Reasoning about concurrent execution, prioritized interrupts, and
exogenous actions in the situation calculus

Giuseppe De Giacomo
Dip. di Informatica e Sistemistica,
Universita di Roma “lLa Sapienza”
Via Salaria 113, 00198 Roma Italy

degiacomo@dis.uniromal.it

Abstract

As an alternative to planning, an approach to
high-level agent control based on concurrent
program execution is considered. A formal def-
inition in the situation calculus of such a pro-
gramming language is presented and illustrated
with a detailed example. The language in-
cludes facilities for prioritizing the concurrent
execution, interrupting the execution when cer-
tain conditions become true, and dealing with
exogenous actions. The language differs from
other procedural formalisms for concurrency in
that the initial state can be incompletely spec-
ified and the primitive actions can be user-
defined by axioms in the situation calculus.

When it comes to providing high-level control for
robots or other agents in dynamic and incompletely
known worlds, approaches based on plan synthesis may
end up being too demanding computationally in all but
simple settings. An alternative approach that is showing
promise is that of high-level program ezxecution [8]. The
idea, roughly, is that instead of searching for a sequence
of actions that would take the agent from an initial state
to some goal state, the task is to find a sequence of ac-
tions that constitutes a legal execution of some high-level
non-deterministic program. As in planning, to find such
a sequence 1t is necessary to reason about the precondi-
tions and effects of the actions within the body of the
program. However, if the program happens to be almost
deterministic, very little searching is required; as more
and more non-determinism is included, the search task
begins to resemble traditional planning. Thus, in formu-
lating a high-level program, the user gets to control the
search effort required.

The hope is that in many domains, what an agent
needs to do can be conveniently expressed using a suit-
ably rich high-level programming language. Previous
work on the Golog language [8] considered how to reason
about actions in programs containing conditionals, iter-
ation, recursion, and non-deterministic operators, where
the primitive actions and fluents where characterized by
axioms of the situation calculus. In this paper, we ex-
plore how to execute programs incorporating a rich ac-

Yves Lespérance
Dept. of Computer Science,
York University
Toronto ON Canada M4N 3M6

lesperan@yorku.ca

Hector J. Levesque
Dept. of Computer Science,
University of Toronto
Toronto ON Canada M5S 1A4

hector@cs.toronto.edu

count of concurrency. The execution task remains the
same; what changes is that the programming language,
which we call ConGolog (for Concurrent Golog), becomes
considerably more expressive. One of the nice features
of this language is that it allows us to conveniently for-
mulate agent controllers that pursue goal-oriented tasks
while concurrently monitoring and reacting to conditions
in their environment.

Of course ours is not the first formal model of concur-
rency. In fact, well developed approaches are available
[6, 10, 14]" and our work inherits many of the intuitions
behind them. However, it is distinguished from these
in at least two fundamental ways. First, it allows in-
complete information about the environment surround-
ing the program. In contrast to typical computer pro-
grams, the initial state of a ConGolog program need only
be partially specified by a collection of axioms. Second,
it allows the primitive actions (elementary instructions)
to affect the environment in a complex way. In contrast
to typical computer programs whose elementary instruc-
tions are simple predefined statements (e.g. variable as-
signments), the primitive actions of a ConGolog program
are determined by a separate domain-dependent action
theory, which specifies the action preconditions and ef-
fects, and deals with the frame problem.

The rest of the paper is organized as follows: in Sec-
tion 1 we very briefly review planning in the situation
calculus. In Section 2, we review the Golog programming
language and present a variant of the original specifica-
tion of the high-level execution task. In Section 3, we
explain informally the sort of concurrency we are con-
cerned with, as well as related notions of priorities and
interrupts. The section concludes with changes to the
Golog specification required to handle concurrency. In
Section 4, we present a detailed example of a reactive
multi-elevator controller formulated in ConGolog. In
Section 5, we discuss some of the properties of ConGolog,
its implementation, and topics for future research.

'In [3] a direct use of such approaches to model concurrent
(complex) actions in Al is investigated.

1 Situation Calculus

There are a number of ways of making the planning task
precise, but perhaps the most appealing is to formulate a
specification in terms of a general theory of action. One
candidate language for formulating such a theory is the
situation calculus [9]. We will not go over the language
here except to note the following components: there is a
special constant Sy used to denote the initial situation,
namely that situation in which no actions have yet oc-
curred; there is a distinguished binary function symbol
do where do(a,s) denotes the successor situation to s
resulting from performing the action a; relations whose
truth values vary from situation to situation, are called
(relational) fluents, and are denoted by predicate sym-
bols taking a situation term as their last argument; fi-
nally, there is a special predicate Poss(a, s) used to state
that action a is executable in situation s.

