Modeling Dynamic Domains with ConGolog

Yves Lespérance,

Dept. of Computer Science, York University,
Toronto, ON Canada, M3J 1P3
lesperan@cs.yorku.ca

Todd G. Kelley, John Mylopoulos, and Eric SK. Yu

Dept. of Computer Science, University of Toronto,
Toronto, ON Canada, M5S 1A4
{tgk,jm,eric} @cs.toronto.edu

Abstract

In this paper, we describe the process specification language ConGolog
and show how it can be used to model business processes for requirements
analysis. In ConGolog, the effects of actionsin a dynamic domain are spec-
ified in alogica framework. This supports modeling even in the absence of
complete information. The behavior of agentsin the domain is specified in
a concurrent process language, whose semantics is defined in the same logi-
cal framework. We then describe a simulation tool implemented in terms of
logic programming technol ogy. Aswell, we discuss averification tool which
is being devel oped based on theorem proving technol ogy.

1 Introduction

Dynamic models of aspects of theworld constitute an essentia ingredient of infor-
mation systems engineering. Such models are useful during requirements analysis
where the operational environment of a system-to-be needs to be described, along
with the role the system will play within that environment. Dynamic models also
play akey role during design when the functions of the system and its major com-
ponents are specified.

Existing dynamic modelscomein two flavors. State-based model s describe the
processes of adynamic world in terms of states and (state) transitions. Finite-state
machines, Petri nets[14], statecharts[7], and workflows are examples of modeling
frameworks which adopt a state-oriented view of the world. A major advantage of

state-based model sisthat they can be simulated, showing the sequence of statetran-
sitionsthat will take place for a particular sequence of input signals. Alternatively,
predicative models [1, 20] describe processesin terms of pre/post-conditions, i.e.,
in terms of a condition that has to be true before a process is launched (the pre-
condition) and a condition that will be true once the process execution has been
completed (the postcondition). Predicative models admit atype of formal analysis
where propertiesof aprocesscan be verified. For example, one can show that acer-
taininvariantis preserved by aprocessinthe sensethat if theinvariant holdsbefore
the process begins, it will also hold at the end of the process.

Predicative model s typically do not support simulation and state-based models
do not support formal property analysis. This paper describes a modeling frame-
work for dynamic worldsthat supportsboth simulationand verification. Theframe-
work is based on the language ConGolog, originally developed asahigh level lan-
guage for programming robots and software agents [3].1ConGolog is based on a
logical formalism, thesituation cal culus, and can model multi-agent processes, non-
determinism, aswell as concurrency. Because of itslogical foundations, ConGolog
can accommodate incompl etely specified models, either in the sensethat theinitial
state of the system is not completely specified, or in the sense that the processes
involved are nondeterministic and may evolvein any number of ways. These fea
turesareespecially useful when one model sbusi nessprocesses and open-ended real
world situations.

Section 2 of the paper introduces the framework and how it is used for mod-
eling states, actions, and processes, and presents a simple example invalving the
handling of orders by a business. Section 3 demonstrates the ability of the frame-
work to support both simulation and verification, while section 4 describes the se-
mantics of ConGolog and the formal theory on which it isbased. Finaly, section
5 summarizes the contributionsof thisresearch and suggestsdirectionsfor further
research.

2 Modeling a Domain in ConGolog

In the ConGolog framework, an application domain is modeled logically so as to
support reasoning about the specification. A ConGolog model of adomaininvolves
two components. Thefirst component isa specification of thedomaindynamics, i.e.
how the statesare model ed, what actionsmay be performed, when they arepossible,
what their effects are, and what is known about the initial state of the system. This
component is specified in a purely declarative way, in alanguage called the Golog

1ConGolog is an extended version of the Golog (AIGOI in LOGiIc) language described in [10].
Earlier work on modeling business processesin Golog appearedin [15].

Domain Language (GDL).?

The second component of a ConGolog domain model is a specification of the
processesthat are unfoldingin thedomain; thiscan a so beviewed asaspecification
of the behavior of the agentsin the domain. Because we are interested in modeling
domains involving complex processes, thiscomponent is specified procedurally in
the ConGolog process description language.

Both GDL and the ConGolog process language have formal semantics defined
in alanguage of predicate logic called the situation calculus. Various mechanisms
for reasoning about properties of adomain have been implemented using this situ-
ation calculus semantics. We outline the semanticsin section 4.

