fluent to the value it had just before the last ���������/��%�
action, and committing endorses the value it had in the situation just before the �!�"$"#� %���%� action.

Theorem 4 (Consistency) Suppose
 is a relational theory. Then All integrity constraints are satisfied
at committed logs; i.e.,

�� (*� � + (
� � �
 � !��� �!�"#"$��%�� %��� ��� �� ����� � � � � ����� � � � � ��� !��* �!�"$"#� %���%��� ���
)

Theorem 5
 is satisfiable iff
 � ��
�� �	�
�
 � � � � � � is.1 In other words, provided the constraints
are consistent with the initial database state and unique names for actions, then the entire relational
theory is satisfiable, and conversely.

Some properties of transactions need the notions of committed and rolled back updates. With the
predicates - !�"$"#� % %�������%�� � and ��!�(
(���� ��+ - /-� %�� � , we express these notions in the situation calculus
using the following axioms:

- !�"#"$��% %������*+ � ���.!���+�� �
 � ��' %��) ��� � 1 !�� � �*) (�� � %���+ � � +. �!�"#"$��%�� %�/, -,!�"#"#� % %����	��+ � � � �	
��!�(
(*���.� +.-,/-�*+ � ��� !��*+�� �
 � ��' %��) ��� � 1 !�� � �*)�(*� � %���+ � � + &'!�(
(*) + - /���%� , ��!�(
(*��� ��+ - /-�*+ � � � �)

Theorem 6 (Durability) Suppose
 is a relational theory. Then whenever an update is committed or
rolled back by a transaction, another transaction can not change this fact:

�� (*����+ (
� � �

 � !��*&'!�(
(*),+.-,/-��%��� � � �� � � � ��� � 1 !�� � ��) (*� ��%�� +� �
� �!�"#"$��% %������*+�� � � � �!�"#"$��% %������*+����.!���&'!�(
(*) + - /-� %��� � � � � �
� ��!�(
(*��� ��+ - /-�*+�� � � � ��!�(
(*��� ��+ - /-��+	��� !��*&'!�(
(*),+.-,/-��%��� � �
 �
)

Definition 1 (Serializability)

%���+ � � �!���� (*��-�% � ��%�� % � � � " $ � �
� � � %�� ���%�� %�� � �
��� � � %�� % � � % � � �� �� %�� % � � � � � %���+ � � �!���� (*�*-�%���% � � � % � � � � ���%�� % � � � � � ���%�� % � � � �
�

� ������+ (���� +.)�(*� � � � #"%$ ��� %��) � !��* �!�"$"#� %���%��� � � � ��� � %���+.� � �!���� (*��-�% � ��%�� %�� � �)
Theorem 7 (Isolation) Suppose
 is a relational theory. Then

�� (*����+ (
� � � � �����*+ (*�� +) (�� � � �)

5 Closed Nested Transactions

Nested transactions ([17]) are the best known example of ATMs. A nested transaction is a set of trans-
actions (called subtransactions) forming a tree structure, meaning that any given transaction, the parent,
may spawn a subtransaction, the child, nested in it. A child commits only if its parent has committed. If
a parent transaction rolls back, all its children are rolled back. However, if a child rolls back, the parent
may execute a recovery procedure of its own. Each subtransaction, except the root, fulfills the A, C, and
I among the ACID properties. The root (level 1) of the tree structure is the only transaction to satisfy
all of the ACID properties. This version of nested transactions is called closed because of this inability
of subtransactions to durably commit independently of the outcome of the root transaction ([22]).

A root transaction % is a sequence � + ����)�)�)���+�� � of primitive actions, where + � must be ��� � �*�/� %� , and
+�� must be either �!�"$"#� %���%� , or &'!�(
(�) + - /-��%� ; +������� � ������� � � � � , may be any of the primitive ac-
tions, except � � � �*�/� %� , �!�"#"$��%�� %� , and &'!�(
(*) + - /-� %� , but including ��1 + � �/��%�� % � , &'!�(
(*),+.-,/-��% � , and

1Here, ������� ����� is the set ����� relativized to the situation ��� .

9

 �!�"$"#� %���% � , with % � % � . A child transaction % is a sequence � + ����)�)�)���+�� � of primitive actions, where
+�� must be ��1 � + �/��% � � %� , and +�� must be either �!�"#"$��%�� %� , or &'!�(
(�) + - /-��%� ; +���� � � ����������� � � ,
may be any of the primitive actions, except ��1 + � �/� %�� % � , �!�"#"$��%�� %� , and & !�((*) + - /-� %� , but including
��1 + � �/��% � � % � � , &'!�(
(*) + - /���% � � , and �!�"$"#� %���% � � , with % � % � � . We capture the typical relationships
that hold between transactions in the hierarchy of a nested transaction with the fluents %���+ � ��� � � %���+�� � ,
1 + ����� %���%�� % � � � and +.� -,� � %�! ����%�� % � � � , which are introduced in the following successor state axiom and
abbreviation, respectively:

%���+.� ��� ����%�� +�� � � ��' + � �) + + � ���� � %��� (21)

1 +���� � %�� %�� % � ���.!���+�� �
 � +. ��1 + � �/��%�� % � �,
1 +������ %���%�� % � � � � � %�����" �'-�%��*+�� %� � � %�����" � -�%���+	� % � �� (22)

+ � - � � %�! ����%�� % � � � "%$ � � � �� ��� %� �.��%�� %�� � �
� � � � %�� % � � % � �
� �*��%�� % � � � � � 1 +���� � %�� % � � � % � � � � �*� %�� % � � � � � �.��%�� % � � � ��) (23)