Within this language, we can formulate domain theo-
ries which describe how the world changes as the result
of the available actions. One possibility is a theory of
the following form [12]:

e Axioms describing the initial situation, Sg.

e Action precondition axioms, one for each primitive
action a, characterizing Poss(a, s).

e Successor state axioms, one for each fluent F', stat-
ing under what conditions F(Z, do(a, s)) holds as
function of what holds in situation s. These take the
place of the so-called effect axioms, but also provide
a solution to the frame problem [12].

e Unique names axioms for the primitive actions.
e Some foundational, domain independent axioms.

For any domain theory of this sort, we have a very clean
specification of the planning task, which dates back to
the work of Green [4]:

Classical Planning: Given a domain theory
Azioms as above, and a goal formula ¢(s) with
a single free-variable s, the planning task is to
find a sequence of actions @ such that:

Azioms |= Legal(d, So) A ¢(do(d, Sp))
., @n], §) is an abbreviation for

., do(al,s) .)),

., @y), s) stands for

where do([ay, ..
do(an, do(an—1, ..
and where Legal([ay, . .

Poss(a1,s) A ...\ Poss(an, do([a1, . .., an-1],s)).

In other words, the task is to find a sequence of actions
that is executable (each action is executed in a context
where its precondition is satisfied) and that achieves the
goal (the goal formula ¢ holds in the final state that
results from performing the actions in sequence).

2 Golog

As presented in [8], Golog is logic-programming language
whose primitive actions are those of a background do-
main theory. Tt includes the following constructs:

a, primitive action
o7, wait for a condition?
(o1;09), sequence
(o1 | 09), nondeterministic choice between
actions

TT.o, nondeterministic choice of arguments
o, nondeterministic iteration
if ¢ then o else o, conditional
while ¢ do o, loop

proc (%) o, procedure definition?

In its most basic form, the high-level program execution
task is a special case of the above planning task:

Program Execution: Given a domain theory
Azioms as above, and a program o, the execu-
tion task is to find a sequence of actions @ such
that:

Azioms |= Do(c, So, do(d, So))

where Do(o, s,s') is an abbreviation for a for-
mula of the situation calculus which says that
program ¢ when executed starting in situation
s has s’ as a legal terminating situation.

In [8], a simple inductive definition of Do was presented,
containing rules such as:

DO([UI; 0-2]a S, SI) déf

3s”. Do(oy,s,s") A Do(ca,s",s)
Do([o4
03], s,8") def Do(o1,s,s") V Do(oa, s,s)
f
)

Do([if ¢ then oy else 03], s, s’ 4

Do([(¢7;01) | (=67;02)], 5, ')
one for each construct in the language.

The kind of semantics Do associates to programs is
sometimes called evaluation semantics [5] since it is
based on the complete evaluation of the program. With
the goal of eventually handling concurrency, it is conve-
nient to give a slightly more refined kind of semantics
called computational semantics [5], which is based on
“single steps” of computation, or transitions*. A step
here is either a primitive action or testing whether a
condition holds in the current state. We begin by intro-
ducing two special predicates, Final and Trans, where
Final(o, s) is intended to say that program ¢ may legally
terminate in situation s, and where Trans(c,s,o’,s’) is
intended to say that program o in situation s may legally
execute one step, ending in situation s’ with program o’
remaining.

2Here, ¢ stands for a situation calculus formula with all
situation arguments suppressed; ¢(s) will denote the formula
obtained by restoring situation variable s to all fluents ap-
pearing in ¢. Because there are no exogenous actions or con-
current processes in Golog, waiting for ¢ amounts to testing
that ¢ holds in the current state.

#For space reasons, we ignore these here.

*Both types of semantics belong to the family of structural
operational semantics introduced in [11].

Final and Trans will be characterized by a set of equiv-
alence axioms, each depending on the structure of the
first argument. It will be necessary to quantify over pro-
grams and so, unlike in [8], we need to encode Golog
programs as first-order terms, including introducing con-
stants denoting variables, and so on. This is laborious
but quite straightforward [7]°. We omit all such details
here and simply use programs within formulas as if they
were already first-order terms.