Toillustratethe use of the framework to model a domain, we use arunning ex-
ample involving a simple mail-order business. We assume that the business sells
only one product. We & so assume that there are only two agents in the business,
who could be single people or whole departments:

o theorder desk operator, who processes payment for orderswhilewaiting for
the phoneto ring, and when it does, receives an order from a customer; and

¢ thewarehouse operator, who fillsthe orders that the order desk operator has
received, and ships orders for which the order desk operator has processed
payment; whenever a shipment is delivered by a supplier, the warehouse op-
erator receives the shipment.

Orders can be processed in two possible ways as described in the diagram in Fig-
ure 1. The example is kept artificialy simple so that it can be presented in its
entirety.

2.1 Modeling Domain Dynamicsin GDL

Thefirst component of a ConGolog model is a specification of the dynamics of the
domain and of what is known about itsinitia state. For this, our framework uses
GDL. In our models, we imagine the world as starting out in a particular initial
situation (or state), and evolving into various other possible situationsthrough the
performance of actions by various agents. Situations are described in terms of flu-
ents. Relational fluents are relations or properties whose truth vaue can vary from
situation and to situation and functional fluents are functions whose value varies
from situation to situation. For instance in our example, we use the action term
shipOrder(agt, order) to represent the action of agent agt shipping order, and
therelationa fluent Order.Shipped(order)torepresent theproperty that order has

2GDL is related to Gelfond and Lifschitz's action language .A [6]; one significant difference
though, isthat GDL is afirst-order language, while A is essentially a propositional language.

PhoneRinging

OrderMade(order)

NN

OrderFilled(order) PaymentProcessed(order)

PaymentProcessed(order) OrderFilled(order)

N S

OrderShipped(order)

Figure 1: Aninformal diagram showing the two possiblepathsin the life-cycle of
an order.

been shipped. Thisfluent might befalseintheinitia situation, but trueinasituation
that isthe result of the action shipOrder(agt, order).

Themodeler choosesthe fluentsand actionsin adomain model according to the
desired level of abstraction. A GDL domain specification startswith a set of decla
rationsfor the fluents used in themodel. Each fluent declar ation specifiesthe name
of the fluent, the number of argumentsit takes and whether it is afunctional fluent
or not. Optionally, one can a so specify what valuethe fluent hasin theinitial situa-
tion. The GDL fluent declarationsfor our example domain appear in Figure2. Note
that ordersareidentified by anumber determined by thevalueof theorderCounter
fluent when the order is received.

Next, a GDL domain specification includes action declarations, one for each
primitive action. These specify the name of the action, the arguments it takes, and
action’s preconditions, i.e. the conditionsunder which itis possible. The GDL ac-
tion declarationsfor our example domain appear in Figure 2. Thelast two represent
actions performed by customers and suppliersthat impact on the business. We view
customers and suppliersas agentsthat are outsidethe system and are not interested
in modeling their behavior in detail. We only consider their effect on the system
through these two actions, which we call exogenous actions.

Finally, a GDL specification includes a set of effect declarations, one for each
fluent that is affected by an action. The effect declarationsfor our example domain

Fluent Declarations

fluent PhoneRinging() % the phone isringing
initially False;

fluent Order M ade(order) % order has been made
initially False;

fluent Payment Processed(order) % payment for order has been
initially False; % processed

fluent Order Filled(order) % order has been filled
initially F'alse;

fluent OrderShipped(order) % order has been shipped
initially F'alse;

fluent Supplies At Shipping Dock() % incoming suppliesare at
initially False; % the shipping dock

functional fluent orderQuantity(order) % the quantity of items requested
initially 0; %inorder

functional fluent orderCounter() % the value of the order counter
initially 1;

functional fluent stock() % the quantity of itemsin stock
initially 10;

functional fluent incomingOrderQuantity() % the quantity of items requested
initially 0; % in the incoming order

functional fluent incomingSuppliesQuantity() % the quantity of items delivered
initially 0; % in the incoming shipment

Action Declar ations

action receiveOrder(agt) % agt receives theincoming phone order
possiblewhen PhoneRinging();

action process Payment(agt, order) % agt processes payment for order
possiblewhen Order M ade(order);

action fillOrder(agt, order) % agt fillsorder
possiblewhen Order M ade(order);

action shipOrder(agt, order) % agt shipsorder
possiblewhen Order M ade(order) A Order Filled(order);

action receiveSupplies(agt) % agt receives suppliesat the loading dock

possiblewhen Supplies At Shipping Dock()
A stock() + incoming SuppliesQuantity() < 100;

exogenous action mkOrder(cust, q) % customer cust makes an order for ¢ items
possiblewhen —PhoneRinging();
exogenous action deliverSupplies(supp, q) % supplier supp ddivers ¢ items of hew stock

possiblewhen —~Supplies At Shipping Dock();

Figure 2: Example GDL domain specification — part 1.