Responsibility over actions that are executed and conflicts between transactions are specified with
the following axioms:

��� � 1 !�� � ��) (*� ��%�� + � ��� !���+	� �
 � %���+ � ��� ����%�� + � � � � ����' % � 1 +������ %���%�� % � � � -,
��' % �
� 1 +���� � %�� %�� % � � � � + �!�"$"#� %���% � � ��� � 1 !�� � �*) (�� � % � � + � � ,
��� � 1 !�� � �*)�(*� � %���+ � � � � � %�����" � -�%���+	� %���

(24)

%���+.� � �!���� (*��-�%��
 ��%�� % � ��� !��*+�� �
 � % � % � � ��� � 1 !�� � �*)�(*� � % � � +�� � �
��' + � � � � �� ��� � 1 !�� � ��) (*� ��%�� + � � � � � 1	� �!���� (*�*-�%��*+ � ��+�� � � � !��*+ � � � � (� � �
�/��� � 1 !�� � �*)�(*� � %���+�� � � � � � � ��� � � % � � � � �
��' % � � 1 +������ %���%�� % � � � � � � + � - � � %�! ����%�� % � � � ��,
%���+.� � �!���� (*��-�%��
 ��%�� % � � � � � %�����" �'-�%��*+�� %��	 (25)

Intuitively, (25) means that transaction % conflicts with transaction % � in the log � iff % and % � are not
equal, internal actions they are responsible for are conflicting in � , % is not responsible for the action
of % � it is conflicting with, % � is running; moreover, a transaction cannot conflict with actions his ances-
tors are responsible for. Due to the presence of the new external action ��1 + � � , we need to redefine
� � � � �*� �-��%�� � as follows:

� � � � ��� � � %�� � "%$ ��' � � �)
 � !��*���������/��%��� � � �� � �
� � +�� � � � �� � !��*���������/��%��� � � � � !���+	� � � � � �	� + � & !�((*) + - /-� %� � + � 0��-����%� � ,
��' % � �) � !�����1 + � �/��% � � %��� � � � � �
� � +�� � � � �� � !�����1 + � �/� % � � %��� � � �+� !��*+�� � � � � �	� + � &'!�(
(*) + - /-� %� � + � 0��-����%���) (26)

Now the external actions of nested transactions have the following precondition axioms:

��! � � �����������/��%��� � � ����' % � 1 +������ %���% � � %�� � �
� � &�-� , ��' � � � % � �) % � % � � � !��*���������/��% � �� � � (� � �
� (27)

��! � � ����1 + � �/� %�� % � �� � � % � % � �
��' � � � % � �
� �.!������������/��%��� � � �� � ,�� !�����1 + � �/��% � � � %��� � � �� � �
� (28)

��! � � ��0��-����%��� � � � � � � ��� � � %�� � �� (29)

��! � � �� �!�"#"$��%�� %��� � � ��' � � �) � � !���0��-����%��� � � � �
� ����� � � � �� � �

� � % �
� � - � ��1 ��%�� % � � � � ��' � � � �� !��* �!�"$"#� %���% � �� � � � � � � �
� � % �
� - �.��1 � %�� % � � � � ����' � � ��.!���&'!�(
(*) + - /-� % � �� � � �� ���

��' � �
� !��* !�"#"#� %���% � �� � � � � �
�
(30)

10

��! � � �*&'!�(
(*) + - /���%��� � � ��' � � �) � �.!���0��-����%��� � � � � �
� ������� � � � � ,

��' % � � � � � �) � � ��1 ��%�� % � � � � � !��*&'!�(
(*) + - /���% � �� � � � � � � ,
��' % � � � � �) � � � �
1���%�� % � � � � � !��*&'!�(
(*),+.-,/-��% � �� � � � � �

����' � � �
� !��* �!�"$"#� %���%��� � � � (� � !���& !�((*) + - /-� % � �� � � ��

(31)

Dependency axioms characterizing the fluents � � �
1 , - � �
1 , � - � �
1 , and � � � ��1 are:

� � ��1 ��%�� % � � � � %���+ � � !���� (*��-�%��
 � %�� % � � � �� (32)
� - � ��1 � %�� % � � � � ����+�� � � ��!�" ��%�� % � � � �� (33)

- � ��1 � %�� % � ��� !��*+�� � � � + ��1 + � �/� %�� % � -,
- � ��1 � %�� % � � � � � %�����" � -�%���+�� %� � � %�����" � -�%���+	� % � �� (34)

� � �.��1 � %�� % � ��� !���+	� �
 � + ��1 + � �/��% � � %�-,
� � �.��1 � %�� % � � � � � %�����" � -�%��*+�� %� � � %�����" �'-�%��*+�� % � �) (35)

As an example of what they mean, the last axiom says that a transaction spawning another transaction
generates a weak rollback dependency of the later one on the first one, and this dependency ends when
either transactions execute a terminating action.