The equivalence axioms I'p for Final are as follows
(universally closing on s):°

Final(nil, s) = TRUFE
Final(e, s) = FALSE
Final(¢? s) FALSE
Fmal([al, 02]) Fmal(al, s) A Final(cs, s)
Final([o1 | 02],s) = Final(oq,s) V Final(os, s)
Final(rz.0,s) = ELE Final(o, s)
Final(o*,) = TRUE
anal(1f¢ then o elqe 0'2, s) =
&(s) A Final(o1,s) V =¢(s) A Final(os, s)

Final(while ¢ do o, 5) =

é(s) A Final(o, s) —(s)

The equivalence axioms I'p for Trans are as follows (uni-
versally closing on s, 4, s'):
Trans(nil,s,d,s') = FALSE
Trans(a, s, 5 sy =
Poss(a s) ANd =
Trans(¢?,s,6,s") =
Tmns([al;az] s,0,s

TT‘(ITH([O’l | 0'2] s (5,.’) =

Trans(c1,s,d,s') V Tmns((rg, s,d,5")
Trans(ﬁm.(r,s,é s') = Jz.Trans(o, s, 5 s")
Trans(c*,s,6,s") =

36".6 = (8';0%) A Trans(o,s,4',s")
Trans(if ¢ then oy else ¢,5,d,5') =

é(s) A Trans(oq,s,d,s") V

—¢(s) A Trans(oq, s,d,s")
Trans(while ¢ do o,s,d,s") =

é(s) A3d’. 6 = (8'; while ¢ do o) A

Trans(o, s,4',s')

It is easy to verify, by induction on the structure of the
first argument, the following:

Theorem 1: For each Golog program o, there erist
two situation calculus formulas ®,(s) and W, (s,d,s'),
not mentioning Final and Trans, such that:

I'r,Tr E Ys.Final(o, s) = ®,(s)
I'r,Tr = V¥s,0,s . Trans(o,s,d,5") = ¥, (s,0,5)

With Final and Trans in place, we may give a new defi-
nition of Do as:

d .
Do(a, s, s") “f 36, Trans* (0,5,8,s') A Final(d, s")
5Observe that Final and Trans cannot occur in tests,
hence self-reference is disallowed.
b1t is convenient to include a special “empty” program nil.

where Trans” is the transitive closure of Trans, defined
as the (second-order) situation calculus formula:

d
sy = kf VT[...D T(o,s,0¢ 5]

Trans™ (o, s, o',

where the ellipsis stands for:

Vs. T(o,s,0,8) A
Vs, d', s’ (5” " T(o,s,8,s")A
Tmns((f' ! (5” sy D T(o,s,d8",s").

In other words, Do(e,s,s’) holds if it is possible to re-
peatedly single-step the program o, obtaining a program
J and a situation s’ such that § can legally terminate in
s'. We then get the following result”:

Theorem 2: The two definitions of Do are equivalent
in that for any non-nil Golog program o and situations
s and s':

I'p,Tr | Doi(o,s,s") = Dos(o, s, s')

3 Concurrency

We are now ready to define ConGolog, an extended ver-
sion of Golog that incorporates a rich account of concur-
rency. We say ‘rich’ because it handles:

e concurrent processes with possibly different priori-
ties,

e high-level interrupts,
e arbitrary exogenous actions.

As is commonly done in other areas of computer science,
we model concurrent processes as interleavings of the
primitive actions in the component processes. A concur-
rent execution of two processes is one where the primi-
tive actions in both processes occur, interleaved in some
fashion. So in fact, we never have more than one prim-
itive action happening at the same time. As discussed
n [1, 13], to model actions that intuitively could occur
simultaneously, e.g. actions of extended duration, we
use instantaneous start and stop (i.e. clipping) actlons
where once again mterleavmg is appropriate.

An important concept in understanding concurrent ex-
ecution 1s that of a process becoming blocked. If a de-
terministic process o is executing, and reaches a point
where 1t is about to do a primitive action a in a situation
s but where Poss(a, s) is false (or a wait action ¢?, where
&(s) is false), then the overall execution need not fail as
in Golog. In ConGolog, the current interleaving can con-
tinue successfully provided that a process other than o
executes next. The net effect is that ¢ is suspended or
blocked, and execution must continue elsewhere.®

The ConGolog language is exactly like Golog except
with the following additional constructs:

"See [5] for hints on the proof of this theorem.