Effect Declarations

occurrence receiveOrder(agt) resultsin Order M ade(orderCounter()) always,
occurrence receiveOrder(agt) resultsin
orderCounter() = orderCounter() + 1 always,
occurrence receiveOrder(agt) resultsin = Phone Ringing() always,
occurrence receiveOrder(agt) resultsin
orderQuantity(orderCounter()) = incomingOrderQuantity() always,

occurrence process Payment(agt, order) resultsin Payment Processed(order) always,

occurrence receiveSupplies(agt) resultsin —Supplies At Shipping Dock() always,
occurrence receiveSupplies(agt) resultsin

stock() = stock() + incomingSuppliesQuantity() always,
occurrence fillOrder(agt, order) resultsin Order Filled(order)

when orderQuantity(order) < stock();

occurrence fillOrder(agt, order) resultsin stock() = stock() — orderQuantity(order)

when orderQuantity(order) < stock();
occurrence shipOrder(agt, order) resultsin Order Shipped(order) always,
occurrence mkOrder(c, ¢) resultsin PhoneRinging() always,
occurrence mkOrder(c, ¢) resultsin incomingOrderQuantity() = q always,
occurrence deliverSupplies(su, q) resultsin Supplies At ShippingDock() always,

occurrence deliverSupplies(su, q) resultsin incomingSuppliesQuantity() = q always,

Figure 3: Example GDL domain specification — part 2.

appear in Figure 3. Note the declaration for the action fillOrder. Its effects de-
pend on the context, in that it only causes the order to become filled when thereis
sufficient stock to do so; otherwise, the action behaves as a no-op.

2.2 Modeing Domain Processes in ConGolog

Asmentioned earlier, a ConGolog domain model includesasecond component that
describes the processes unfolding in the domain. This is specified in a procedu-
ra sublanguage where actions can be composed into complex processes, possibly
involving concurrency and nondeterminism. This ConGolog process specification
language provides the constructslisted in Figure 4.

Let us go over some of the less familiar constructs in the language. The non-
deterministic constructsinclude (o4 | o2), which nondeterministically choses be-
tween processes oy and o3, 7Z[o], which nondeterministically picks a binding for
the variablesin thelist # and performs the process o for thisbinding of #, and o*,
which means performing o zero or more times. Concurrent processes are mod-
eled asinterleavingsof the actionsinvolved. The actionsthemselves are viewed as
atomic and cannot beinterrupted. A processmay become blocked whenit reachesa

o primitive action
o? wait for acondition
(01;02) Sequence
(o1] 02) nondeterministic choice between actions
T % [o] nondeterministic choice of arguments
o* nondeterministiciteration
if ¢ then oy dse oy, endlf conditiona
while ¢ do o endWhile loop
(o1]| 02) concurrent execution
(o1) 02) concurrency with different priorities
ol concurrent iteration
<T:p—o0> interrupt
proc 3(%) o endProc procedure definition
B(1) procedure call
noOp do nothing

Figure 4: Constructsin ConGolog process specifications.

primitive action whose preconditionsare false or await action ¢? whose condition
¢ isfase. Then, execution of the system may continue provided another process
executes next. In (oy)) 02), o1 has higher priority than o4, and o, may only ex-
ecute when o isdone or blocked. ol islike nondeterministiciteration o*, but the
instances of o are executed concurrently rather than in sequence. Finally, an inter-
rupt <z : ¢ — o> hasalist of variables 7, atrigger condition ¢, and abody o. If
the interrupt gets control from higher priority processes and the condition ¢ istrue
for some binding of the variables, the interrupt triggers and the body is executed
with the variables taking these values. Once the body completes execution, thein-
terrupt may trigger again. With interrupts, it is easy to write process specifications
that are reactive in that they will suspend whatever task they are doing to handle
given conditionsas they arise.