The successor state axioms for nested transactions are of the form:

�*���� � %����.!���+�� �
 � ��' �% � � � ���� � +�� �% � � � � ����' % � � �+* &'!�(
(*) + - /���% � � -,
� ��' % � � �) + &'!�(
(*),+.-,/-��% � � � ����'.% � 1 +���� � %�� % � � % � � � � � ��� � %�! ��� ���������-��!���� %������ �� � % � � � � �� ,
� ��' % � � �) + &'!�(
(*),+.-,/-��% � � � ��' % � 1 +������ %���% � � % � � � � � ��� � %�! ������1 + � �-��!���� %���� ���� � % � � � � �
� (36)

one for each fluent of the relational language. Here � � ���� ��+�� �% � � is a formula with free variables among
�� ��+�� �% , and � ; ��� � %�! ��� ���������-��!���� %������ �� � %�� � is defined in (11), and ��� � %�! ������1 + � �-��!���� %���� ���� � %�� �
is the following abbreviation:

��� � %�! ������1 + � �-� !��*� %��������� � %�� � / "%$
� ��' + � � � � � � � � % � � % � �) � !�����1 + � �/� % � � %��� � � �+� !��*+ � � � � � � � � ����%�� � ��+ � ����� %� � � ���� � % � � � � � ,
� � � + � � � � � � � � % � �) � !�����1 + � �/��% � � %��� � � (�+� !��*+ � � � � �� �	� � � ��� %�� � �*+ � ����� %� � � ��' % �
� ���� � % � � � �)
A basic relational theory for nested transactions is defined as in Section 4, but where the relational

language includes ��1 + � �/��%�� % � as a further action, and the axioms (27) – (28) replace axioms (12) –
(15), the axioms (32) – (35) replace the axioms (17) – (18), and the set
���� is a set of successor state
axioms of the form (36). All the other axioms of Section 4 remain unchanged.

Now we state some of the properties of nested transactions as an illustration of how such properties
are formulated in the situation calculus. Similarly to Theorem 2, we can show that a basic relational
theory for nested transactions logically implies the commit and weak rollback dependency properties.

Theorem 8 (Atomicity of Nested Transactions) Suppose
 is a relational theory for nested transac-
tions. Then for every relational fluent �

�� (*����+ (
� � �
� � %�� � ��� � �
 � � � � !��*���������/��%��� � ��-, � � � !����	1 + � �/��%��� � �� � �

� � � �.!���+�� � � � � � ��' + � � � � �� � � �+�.!���+ � � � � (� � !���+	� � � � � ��� %�� � ��+ � ����� %� � �
� �*+. &'!�(
(*) + - /-� %� � �
��'.% � ������� � % ����� !��*+�� � � � � ��' % �
������ � % � � � � �
 �
�*+ �!�"$"#� %���%� � ����' % �
� ���� � % � ���.!���+�� � ��
 � ��' % ��������� � % � � � ���
 �)

11

Definition 2 (Serializability of Nested Transactions)

%���+ � � �!���� (*��-�%��
 � � %�� % � � � #"%$ � � �� � � %�� ���%�� %�� � � � � � � %�� % � � % � �
� ���%�� % � � � � �
%���+ � � �!���� (*��-�%��
 � % � � � % � � � � ��%�� % � � � � � �� %�� % � � � �
�

� ������+ (���� +.)�(*� �
 � � � "%$ ��� %��) � !��* !�"#"#� %���%��� � � (� �	� � %���+ � � �!���� (*��-�%��
 � � %�� %�� � �)

Theorem 9 (Isolation of Nested Transactions) Suppose
 is a relational theory for nested transac-
tions. Then

�� (*����+ (
� � � � �����*+ (*�� +) (�� �
 � � �)

6 Simulating ATMs

GOLOG, introduced in [13] and enhanced with parallelism in [7] (ConGolog), is a situation calculus-
based programming language for defining complex actions in terms of a set of primitive actions ax-
iomatized in the situation calculus. It has the following Algol-like control structures Sequence (� � 	 � � ;
Do action � , followed by action

�
); Test actions (1�� ; Test the truth value of expression 1 in the current

situation); Nondeterministic action choice (� � � ; Do � or
�

); Nondeterministic choice of arguments
(��� � � ; nondeterministically pick a value for � , and for that value of � , do action �); Conditionals
and while loops; and Procedures, including recursion. � � (represent the empty program. The following
are ConGolog constructs for expressing parallelism: Concurrency (� ��� � � ; Do � and

�
in parallel);

Concurrent iteration (�	� ; Do � zero or more times in parallel). The purpose of this section is to show
how GOLOG programs are used to capture transactions and how the semantics of this programs is used
to simulate the ATMs.

6.1 Well-formed GOLOG Programs

GOLOG syntax is built using consructs that suppress any reference to situations in which test are eval-
uated. These will be restore at run time by the GOLOG interpreter. The following is a restriction to
relational languages of a similar definition given in [18].

Definition 3 Suppose � is a relational language. Then the situation-suppressed terms of � are given
by:

1. Any variable or constant of sort actions, objects, or situationsof � is a situation-suppressed term.

2. If + is an action function symbol of � other than � � and � ! , and % � ��������� % � are variables or
constants of � , then +���%����������	� % � is a situation-suppressed term.

3. For any situation term
 and any action term + , � !���+	��
- is a situation-suppressed term.

The situation-suppressed formulas of � are inductively given as follows:

1. Whenever %�� % � are situation-suppressed terms of the same sort, then % % � is a situation-suppressed
formula. Notice that a situation-suppressed formula here, contrary to [18], may mention an
equality between terms of sort situations.

2. Whenever % is a situation-suppressed term of sort actions, then ��! � � ��%� is a situation-suppressed
formula.

3. Whenever � is an �� � -ary relational fluent of � and %�� �������	� % � are situation-suppressed terms
of sort objects, then ����%����������	� % � is a situation-suppressed formula.

12

4. Whenever � is an " -ary situationindependantpredicate of � and %�� ������� � % � are situation-suppressed
terms of sort objects, then ��� % ����������� % � is a situation-suppressed formula.