8Just as actions in Golog are external (e.g. there is no
internal variable assignment), in ConGolog, blocking and un-
blocking also happen externally, via Poss and wait actions.
Internal synchronization primitives are easily added.

(o1 || o2), concurrent execution
(o1) 02), concurrency with different priorities
ol concurrent iteration

<¢p— o>, interrupt.

(01 || o2) denotes the concurrent execution of the actions
o1 and 03. (01)) 02) denotes the concurrent execution
of the actions o1 and o3 with o1 having higher priority
than o5. This restricts the possible interleavings of the
two processes: o3 executes only when o is either done or
blocked. The next construct, ol is like nondeterministic
iteration, but where the instances of o are executed con-
currently rather than in sequence. Finally, <¢ — o>
is an interrupt. It has two parts: a trigger condition ¢
and a body, o. The idea is that the body o will exe-
cute some number of times. If ¢ never becomes true, o
will not execute at all. If the interrupt gets control from
higher priority processes when ¢ is true, then o will exe-
cute. Once it has completed its execution, the interrupt
is ready to be triggered again. This means that a high
priority interrupt can take complete control of the execu-
tion. For example, < TRUF — ringBell> at the highest
priority would ring a bell and do nothing else. With in-
terrupts, we can easily write controllers that can stop
whatever task they are doing to handle various concerns
as they arise. They are, dare we say, more reactive.

We now show how Final and Trans need to be ex-
tended to handle these constructs. (We handle inter-
rupts separately below.) For Final, the extension is
straightforward:

Final([oy || 2], 8) = Final(oy,s) A Final(oq, s)
Final([o1) 2], s) = Final(oy, s) A Final(oq, s)
Final(ol, s) = TRUE

Observe that the last clause says that it is legal to ex-
ecute the o in ol zero times. For Trans, we have the
following:

Trans([oy || 03], s,0,s") =
36".8 = (8’ || 02) A Trans(o1,s,46',s") V
d = (o1 || 8') A Trans(os,s,6', s')
Trans([o1) 02],s,d,8") =
36".8 = (8’) 02) A Trans(o1,s,6',s') Vv
§ = (o1) 8') A Trans(os,s,8", ") A
—346", s" . Trans(o, s,6", s")
Tmns(rf” ,5,0,8') =

36'.6 = (¢’ || al) A Trans(o, 5,8, s')

In other words, you single step (o1 || o2) by single step-
ping either o1 or o3 and leaving the other process un-
changed. The (o1)) 03) construct is identical, except
that you are only allowed to single step o3 if there is
no legal step for o1.° This ensures that ¢ will execute
as long as 1t is possible for it to do so. Finally, you
single step ol by single stepping o, and what is left is
the remainder of o as well as ol itself. This allows an
unbounded number of instances of o to be running.

1t is true, though not immediately obvious, that Trans*
remains properly defined even with these axioms containing
negative occurrences of Trans. See [1] for details.

Observe that with (o1 || o2), if both ¢4 and o3 are al-
ways able to execute, the amount of interleaving between
them is left completely open. It is legal to execute one of
them completely before even starting the other, and it
also legal to switch back and forth after each primitive
or wait action. It is not hard to define, however, new
concurrency constructs ||min and ||max that require the
amount of interleaving to be minimized or maximized
respectively. We omit the details.

Exogenous actions are primitive actions that may oc-
cur without being part of a user-specified program. We
assume that in the background theory, the user declares
using a predicate Ezro which actions can occur exoge-
nously. We then modify the specification of Trans for
primitive actions and wait actions from Golog as follows:

Trans(a, s, d,s") = ...as before... V

Ja.Ezo(a)APoss(a, s)AS = aAs’ = do(a, s)

and similarly for test actions. So while executing a pro-
gram, exogenous actions whose preconditions are satis-
fied can occur before any primitive action or while wait-
ing for any condition to become true.

Finally, regarding interrupts, it turns out that these
can be explained using other constructs of ConGolog:

<¢p—>0o> “J while Interrupts_running do
if ¢ then o else FALSE?