Let us look at how this language can be used to specify the processes in our
mail-order business domain; the specification appearsin Figure 5. The whole sys-
tem is specified by the main procedure. It executes two concurrent processes, one
for each agent in the domain. The agents in our system are very reactive. Their
behavior involves monitoring the progress of orders, and when certain conditions
hold, performing some step in the processing of the order. So we specify their be-
havior using interrupts. The behavior of the order desk operator is specified by the
runOrder Desk procedure. Thisagent hastwo responsibilities: receiving an order
when the phone rings and processing payments for orders. Each of theseis han-

Process Specifications

proc runOrder Desk(od Agt)
< phoneRinging — receiveOrder(odAgt) >
)
< order: Order Made(order) A —payment Processed(order)
— processPayment(od Agt, order) >
endProc

proc runW arehouse(wAgt)
< SuppliesAtShipping Dock — receiveSupplies(wAgt) >
)
< order: Order Made(order) A Order Filled(order)
A PaymentProcessed(order) A ~OrderShipped(order)
— shipOrder(wAgt) >
)
< order: Order Made(order) A ~Order Filled(order)
— fillOrder(wAgt) >
endProc

proc main
runOrder Desk(Order Desk Agt) || runW arehouse(W arehouseAgt)

endProc

Figure 5: Example ConGolog process specification.

died by an interrupt. Since receiving orders when the phone rings is more urgent
than processing payments, the interrupt for receiving orders runs at higher priority
than the one for processing payments. The interrupt for processing payment non-
deterministically picksan order for which payment has not yet been processed, and
processes its payment.

The runW arehouse procedure specifying the behavior of the warehouse op-
erator involves three interrupts each running at a different priority. At the highest
priority, the operator should receive an incoming shipment when the shipping door
bell rings. When thereis no shipment to receive, the next highest priority isto ship
orders that are ready to ship (orders that are filled and for which payment is pro-
cessed), if there are any, picking at random. At the lowest priority, the operator
should fill any order that has been received but not yet filled, picking the order ar-
bitrarily.

3 Analyzing Domain Specificationsusing ConGolog Tools

3.1 Validation through Simulation

Simulation is a useful method for validating domain models. We have developed
atool for incrementally generating execution traces of ConGolog process specifi-
cations. Thistool can be used to check whether a model executes as expected in
various conditions. For example, our simulation tool can be used to confirm that
our model of the mail-order business domain can process a single order in two dif-
ferent ways, either filling the order before payment is processed, or vice versa. In
Figure 6, we see a trace of the first execution of the specification, where a single
order by customer c1 for 3 items (mkOrder(cl, 3)) is made and where payment is
processed on the order before it isfilled. The figure shows the simulation tool at
the end of the execution. A list of executed actions appears at the top right of the
viewer, with later action occurrences at the top. The (partia) state of the systemis
displayed at thetop left of the viewer. A trace of a second execution of the specifi-
cation where the order isfilled before payment is processed appears in Figure 7.

Our simulation tool is based on alogic programming technology implementa-
tion of the ConGolog framework. It involvestwo main components:

e the GDL compiler, which takes adomain specificationin GDL and produces

3Note that the action fillOrder succeedsin filling the order only if thereis sufficient stock, oth-
erwise it has no effect. Thus, the agent may repeatedly attempt to fill an order until it succeeds. If
one wants to ensure that the agent gives priority to the orders that it has sufficient stock to fill, one
needsto add a copy of the interrupt with the additional condition order Quantity(order) < stock
running at a higher priority than the existing interrupt.

[®] CONGOLOG simulation wiew

File Simulation Help
State of the System Executed actions (5)
stock 7 shipCrder(warehouseAgent,1)

fillCrder(warehouseAgent,1)

sURUEsClspHIng DAt tal e processPayment(orderDeskfgent,1)

| T —— |

incomingSupplies@uantity 0 receiveOrder(orderDeskAgent)
phoneRinging false Exog: mkOrder(c1,3)
. § . Initial Situation-—--———=———-
incomingOrderQuantity 3
orderCounter 2 E P
Orders Exogenous actions and their probabilites
mkOrder(c1,1) 2.2% B
1 mkOrder(c1.2) 32%
quantity 3 mkOrder(c2,4) 54%
filled true mkOrder(c2,8) 1.6%
deliverSupplies(su,20) 3.2%
pracenzed ‘fria mkOrder(c1,3) 7.6%
shipped true -

| =] 1=
_| Disable random exogenous actions

M Stop on primitive Step | Doc. |

M Stop on exogenous

M Stop on breakpoint Restart | Quit |

Displaying the final situation.
Consult the previous situations or
restart the simulation.

Figure 6: The ConGolog simulation tool at the end of afirst execution of the mail-
order domain specification.