5. Whenever % and % � are situation terms of � , then %�� % � is a situation-suppressed formula.

6. Are � and � situation-suppressed formulas of � , so are also ��� , � � � , and ��' � �� for any vari-
able � .

Calling situation terms like ��� , �.!�� �*���-�� , etc “situation”-suppressed might sound counterintuitive.
However, this definition just means that situation-suppressed formulas are first order and may still men-
tion situation terms, but never as last argument of relational fluents; therefore situation-suppressed for-
mulas quantifyonly over those situations that are mentioned in equalities between terms of sort � � %�� +�%���!�� �
and in � atoms. For example, the following is a situation-suppressed formula:

�-�#�+� !�� �*����� !��������-��

 � � � � � � � � � � � %�
� +.-,- ! � � % � � � � � ��� � � � %� � ��� � �
�
whereas the following is not:

� � �+�.!�� �*����� !��*� ��� � �
 � ��� � � � � � � � � %�� �
� +.-,- ! � � % � � � � � ��� � � � %�� � � ��� � �
)
Definition 4 (Well formed GOLOG Programs) A GOLOG program has the following syntax:

� 1	��!,���
	�	 �
��� %������ + (+ -�%��*!���� � � %�� � % + -�%���!���� � ��� � 1	��!,����	 � 1���!,��
 �
� � 1	��!,����� � 1���!,��
 ��� � 1	��!,��� � � 1���!,��
 ����� � � 1	��!,�� �� 1���!,�� � � ����1 + � �/� %�� % � �	 � 1���!,���	�0��-����% �
 � � 1	��!�-,��� ����� - + (
(�� �
� proc � ������ �� � 1	��!,�� endProc 	�������	 proc � �-���� �	 � 1	��!,��� endProc 	 � 1	��!,���

Notice that

1.
�
��� %������ + (+ -�%���!���� is a situation-suppressed internal action term.

2.
�
%�� � % + -�%���!���� is a situation-suppressed formula.

3. The variable � in ��� � � 1	��!,�� must be of sort actions or objects, never of sort � ��%�� + %��*!�� � .

4.
� 1	��!�-,��� ����� - + (
(�� is a predicate — a procedure name — of the form ��� %�� ������� � % � where the % �
are situation-suppressed terms whose sorts match those of the � arguments in the declaration of
� .

A well formed GOLOG program is syntactically defined as follows:

� � � 1	��!,����	�	 .� proc � � ���� �� � 1���!,�� endProc 	������ 	 proc � � ���� � � 1	��!,��� endProc 	
��� � �*�/� %��	 � 1���!,���	�0��-����%�

6.2 Semantics of GOLOG Programs

With the ultimate goal of handling database transactions, it is appropriate to adopt an operational se-
mantics of GOLOG programs based on a single-step execution of these programs; such a semantics is
introduced in ([7]). First, two special predicates
 ��+.� � and ����� + (are introduced.
 ��+ � � ��� � � ��� � � ���
means that program � may perform one step in situation � , ending up in situation � � , where program � �
remains to be executed. � �*� + (
��� � � means that program � may terminate in situation � . A single step

13

here is either a primitive or a testing action. Then the two predicates are characterized by appropriate
axioms. These axioms contain, for example, the following cases (See [7] for full details):

 ��+.� � � � � 	 � � � � ��� � � � � ���*� + (
��� � � � �
 ��+.� � � � � � � � � � � � -,
��' � �) � � � 	 � � �
 ��+ � � ��� � � � � � � � � ��

 ��+.� � � � � � � � � � � � � � � �
 ��+ � � ��� � � � ��� � � � -,
 ��+ � � ��� � � � � � � � �
to express the semantics of sequences and nondeterministic choice of actions, respectively. Notice that
equivalences like those above are translating GOLOG constructs into formulas of the situation calculus.

Our definition of
 ��+ � � differs from that of [7] with respect to the handling of primitive and test
actions:

Definition 5 (Semantics of
 ��+ � �)

 ��+ � � ��+�� � ��+ � � � � #" $.��! � � �*+�� � � + � � � (�

 ��' + � � � � � � � %�
� � � � � !���+	� � � ��� � %���" � -�%��*+ � � � %� � ��! � � ��+ � � � � � � � � � � !���+ � � � � � � �� ,
� � �.!���+�� � � � ��� + � � � %� ��� � %�� " � -�%���+ � � � %� � � ��! � � ��+ � � � � � � (37)

 ��+ � � � � ��� � � + � � � � / "%$�� !�(�� � ���/� � � � � � + � � � (
) (38)

In the definition above, we take particularities of system actions into account when processing primitive
actions. These actions must occur whenever possible, so the interpreter must test for their possibility
upon each performance of a primitive action. The formula (37) captures this requirement; it intuitively
means that the primitive action + may legally execute one step in the log � , ending in log � � where + �
remains to be executed iff + is possible, the remaining action + � is the empty transaction, and either
any possible system action + � � is executed immediately after the primitive action + has been executed
and the log ��� contains the action + followed by the system action + � � , or no system action is possible
and the log ��� contains only the action + . The formula (38) says that the test action � � may legally be
performed one or more steps in the log � , ending in log � � where + � remains to be executed iff � holds
in � , yielding a log ��� in a way to be explained below, and + � is an empty program.