To see how this works, first assume that the special flu-
ent Interrupts_running is always true. When an in-
terrupt <¢ — o> gets control, it repeatedly executes ¢
until ¢ becomes false, at which point it blocks, releas-
ing control to anyone else able to execute. Note that
according to the above definition of Trans, no transition
occurs between the test condition in a while-loop or an
if-then-else and the body. In effect, if ¢ becomes false,
the process blocks right at the beginning of the loop,
until some other action makes ¢ true and resumes the
loop. To actually terminate the loop, we use a special
primitive action stop_interrupts, whose only effect is to
make Interrupts_running false. Thus, we imagine that
to execute a program o containing interrupts, we would
actually execute the program {start_interrupts; (¢)
stop_interrupts)} which has the effect of stopping all
blocked interrupt loops in ¢ at the lowest priority, i.e.
when there are no more actions in ¢ that can be exe-
cuted.

4 A reactive multi-elevator controller

We illustrate the use of the concurrency primitives using
a reactive elevator controller example. The example will
use the following terms (where e stands for an elevator):

e ordinary primitive actions:

goDown(e) move elevator down one floor
goUp(e) move elevator up one floor
buttonReset(n) turn off call button of floor n
toggleFan(e) change the state of elevator fan
ringAlarm ring the smoke alarm

e exogenous primitive actions:
reqElevator(n) call button on floor n is pushed
changeTemp(e) the elevator temperature changes
detectSmoke the smoke detector first senses smoke
reset Alarm the smoke alarm is reset

e primitive fluents:
floor(e, s) = n the elevator is on floor n, 1 <n < 6

temp(e,s) =1 the elevator temperature is ¢
FanOn(e, s) the elevator fan is on
ButtonOn(n, s) call button on floor n is on
Smoke(s) smoke has been detected

o defined fluents:
TooHot(e, s) o temp(e,s) >3
TooCold(e, s) e temp(e, s) < —3
We begin with the following basic action theory for the
above primitive actions and fluents:

e initial state:
floor(e,Sp) =1
ButtonOn(3, Sp)

e exogenous actions:
Va.Ezo(a) = a = detectSmokeV a = reset AlarmV
a = changeTemp(e) V In.a = reqFElevator(n)

- FanOn(Sy) temp(e,So) =
ButtonOn(6, Sp)

e precondition axioms:
Poss(goDown(e) s)=floor(e,s) # 1
Poss(goUp(e), s)=floor(e,s) # 6
Poss(button Reset(n), s)= TRUE
Poss(toggle Fan(e), s)=TRUE
Poss(ring Alarm)=TRUE
Poss(reqElevator(n), s)=(1 < n < 6) A

- ButtonOn(n, s)

Poss(changeTemp, s)= TRUE

Poss(detectSmoke, s)=-Smoke(s)

Poss(reset Alarm, s)=Smoke(s)

e successor state axioms:
Poss(a, s) D [floor(e, do(a, s)) = n=
(a = goDown(e) An = floor(e,s) — 1) V
(a = goUp(e) An = floor(e,s) + 1) V
(n = floor(e, s) A a # goDown(e) A
2# goUp(e))]
Poss(a, s) D [temp(e, do(a, s)) = t=
(a = changeTemp(e) A FanOn(e, s) A
t =temp(e,s) — 1) vV
(a = changeTemp(e) A ~FanOn(e, s) A
t =temp(e,s) + 1) Vv
(t = temp(e, s) A a # changeTemp(e))]
Poss(a, s) D [FanOn(e, do(a, s))=
(a = toggleFan(e) A ~FanOn(e,s)) V
(a # toggleFan(e) A FanOn(e, .s))]
Poss(a, s) D [ButtonOn(n, do(a, s))=
a = reqFlevator(n) V
(ButtonOn(n, s) A a # buttonReset(n))]
Poss(a, s) D [Smoke(do(a, s))=
a = detectSmoke V
(Smoke(s) A a # reset Alarm)]

Note that many fluents are affected by both exoge-
nous and programmed actions. For instance, the flu-

ent ButtonOn is made true by the exogenous action
reqElevator (i.e. someone calls for an elevator) and
made false by the programmed action buttonReset (i.e.
when an elevator serves a floor).