10

[CONGOLOG simulation viewer

File Simulation

State of the System Executed actions (5)

stock 7 shipOrder{warehouseAgent,1)
processPayment(orderDeskAgent,i)
tillOrder(warehouseAgent,1)
incomingSuppliesQuantity 0 receiveOrder{orderDeskAgent)
phoneRinging false Exog: mkOrder(c1,3)

incomingOrderQuantity 3

suppliesAtShippingDock false

orderCounter 2 i

Orders Exogenous actions and their probabilites
mkOrder(c1,1) 2.2% &Y
1 mkOrder(c12) 32%
quantity 3 mkCrder(c24) 54%
filled true mkCrder(c2,8) 1.6%
deliverSupplies(su,20) 3.2%
mkCrder(cl13) 7.6%

processed true

shipped true

= ix

_| Disable random exogenous actions

W Stop on primitive Step l Doc. I

M Stop on exogenous —
W Stop on breakpoint ﬂ| ﬂ,

Displaying the final situation.
Consult the previous situations or
restart the simulation.

Figure 7: The simulation tool at the end of a second execution of the mail-order
domain specification.

aProlog implementation of the corresponding situation calculus domain the-
ory;

¢ the ConGologinterpreter, which takes a ConGol og process specification and
adomain theory, and generates execution traces that satisfy the process spec-
ification given the domain theory; the interpreter uses the domain theory in
evaluating tests and checking whether action preconditionsare satisfied asit
generates the execution traces; the Prolog implementation of the interpreter
isdescribed in [4].

These two components are at the core of atoolkit. Thekit includesagraphical
viewer, shown in Figures 6 and 7 for displaying simulations of ConGolog process
specifications. Thistool, which isimplemented in Tcl/Tk, displaysthe sequence of
actions performed by the ConGolog process specification and the value of the flu-
ents in the resulting situation (or any situation along the path). The process execu-
tion can be stepped through and exogenous events can be generated either manually
or at random according to a given probability distribution. The manner in which
stateinformation is displayed can be specified easily and customized as required.

Thetoolkit also includes a module for progressing the initial situation, i.e. up-
dating the specification of theinitial situation to make it correspond to alater situ-
ation [12]. This makes the reasoning performed by the system more efficient and

11

alowsit to simulate the execution of long running processes.

The logic programming technology implementation of the ConGolog frame-
work isfairly efficient and can be used for both simulation and for deploying actual
applicationswhen one providesimplementationsfor the actionsused. However, the
current implementationislimited to specificationsof theinitial situationthat can be
represented as logic programs, which are essentially closed-world theories. Thisis
a limitation of the logic programming implementation, not the ConGolog frame-
work. Note also that we are currently working on extending the implementation to
support limited types of incompleteness.

3.2 Verification

One may be interested in verifying that the processes in a domain satisfy certain
properties. The ConGolog framework supportsthisthroughitslogic-based seman-
tics. For example, given our specification of the mail-order business domain, we
may be interested in showing that no order is ever shipped before payment is pro-
cessed, i.e.

Vorder. OrderShipped(order) O Payment Processed(order).

In fact, we can provethat if the above property holdsin theinitial situation, it will
holdfor every situationduring an execution of our processspecification. Intuitively,
thisis the case because (1) once payment is processed for an order no action can
cause it to become unprocessed, (2) the only action that can cause an order to have
been shipped is shipOrder, and (3) in the process specified, shipOrder is only
performed when payment has been processed on the order. We give a proof of the
property in section 4.4. Note that the property follows even if the domain specifi-
cation includes no information about the initial situation other than the fact that the
property holdsinitially.

Another important property to verify for a mail-order businessisthat it should
have income, i.e. that there is a situation where

Jorder Payment Processed(order).

holds. However, for the process specifications given earlier there is no guarantee
of this. Hence, the businessis not certain to make any money, even if it gets many
orders. In fact, we can provethat if the phone always rings as soon as any order is
taken, no payment would ever be processed, because the order desk operator would
be too busy answering the phone.

This problem can be fixed by introducing the concept of a backlog of orders
with the following declarations

12

functional fluent back Log() initially 1;

occurrence receiveOrder(agt) resultsin
backLog() = backLog() + 1 always,

occurrence processPayment(agt, order) resultsin
backLog() = backLog() — 1 always,

and changing the highest priority interrupt of the runOrder Desk procedure from
< PhoneRinging — receiveOrder(odAgt) >
to
< PhoneRinging A backLog() < 10 — receiveOrder(odAgt) >

With these changes to the specification, one can verify that if at least one order is
placed and there is sufficient stock to fill it, then the business has some income
(note that a steady stream of supplies deliveries cannot cause problems because
the warehouse is assumed to have a fixed capacity; see the action declaration for
receiveSupplies).