Given situation calculus axioms of a domain theory, an execution of a program � in situation � is the
task of finding a situation ��� such that there is a final configuration � � � � ��� , for some remaining program
� � , after performing a couple of transitions from � � � to � � � ��� . Program execution is captured by using
the abbreviation � !�� � � � � � � ([21]). In the single-step semantics, � !�� � � � � � � intuitively means that
program � is single-steped until the remainder of program � may terminate in situation � � ; and ��� is
one of the logs reached by single-stepinging the program � , beginning in a given situation � . Formally,
� !���� � � � ��� is defined as follows ([7]):

� !�� � � � � � � ! "%$ ��' � � �)
 ��+ � � � ��� � � ��� � � � � � � �*� + (
��� � � � � ��
where
 ��+ � ��� denotes the transitive closure of
 ��+ � � . Finally, a program execution starting in situa-
tion � � is formally the task of finding a situation ��� such that
�� �� !�� � ��� � � ��� , where
 is the domain
theory.

Definition 6 We use the notation ��� � � to denote the situation calculus formula obtained from a given
formula � by restoring the situation argument � in all the fluents (as their last argument) occurring in
� .

The predicate � !�(�� � ���/� � � ��� captures the revised Lloyd-Topor transformations of [21]; these are
transformations in the style of Lloyd-Topor([14]), but without its auxilliary predicates. The predicate
� !�(�� � ���/� � � ��� takes a formula � and establish whether it holds in the log � or not. If � is a fluent
literal, then the next log ��� will be � !����/� � ; if it is a nonfluent literal, then � � � ; otherwise revised
Lloyd-Topor transformations are performed on � until we reach literals. We capture this semantics as
follows:

14

Definition 7 (Semantics of � !�(�� �)

� !�(�� � ���/� � � � � #"%$ ��� � � � � � � !����/� � �� when � is a fluent literal �
� !�(�� � ���/� � � � � "%$ ��� � � � � � � � when � is a nonfluent literal �
� !�(�� � �
� � � � � � �� � � � � / "%$ ��' � � � �) � !�(�� � ��� � � � � � � � � � !�(�� � � � � � � � � � � � ��
� !�(�� � �
� � �!, � � ��� � � � � "%$ � !�(�� � ��� � � � � � � , � !�(�� � ��� � � � � � � ��
� !�(�� � �
� � � � � ���� � � � � / #" $ � !�(�� � � ��� � , � � � � � � � ��
� !�(�� � �
� � � � � ���� � � � � / #" $ � !�(�� � �
� � � � � �� � ��� � � � � �� � � � � ��
� !�(�� � �
��� � �/� � � � � " $ � !�(�� � � ����' � ���/� � � � � ��
� !�(�� � �
��' � �/� � � � � " $ � !�(�� � � �/� � � � � ��
� !�(�� � � � � �/� � � � � / "%$ � !�(�� � ���/� � � � � ��
� !�(�� � � ��� � � � � � �� � � � � "%$ � !�(�� � � � � � � � � � � -, � !�(�� � � ��� � � � � � � ��
� !�(�� � � ��� � � , � ���� � � � � #"%$ ��' � � � �) � !�(�� � � ��� � � � � � � � � � !�(�� � � ��� � � � � � � � � ��
� !�(�� � � ��� � � � � ���� � � � � #"%$ � !�(�� � � � ��� � � , � ���� � � � � ��
� !�(�� � � ��� � � � � � �� � � � � "%$ � !�(�� � � � � ��� � � � � � � � � � � �� �
� � � � � ��
� !�(�� � � ����� � ��/� � � � � "%$ � !�(�� � �
��' � ���/� � � � � ��
� !�(�� � � ����' � ��/� � � � � "%$ � � !�(�� � ���/� � � � � �)

Definition 7 expresses a particular semantics for test actions that is appropriate for handling database
transactions. It is important to notice how our test actions are different than those of [7] and why they
are needed. Our test actions differ from those of ConGolog ([7]) in two ways. First of all, unlike in
ConGolog, ours are genuine actions and not merely tests that may be forgotten as soon as they are exe-
cuted. We record test actions in the log; i.e. performing a test changes the situation. Second, depending
on the syntactic form of the formula in the test, we may end up executing more than just a “single step”.
More precisely, more than one single actions are added to the log whenever more than one tests of fluent
literals are involved in the formula being tested. This semantics is dictated by the very nature of ATMs.
Here, test actions correspond to database reading actions. A transaction has no means of remembering
which transaction it had read from other than to record reading actions in the log. This cannot be done
with the semantics for test action found in [7]. In other words, in the absence of test actions in the log,
the semantics of [7] has no straightforward way to express such things as transaction
 � reads data from
transaction
�� .

6.3 Simulation

We use the GOLOG language as a transaction language for specifying and simulating ATMs at the log-
ical level. To simulate a specific ATM, we first pick the appropriate basic relational theory
 corre-
sponding to that ATM. Then, we write a GOLOG program
 expressing the desired transactional be-
havior. Now simulating the program
 amounts to the theorem proving task of establishing the entail-
ment
�� ��' ��� � !�� 1���!,� ��� � � ��� , where � � is the initial, empty log.

A � ! -based GOLOG interpreter for the situation calculus, written in Prolog, is described in [13].
To run our specification of transactions, we need to modify the GOLOG semantics and interpreter de-
fined in [13] to accommodate the changes described above and also non-Markovian tests. Thus it is
possible to test at the interpreter level whether a log is a sublog of another log. The interpreter provides
an operator implementing the predicate � which, therefore, needs not be hand-coded by the program-
mer.

We consider a Debit/Credit example which we now describe to illustrate how to formulate a rela-
tional theory for nested transactions.