Now we are ready to consider a basic elevator con-
troller. It might be defined by something like:

while 3n.ButtonOn(n) do
mn.{Best Button(n)?; serve Floor(e,n)};
while floor(e) # 1 do goDown(e)

The fluent Best Button would be defined to select among
all buttons that are currently on, the one that will be
served next. For example, it might choose the but-
ton that has been on the longest. For our purposes,
we can take it to be any ButtonOn. The procedure
serveFloor(e,n) would consist of the actions the eleva-
tor would take to serve the request from floor n. For our
purposes, we can use:

serveFloor(e,n) e

while floor(e) < n do goUp(e);
while floor(e) > n do goDown(e);
button Reset(n)

We have not bothered formalizing the opening and clos-
ing of doors, or other nasty complications like passen-
gers.

Using this controller o, we would get execution traces

like
Azioms |= Do(o, Sy, do([u, u, r3, u, u, u,re,d, d, d, d,d], Sp))

where u=goUp(e), d=goDown(e), r, = button Reset(n).
In this particular run, there were no exogenous actions.

This controller does have a big drawback, however: if
no buttons are on, the first loop terminates, the elevator
returns to the first floor and stops, even if buttons are
pushed on its way down. It would be better to structure
it as two interrupts:

<3n.ButtonOn(n) —
mn.{Best Button(n)?; serveFloor(e,n)} >

< floor(e) # 1 — goDown(e) >

with the second at lower priority. So if no buttons are
on, and you’re not on the first floor, go down a floor,
and reconsider; if at any point buttons are pushed ex-
ogenously, pick one and serve that floor, before checking
again. Thus, the elevator only quits when it is on the
first floor with no buttons on.

With this scheme, it is easy to handle emergency or
high-priority requests. We would add

<3dn.EButtonOn(n) —
mn.{EButtonOn(n)?; serve E Floor(e,n)} >

as an interrupt with a higher priority than the other two
(assuming suitable additional actions and fluents).
To deal with the fan, we can add two new interrupts:

<TooHot(e) A =FanOn(e) — toggle Fan(e) >
<TooCold(e) A FanOn(e) — toggleFan(e)>

These should both be executed at the very highest pri-
ority. In that case, while serving a floor, whatever that
amounts to, if the temperature ever becomes too hot,
the fan will be turned on before continuing, and simi-
larly if it ever becomes too cold. Note that if we did
not check for the state of the fan, this interrupt would
loop repeatedly, never releasing control to lower priority
processes.

Finally, imagine that we would like to ring a bell if
smoke is detected, and disrupt normal service until the
smoke alarm is reset exogenously. To do so, we add the
interrupt:

< Smoke — ring Alarm>

with a priority that is less than the emergency button,
but higher than normal service. Once this interrupt is
triggered, the elevator will stop and ring the bell repeat-
edly. Tt will handle the fan and serve emergency requests,
however.

Putting all this together, we get the following con-
troller:

(<TooHot(e) AN = FanOn(e) — toggleFan(e)> ||
<TooCold(e) A FanOn(e) — toggleFan(e)>))
< 3dn.EButtonOn(n) —

mn.{ E ButtonOn(n)?; serve EFloor(e,n)} >)
< Smoke — ringAlarm>)
< 3dn.ButtonOn(n) —

mn.{Best Button(n)?; serveFloor(e,n)} >)
< floor(e) # 1 — goDown(e) >

Note that this elevator controller uses 5 different levels
of priority. It could have been programmed in Golog
without interrupts, but the code would have been a lot
messier.

Now let us suppose that we would like to write a
controller that handles two independent elevators. In
ConGolog, this can be done very elegantly using (o1 ||
03), where o7 is the above program with e replaced by
elevator; and o is the same program with e replaced by
elevators. This allows the two processes to work com-
pletely independently (in terms of priorities)!®. For n
elevators, we would use (oq || -+ || on). In some ap-
plications, it is useful to have an unbounded number of
instances of a process running concurrently. For example
in an FTP server, we may want an instance of a man-
ager process for each active FTP session. This can be
programmed using the ol concurrent iteration construct.

Finally, if it is desirable to have the elevator continue
working indefinitely, we can do so by adding an interrupt:

< TRUFE — wait >

at the lowest possible priority, where wait is a no-op in
terms of fluents. So if everything else is satisfied, the

°0Of course, when an elevator is requested on some floor,
both elevators may decide to serve it. It is easy to program
a better strategy that coordinates the elevators: when an
elevator decides to serve a floor, it immediately makes a fluent
true for that floor, and the other elevator will not serve a floor
for which that fluent is already true.

elevator simply waits until a higher priority interrupt is
triggered exogenously. Such programs never terminate,
so semantics based on Do cannot be used, but their be-
havior can nonetheless be specified using Trans [1].