A user-assisted verification tool that can handle arbitrary ConGolog theories,
i.e.incompletely specifiedinitial situationsand specificationsof agents' mental states
(knowledge and goals), is being developed [19]. The user would provide a proof
strategy and thetool would producethe detail ed steps of aproof automatically. The
tool isbased on theorem proving technol ogy and relies on an encoding of the ConGol og
semanticsin aform that the PVS program verification system can reason with.

4 ConGolog Semantics

In this section, we describe the logical foundations of the ConGolog framework.
These foundations are what supportsits usein both simulation and verification.

41 The Situation Calculusand the Semantics of GDL

As mentioned earlier, the semantics of GDL and of the ConGolog process specifi-
cation language are specified in the situation calculus [13], alanguage of predicate
logic for representing dynamic domains. The reasoning performed by our toolsis
also based on the situation calculus. Let us briefly introduce this language. In the
situation calculus, all changesto the world are the result of named actions. A pos-
sible world history, which is simply a sequence of actions, is represented by a first
order term called a situation. The constant .S is used to denote the initia situa-
tion, namely that situation in which no actions have yet occurred. Thereisadis-
tinguished binary function symbol do and the term do(«, s) denotes the situation

13

resulting from action « being performed in situation s. Actions may be parame-
terized. So for example, do(receiveOrder(agt), s) would denotethat situationre-
sulting from agt having received the incoming phone order when the world wasin
situation s. Notice that in the situation calculus, actions are denoted by function
symbols, and situations (world histories) are aso first order terms. For example,

do(receiveOrder(Order Desk Agent), do(mkOrder(Customerl, 2), Sp))
is asituation denoting the world history consisting of the sequence of actions
[mkOrder(Customerl, 2), receiveOrder(Order Desk Agent)].

In the situation calculus, relational fluents are represented by predicate sym-
bols that take a situation term as their last argument. This makes the dependence
of the value of the fluent on the situation explicit. So for example, the formula
—Jorder Order M ade(order, Sy) would be used to represent the fact no order has
been made in theinitial situation, and

OrderMade(1, do(receiveOrder(Order Desk Agent),
do(mkOrder(Customerl,2), Sg)))

would be used to represent the fact that order number 1 has been made in the situ-
ation obtained after customer C'ustomer1 makes an order for 2 items and the or-
der desk agent receivesit. Similarly, functional fluents are represented by function
symbolsthat takeasituation astheir last argument, asinorderQuantity(order, s),
i.e., the quantity of items requested in order in situation s. In GDL specifications,
the situation argument of fluentsis suppressed to make the notation less verbose.

The semantics of GDL maps GDL declarations into situation calculus axioms
that capture the meaning of the declarations. GDL fluent declarations can include
information about the value of thefluent intheinitia situationinaninitially clause.
If suchaclauseispresent, itismapped into aninitial situationaxiom. For our mail-
order businessexample, the fluent declarationsin Figure 2 are mapped into the fol -
lowing initia situation axioms:

Initial Situation Axioms

—PhoneRinging(Sp)

=Order Made(order, Sy)
—Payment Processed(order, Sy)
—OrderFilled(order, Sp)
=OrderShipped(order, Sp)
—Supplies AtShipping Dock(So)

14

orderQuantity(order, Sp) = 0
orderCounter(Sy) = 1

stock(Sp) = 10
incomingOrderQuantity(Sy) = 0
incomingSuppliesQuantity(Sg) = 0

A GDL action declaration specifies the preconditionsof the action, i.e. the con-
ditions under which it is physicaly possibleto perform it. Such a declaration is
mapped by the GDL semantics into an action precondition axiom. These axioms
use the special predicate Poss, with Poss(a, s) representing the fact that action «
isphysically possible (i.e. executable) in situation s. For our example domain, the
action declarations in Figure 2 are mapped into the following action precondition
axioms are:

Action Precondition Axioms
Poss(receiveOrder(agt), s) = PhoneRinging(s)
Poss(process Payment(agt, order), s) = Order M ade(order, s)

Poss(receiveSupplies(agt), s) = Supplies AtShipping Dock(s)
A stock() + incomingSuppliesQuantity() < 100

Poss(fillOrder(agt, order), s) = Order Made(order, s)

Poss(shipOrder(agt, order), s) =
Order Made(order, s) A Order Filled(order, s)

Poss(mkOrder(customer, quantity), s) = - PhoneRinging(s)