15

The database involves a relational language with:

Fluents: + - - ! � � % � ��+.������),����� +.),+ (�� %�� � ,)���+ � -�� � � ��) �����)) + (
�) � + "#� � %�� � , %�� ((*��� � ��%������ %�),+ (�� %�� � , and
� ���� ������+.����� � .
Situation Independent Predicate: ��� � � � � %�������+.��������� � .
Action Functions: + �*� � ���,%��*+ �����) ���	� +) + (
� %������ %� , + �.�,(*��%�� ��+ �����) ����� +) + (
� %������ %� , % ��� � ���,%���%������ %�),+ (�� %� ,
% � �,(*� %�� ��%������ %�),+ (�� %� ,) �*� � ���,%��*) ������)),+ (���) � + "$� � %� ,) � �,(*��%�� ��) �����)) + (
�) � + "#� � %� , and ����1 ! �,%��*+ ���� .
Constants: &'+ � , � (� � � , � � � � + , � ! , etc.

The meaning of the arguments of fluents are self explanatory; and the relational language also includes
the external actions of nested transactions. Domain closure and unique name axioms are given in the
usual way; thus we concentrate ourself on the remaining axioms. We enforce the following ICs (

��� �
):

+ - - ! � � % � ��+.������),����� +.),+ (�� %������ %�� � � + - -,! � � % � �*+ ���	�) ��� � � +.),+ (� � %���� � � % � � � �
) ���) ��� � ��+) + (+) + (� � %���� %���� � �

)���+ � -�� � � �*) ������),) + (
��),� +."$� � %�� � �)���+ � -�� � � �*) ������)),+ (� �) � + "#� � � % � � � �
)) + (-),) + (� �) � + "#�) � + "$� � �

%�� ((*��� � ��%������ %�),+ (�� %�� � � %�� (
(���� � ��%������ %�) + (� � % � � � � %�) + (- %�),+ (� 	
and we have to verify the IC (

��� �
)

+ - -,! � � % � �*+ ���	�) ������+) + (
� %������ %�� � � +) + (� �

at transaction’s end.
A sample update precondition axiom is given in (9).
A sample successor state axiom is the following for the fluent +.-,- ! � � % � �*+ ������) ������+) + (
� %����	� %�� � :
+ - - ! � � % � �*+ �����) ���	� +) + (
� %������ %���� !��*+�� �
 � ��'.% � ��*+. + ��� � ���,%��*+ ���	�) ������+) + (
� %������ % � �,

��'.% � + - - ! � � % � �*+ �����) ���	� +) + (
� %������ % � � � � � ��' % � �+* + � � (*��%�� �*+ �����) ���	� +) + (
� %�����
 �
����' % � + &'!�(
(*) + - /���% � -,

��' % � �) + & !�((*) + - /-� % � � ����' % � � 1 +������ %���% � � � % � � � �
��� � %�! �������������-��!���� %��������*+ ���	�) ������+) + (
� %������� % � � � �,

+ &'!�(
(*) + - /���% � � ��' % � � 1 +���� � %�� % � � � % � � � �
��� � %�! ������1 + � �-� !��*� %���+.-,- ! � � % � �*+ ������) ������+) + (
� %���� �� % � � � �)

This states that the tuple �*+ �����) ���	� +) + (
� %����� will be in the + - -,! � � % � relation relative to the log � !��*+�� �
iff the last database operation + in the log inserted it there, or it was already in the +.-,- ! � � % � relation
relative to the log � , and + didn’tdelete it; all this, provided that the operation + is not rollingthe database
back. If + is rolling the database back, the + - - ! � � % � relation will get a value according to the logic of
(5).

Finally, the following successor state axiom is used for synchronization purposes:
� ���� �����*+ ������� !��*+�� �
 � ����1 ! �,%���+.���� , � ���� �����*+ ����� � �)

The action ����1 ! �,%���+ ���� , whose precondition axiom is

��! � � ������1 ! �,%���+ ������ � � %�� � � �
is used to make the fluent by indicating that a request emitted by the owner of the account + ��� has been
granted. These requests are registered in the situation independent predicate ��� � � � � %����	��+ ��������� � .

Now we give the following GOLOG procedures which are well-formed and capture the essence of

16

the debit/credit example:

proc + � 1	� + %�� � %���+ ���	� + "�%�
���) ������+) + (
� +) + (� � %������� + - - ! � � % � �*+ �����) ���	� +) + (
� %�������%� � 	
� +) + (� +) + (� +." % ��� 	 + � � (��*+ �����) ���	� +) + (
� %������ %��	�+ �*� � �*+ ���	�) ������+) + (� � %������ %���

endProc

proc � � ��- � ��) � %� ����� � %���%��) ���	� %����	� + ����� + "�%�
+ � 1	� + %�� �*+ ����� + "�%��	
��� +) + (� � + - - ! � � % � ��+.������),����� +.),+ (�� %������ %� � 	 % � 1	� + %�� � %�� %�������+ "�%��) � 1��.+ %�� ��%��) ���	� + "�%���

endProc

proc 1	��!�-,� � � &'� � ��%�� %������ + ����� +." %�
���) ������+) + (�
� + - -,! � � % � �*+ ���	�) ������+) + (
� %�������%� � 	 � � � - � �) � %� ����� ��%�� %���) ����� %�������+ ������+ "�%��� 	

endProc

proc 1	��!�-,� � �
 ��+ � � ��%�
���������/��%�
	 � ���) ������+ ������+) + (
� %���������� � �)

+ - -,! � � % � �*+ ���	�) ������+) + (
� %������ %� �
��� � � � � %������*+ ��������� � � � � ���� �����*+ ��� � 	�����1 ! �,%���+.���� 	