5 Discussion

With all of this procedural richness, it is important not
to lose sight of the logical framework. ConGologis indeed
a programming language, but one whose execution, like
planning, depends on reasoning about actions. Thus,
a crucial part of a ConGolog program is the declara-
tive part: the precondition axioms, the successor state
axioms, and the axioms characterizing the initial state.
This is central to how the language differs from superfi-
cially similar “procedural languages”. A ConGolog pro-
gram together with the definition of Do and some foun-
dational axioms about the situation calculus is a formal
logical theory about the possible behaviors of an agent
in a given environment''. And this theory must be used
explicitly by a ConGolog interpreter.

We have developed a prototype ConGolog interpreter
in Prolog (see [1]). Indeed, a simple if somewhat ineffi-
cient interpreter can be lifted directly from Final, Trans,
and Do introduced above'?. For example, for (o)) 09),
we would have the following two Prolog clauses for Trans:
trans (prioConc(Sigmal,Sigma2),51,

prioConc(Delta,Sigma2),82) :-
trans(Sigmal,S1,Delta,S2).
trans (prioConc(Sigmal,Sigma2),51,
prioConc(Sigmal,Delta),52) :-
trans(Sigma2,51,Delta,S2),
not trans(Sigmal,S1,_,_).

Our implementation requires that the program’s precon-
dition axioms, successor state axioms, and axioms about
the initial state be expressible as Prolog clauses. This is
a limitation of the implementation, not the theory.

In summary, we have shown how, given a basic ac-
tion theory describing an initial state and the precon-
ditions and effects of a collection of primitive actions,
it is possible to combine these in complex ways appro-
priate for providing high-level control. The semantics
of these complex actions ends up deriving directly from
that of the underlying primitive actions. In this sense,
we inherit the solution to the frame problem provided
by successor state axioms for primitive actions.

There are, however, many areas for future research.
Among them, we mention: 1) incorporating sensing ac-
tions, that is, actions whose effect is not to change the
world so much as to provide information to be used by
the agent at runtime; 2) handling non-termination, that
is, developing accounts of program correctness (fairness,
liveness etc.) appropriate for controllers expected to op-

erate indefinitely.

" Although with a different emphasis, this approach is
shared by [2] where a logical formalism is proposed for con-
current database transactions.

2Exogenous actions can be simulated by generating them
probabilistically or by asking the user at runtime when they
should occur.

References

(1]
[2]

[3]

[10]

[11]

[12]

A longer version of this paper, in preparation.

A. J. Bonner and M. Kifer. Concurrency and com-
munication in transaction logic. In Proc. ICDT’95,

1995.

G. De Giacomo and X. Chen. Reasoning about non-
deterministic and concurrent actions: A process al-
gebra approach. In Proc. AAAI’96, pages 658-663,
1996.

C. C. Green. Theorem proving by resolution as a
basis for question-answering systems. In Machine
Intelligence, volume 4, pages 183-205. Edinburgh
University Press, 1969.

M. Hennessy. The Semantics of Programming Lan-

guages. John Wiley & Sons, 1990.

C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall Int., 1985.

D. Leivant. Higher order logic. In Handbook of
Logic in Artificial Intelligence and Logic Program-
ming, volume 2, pages 229-321. Clarendon Press,
1994.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin,
and R. B. Scherl. GOLOG: A logic programming
language for dynamic domains. To appear in the
Journal of Logic Programming, 1996.

J. McCarthy and P. Hayes. Some philosophical
problems from the standpoint of artificial intelli-
gence. In Machine Intelligence, vol. 4, Edinburgh
University Press, 1969.

R. Milner. Communication and Concurrency. Pren-

tice Hall, 1989.

G. Plotkin. A structural approach to operational
semantics. Technical Report DATMI-FN-19, Com-
puter Science Dept. Aarhus Univ. Denmark, 1981.

R. Reiter. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a complete-
ness result for goal regression. In Artificial Intel-
ligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 359-380.
Academic Press, 1991.

R. Reiter. Natural actions, concurrency and contin-
uous time in the situation calculus. In Proc. KR’96,
pages 2-13, 1996.

C. Stirling. Modal and temporal logics for pro-
cesses. In Logics for Concurrency: Structure versus
Automata, number 1043 in LNCS, pages 149-237.
Springer-Verlag, 1996.

-1