Poss(deliver Supplies(supplier, quantity), s) =
—Supplies AtShipping Dock(s)

Finally, we also have GDL effect declarationswhich specify how actions affect
the state of the world. These declarations are mapped by the GDL semantics into
effect axioms. Effect axioms provide the “causal laws” for the domain of applica-
tion. For our example, the effect declarations that appear in Figure 3 are mapped
into the following effect axioms:

Effect Axioms
Order Made(do(receiveOrder(agt), s))
orderCounter(do(receiveOrder(agt), s)) = orderCounter(s) + 1
—PhoneRinging(do(receiveOrder(agt), s))

orderQuantity(orderCounter(s), do(receiveOrder(agt), s)) =
incomingOrderQuantity(s)

15

Payment Processed(order, do(process Payment(agt, order), s))
~SuppliesAtShipping Dock(do(receiveSupplies(agt),s))
stock(do(receiveSupplies(agt), s)) = stock(s) + incomingSuppliesQuantity(s)
orderQuantity(order, s) < stock(s) D OrderFilled(do(fillOrder(agt, order), s))

orderQuantity(order, s) < stock(s) D
stock(do(fillOrder(agt, order),s)) = stock(s) — orderQuantity(order)

OrderShipped(do(shipOrder(agt, order), s))

PhoneRinging(do(mkOrder(customer, quantity), s))

incomingOrderQuantity(do(mkOrder(customer, q),s)) = q

SuppliesAtS hipping Dock(do(deliver Supplies(supplier, quantity), s))

incomingSuppliesQuantity(do(deliver Supplies(supplier,q),s)) = q
Thefull syntax and semantics of GDL are defined in [9].

4.2 Addressing the Frame Problem

Thesort of logi c-based framework we have described allowsvery incompl eteinfor-
mation about a dynamic domain to be specified. But this creates difficultiesin rea
soning about action and change Effect axioms state what must change when an ac-
tionisperformed, but do not specify what aspects of the domain remain unchanged.
One way to address thisis to add frame axioms that specify when fluents remain
unchanged by actions. For example, an agent agt filling order does not cause new
suppliesto appear at the shipping dock:

—SuppliesAtShipping Dock(s) D
—SuppliesAtShipping Dock(do(fillOrder(agt, order), s))

The frame problem arises because the number of these frame axiomsis very
large, in general, of theorder of 2 x A x F, where A isthe number of actionsand
F the number of fluents. This complicates the task of axiomatizing a domain and
can make automated reasoning extremely inefficient. Most predicative approaches
do not address this problem [2].

To deal the frame problem, we use an approach due to Reiter [17]. The basic
ideabehind thisisto collect all effect axioms about a given fluent and make a com-
pleteness assumption, i.e. assumethat they specify al of thewaysthat the value of
the fluent may change. A syntactic transformation can then be applied to obtain a

16

successor state axiom for the fluent, for example:

PhoneRinging(do(a, s)) =
Jeustomer, quantity a = mkOrder(customer, quantity)
V PhoneRinging(s) A =Jagt a = receiveOrder(agt)

This says that the phone is ringing in the situation resulting from action « being
performed in situation s if and only if a is some customer making an order or if the
phonewas already ringing in situation s and « iSnot some agent receiving the order.
Therefore, no other action hasany effect on PhoneRinging. Thisapproachyields
a solution to the frame problem — a parsimonious representation for the effects of
actions. Note that it relies on quantification over actions.*

For our example domain, applying the method to the other fluents yields the
following axioms:

Successor State Axioms

OrderMade(order, do(a, s)) =
a = receiveOrder(agt) A order = orderCounter(s)
V Order Made(order, s)

PaymentProcessed(order, do(a, s)) =
Jdagt a = processPayment(agt, order)
V PaymentProcessed(order, s)

OrderFilled(order,do(a,s)) =
Jdagt a = fillOrder(agt,order)V Order Filled(order, s)

OrderShipped(order,do(a,s)) =
Jdagt a = shipOrder(agt, order)V OrderShipped(order, s)

SuppliesAtShipping Dock(do(a, s)) =
dsupplier, quantity a = deliver Supplies(supplier, quantity)
V Supplies AtS hipping Dock(s) A —=3agt a = receiveSupplies(agt)

orderQuantity(order,do(a,s)) = ¢ =
Jdagt a = receiveOrder(agt)
A order = orderCounter(s) A ¢ = incomingOrderQuantity(s)
V q = orderQuantity(order, s)

orderCounter(do(a,s)) =n =
Jdagt a = receiveOrder(agt) A n = orderCounter(s) + 1
V n = orderCounter(s)

4This discussionassumesthat there are no state constraints; atreatment for thesethat is compatible
with the above approach is presented in [11].