��1 + � �/� %���+ ���� 	-1	��!�- � � � &'� � ��%�� %������ +.��������� � �	 0��-���*+ ��� �� � 	
������'�+.��������� �
��� � � � � %�������+.��������� �
 � 	 0��-����%�

endProc

Similarly to the first procedure, we can give procedures % � 1�� +�%�� ��%�������+ " %� and) � 1	� + %�� ��) ���	� + "�%�
for updating teller and branch balances, respectively. The ACI(D) properties are enforced by the in-
terpreter that either commits work done so far or rolls it back whenever the database general ICs are
violated. Thus, well formed programs are a specification of transactions with the full scale of a pro-
gramming language at the logical level. Notice that a formula � in a test � � is in fact a situation sup-
pressed formula whose situation argument is restored at run-time by the interpreter. Notice also the use
of the concurrent iteration in the last procedure; this spawns a new child transaction for each account
that emitted a request but have not yet been served. For simplicity in this example, we have assumed
that each account has at most one request; this allows us to use the account identifiers + ��� to denote
spawn subtransactions.

Now we can simulate the program, say 1���!�- � � �
 ��+.� � ��
 , by performing the theorem proving task
of establishing the entailment

�� ��' ��� � !��%1	��!�- � � �
 ��+ � � ��
 ����-� � ��� ,
where ��� is the initial, empty log, and
 is the basic relational theory for nested transactions that com-
prises the axioms above; this exactly means that we look for some log that is generated by the program

 . We are interested in any instance of � resulting from the proof obtained by establishing this entail-
ment. Such an instance is obtained as a side-effect of this proof.

In Definition 5, we take particularities of system actions into account. These actions must occur
whenever possible, so the interpreter must test for their possibility upon each performance of a primi-
tive action. Definition 5 captures this requirement and allows us to show that � ! generates only legal
situations:

Theorem 10 Suppose
 is a relational theory (either for flat transactions or for CNTs), and let
 be
a well formed GOLOG program. Then,

�� � � � �) � !���
���� � � � � (*����+ (
� � �)

17

7 Related Work

The inability of the classical model for concurrency control (the serializability theory) to cope with
nested transactions has been addressed in [1]. This work develops a serializability theory for nested
transactions. The new serializability model is articulated around the notion of computation, a general-
ization of the notion of history which is central to the classical serializability theory. Like the history
of the classical model, a computation involves the execution of database primitive and complex op-
erations. Unlike the history, which is a sequence of primitive operations, a computation is a tree. The
interleaving of several computations constitute a partially ordered forest. Similarly to the classical case,
a forest is correct (i.e. serializable) iff it is equivalent to a serial execution of the involved trees. This
criterion is used to prove the correctness of concurrency control algorithms, i.e. schedulers. Correct-
ness is considered as a property of computations generated by a scheduler. This is in spirit similar to
what our Theorem 10 conveys, if we view the GOLOG interpreter as a scheduler. However, we do not
go that far in this paper to deal with the proof of correctness of given schedulers. In addition to that,
we still consider a linear log. This might have an implicit tree-structure that has yet to be extracted to
compare our logical approach with the tree-approach of [1].

Chrysanthis and Ramamritham ([6],[5]) present a framework called ACTA which allows to specify
effects of transactions on objects and on other transactions. Our framework is similar to ACTA. In fact,
we use the same buildingblocks for ATMs as those used in ACTA. However, the reasoning capability of
the situationcalculus exceeds that of ACTA for the followingreasons: (1) the database log is a first class
citizen of the situation calculus, and the semantics of all transaction operations – �!�"#"$��% , &'!�(
(*) + - / ,
etc. – are defined with respect to constraints on this log. Nowhere have we seen a quantification over
histories in ACTA, so that there is no straitforward way of expressing closed form formulas involving
histories in ACTA. (2) Our approach goes far beyond ACTA as it is an implementable specification,
thus allowing one to automatically check many properties of the specification using an interpreter. To
that end, the main implementation theorems needed are formulated in [21]. Finally, (3) although ACTA
deals with the dynamics of database objects, it is never explicitly formulated as a logic for actions.

In [3], Bertossi et al. propose a situation calculus-based formalization of database transactions.
They extend Reiter’s specification of database updates to transactions. In fact, the idea of using trans-
actional actions like ��������� , &'!�(
(*) + - / , 0��-� , and �!�"#"$��% for flat transactions was first introduced in
[3], as was the the axiomatization of the notion of consistency verification at the transaction end. Our
approach, however, is based on a situation calculus that is explicitly non-Markovian. Moreover, our
work goes beyond pure flat transactions to deal with an account of notions such as serializability and
atomicity, and with ATMs which are more complex.

Transaction Logic ([4]) and Statelog ([15]) are languages for database state change that include a
clean model theory. However, these approaches, unlike the situation calculus, do not view elementary
updates as first order terms; they appeal to special purpose semantics to account for database trans-
actions; finally, they are not general enough to be used for modeling any given transaction model or
“inventing” a new one from scratch at a sufficiently high level as is the case in ACTA and the situation
calculus.

8 Conclusion and Future Work

One must distinguishbetween our approach which is a purely logical, abstract specification in which all
system properties are formulated relative to the database log, and an implementation which normally
materializes the database using progression ([21]). This is the distinguishing feature of our approach.
The database log is a first class citizen of the logic, and the semantics of all transaction operations –
 �!�"$"#� % , & !�((*) + - / , etc. – are defined with respect to this log.

As we acknowledged it in the introduction, database transaction processing is now a mature area
of research. However, one needs to know whether our formalization indeed captures any existing the-

18

ory, such as ACTA, at the same level of generality. Therefore, one needs to prove the correctness of
the formalization. For example, we need an effective translation of our basic relational theories into
ACTA axioms for a relational database and then show that the legal logs for the situation calculus basic
relational theory are precisely the correct histories for its translation into a relational ACTA system.

Thus far, we have given axioms that accommodate a complete initial database state. This, how-
ever, is not a requirement of the theory we are presenting. Therefore our account could, for example,
accommodate initial databases with null values, open initial database states, initial databases account-
ing for object orientation, or initial semistructured databases. These are just a examples of some of the
generalizations that our initial databases could admit.

Finally, it is important to notice that the only place where the second order nature of our framework
is needed is in the proof of the properties of the transaction models that rely on the second order induc-
tion principle of Section 4. For the Markovian situation calculus, it is shown in [18] that the second
order nature of this language is not at all needed in simulating basic action theories. It remains to show
that this is also the case for the non-Markovian setting.

The framework described in this work is currently being implemented using a regression mecha-
nism described in [9]. On-going work extending the framework includes: accounting for some of the
recent ATMs, for example those reported in [11] and open nested transactions proposed in the context
of mobile computing, implementing the specifications of significant ATMs, proving the correctness of
the approach, introducing on-line, that is actual execution of transactions, as opposed to off-line or hy-
pothetical execution. We will also consider modeling active rules and different active rule processing
mechanisms within the framework of this paper in the near future ([12]). Finally, we will explore ways
of making this framework part of a logic-based development methodology for ATMs. Such a method-
ology would exhibit the important advantage of uniformity in many of its phases by using the single
language of the situation calculus.

Acknowledgments

Ray Reiter, Alfredo Gabaldon, Javier Pinto, and members of the Cognitive Robotics Group at the Uni-
versity of Toronto deserve many thanks for helpful discussions and encouragements. Special thanks to
Ray Reiter who suggested the link between ATMs and non-Markovian theories, and Fahiem Bacchus
who suggested reinforcing the simulation aspect of the framework. We are supported by NSERC, IRIS
(Institute for Robotics and Intelligent Systems), and ITRC (Information Technology Research Centre
of Ontario) and would like to gratefully mention them.

References
[1] C. Beri, P.A. Bernstein, and N. Goodman. A model for concurrency in nested transactions systems. Journal

of the ACM, 36(2):230–269, 1989.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in database systems.
Addison-Wesley, Reading, MA, 1987.

[3] L. Bertossi, J. Pinto, and R. Valdivia. Specifying database transactions and active rules in the situation calcu-
lus. In H. Levesque and F. Pirri, editors, Logical Foundations of Cognitive Agents. Contributions in Honor
of Ray Reiter, pages 41–56, New-York, 1999. Springer Verlag.

[4] A. Bonner and M. Kifer. A logic for programming database transactions. In J. Chomicki and Saake G.,
editors, Logics for Databases and Information Systems. Kluwer, 1998. Chapter 5.

[5] P. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models. ACM Transactions on
Database Systems, 19(3):450–491, 1994.

[6] P.K. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about Extended Transactions. PhD
thesis, Dept of Computer and Information Science, Univ. of Mass., Amherst, 1991.

19

[7] G. De Giacomo, Y. Lespérance, and H.J. Levesque. Reasoning about concurrent execution, prioritized inter-
rupts, and exogeneous actions in the situation calculus. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 1221–1226, 1997.

[8] Ahmed K. Elmagarmid. Database transaction models for advanced applications. Morgan Kaufmann, San
Mateo, CA, 1992.

[9] A. Gabaldon. Non-markovian control in the situation calculus. In G. Lakemeyer, editor, Proceedings of the
Second International Cognitive Robotics Workshop, pages 28–33, Berlin, 2000.

[10] J. Gray and Reuter A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers,
San Mateo, CA, 1995.

[11] S. Jajodia and L. Kerschberg. Advanced Transaction Models and Architectures. Kluwer Academic Publish-
ers, Boston, 1997.

[12] I. Kiringa. A Formal Account of Relational Active Databases in the Situation Calculus. PhD thesis, Computer
Science, University of Toronto, Toronto, forthcoming.

[13] H. Levesque, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic programming lan-
guage for dynamic domains. J. of Logic Programming, 31(1-3):59–83, 1997.

[14] J.W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer-Verlag, Berlin, 1988.

[15] B. Ludäscher, W. May, and G. Lausen. Nested transactions in a logical language for active rules. Technical
Report Jun20-1, Technical Univ. of Munich, June 1996.

[16] N. Lynch, M.M. Merritt, W. Weihl, and A. Fekete. A theory of atomic transactions. In M. Gyssens, J. Paren-
daens, and D. Van Gucht, editors, Proceedings of the Second International Conference on Database Theory,
pages 41–71, Berlin, 1988. Springer Verlag. LNCS 326.

[17] J. Moss. Nested Transactions: An Approachto Reliable Distributed Computing. Information Systems Series.
The MIT Press, Cambridge, MA, 1985.

[18] F. Pirri and R. Reiter. Some contributions to the metatheory of the situation calculus. Journal of the ACM,
46(3):325–364, 1999.

[19] R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie, J. Mylopoulos, and
J. Schmidt, editors, On Conceptual Modelling, pages 163–189, New-York, 1984. Springer Verlag.

[20] R. Reiter. On specifying database updates. J. of Logic Programming, 25:25–91, 1995.

[21] R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems.
MIT Press, Cambridge, 2001.

[22] G. Weikum and H.J. Schek. Concepts and applications of multilevel transactions and open nested transac-
tions. In A.K. Elmagarmid, editor, Database TransactionModels for AdvancedApplications, pages 516–553,
San Mateo, CA, 1992. Morgan Kaufmann.

20