17

stock(do(a,s)) = q =
Jdagt a = receiveSupplies(agt) A
q = stock(s) + incomingSuppliesQuantity(s)
V Jagt, order(a = fillOrder(agt,order) A
q = stock(s) — orderQuantity(order))
V q = stock(s) A =Jagt a = receiveSupplies(agt) A
—Jagt,order a = fillOrder(agt, order)

incomingOrderQuantity(do(a, s)) = ¢ =
dcustomer a = mkOrder(customer, q)
V ¢ = incomingOrderQuantity(s)

incomingSuppliesQuantity(do(a,s)) = q =
dsupplier a = deliver Supplies(supplier, q)
V g = incoming SuppliesQuantity(s)
Given aGDL domain specification, successor state axioms are generated auto-
matically by the GDL compiler. Theresult is atheory of the following form:

e Axiomsdescribing theinitial situation, So.

e Action precondition axioms, one for each primitive action «, characterizing
Poss(a, s).

e Successor state axioms, onefor each fluent #, stating under what conditions
F(Z,do(a, s)) holdsas function of what holdsin situation s.

e Unique names axioms for the primitive actions.
e Some foundational, domain independent axioms.

Thelatter foundational axiomsinclude unique names axiomsfor situations, and
an induction axiom. They also introduce the relation < over situations. s < s’
holds if and only if s is the result of some sequence of actions being performed
in s, where each action in the sequence is possible in the situation in which it is
performed; s < s standsfor s < s’ vV s = . Since the foundational axioms
play no special rolein this paper, we omit them. For details, and for some of their
metamathematical properties, see Lin and Reiter [11] and Reiter [18].

4.3 Semantics of the ConGolog Process Description Language

In [3], a semantics for the ConGolog process description language is developed
within the situation calculus. This semantics, a kind of structura operationa se-
mantics [16], is based on the notion of transitions, i.e. “single steps’ of computa
tion. A step hereis either a primitive action or testing whether a condition holds

18

in the current situation. Two specia predicates are introduced, Final and T'rans,
where Final(o, s) isintended to say that process o may legally terminate in situ-
ation s, and where T'rans(o, s, o', s') isintended to say that process ¢ in situation
s may legally execute one step, ending in situation s’ with process o’ remaining.

Final and T'rans are characterized by a set of axioms, each depending on the
structure of the first argument.® Let us only list afew of these axioms to illustrate
the approach. For Final, we have:

o Final(nil,s) = True
i.e, if what remainsto execute isthe empty processwe are done;

o Final(a, nil,s) = False
i.e., if what remains to executeis a primitive action we are not done;

o Final([o1; 03], 8) = Final(oy,s) A Final(oy, s)
i.e. aseguence can be considered done in a situation s if both components
aredonein s.

The axiomsfor T'rans include;

e Trans(a,s,d,s') = Poss(a,s) A6 =nil A s’ = do(a, s)
i.e, if we arein situation s and the process remaining is a primitive action
«, we can do atransition to the situation do(«, s) with the empty processre-
maining provided that « is possiblein s;

o Trans([o1;09),8,8,s') = Final(oy,s) A Trans(os, s, 4, s')
v 386 = (8'509) A Trans(oy, s,8', s)
i.e. asequence[oy; 03] can do atransition by performing atransitionfromits
first component o or by performing atransition from its second component
o provided that the first component is aready done.

With Final and Trans in place, one can complete the semantics by defining a
predicate Do, where Do(o, s, s') meansthat process specification o, when executed
starting in situation s, has s’ as alega terminating situation. The definition of Do
is:

Do(o, s, s')gEI(S.T'ra,ns* (0,8,8,8) A Final(é,s)

SNote that these quantify over process specifications and so it is necessary to encode ConGolog
process specificationsas first-order terms, including introducing constants denoting variables, and so
on. Asshown in [5], this is laborious but quite straightforward. We omit all such details here and
simply use process specificationswithin formulas as if they were already first-order terms.

19

whereTrans® isthetransitiveclosureof Trans.® Inotherwords, Do(a, s, s') holdsif
and only if it is possibleto repeatedly single-step the process o, obtaining a process
d and asituation s’ such that § can legally terminatein s’.

When adomain contai nsexogenous actions, we are usually interested in execu-
tions of the process specification where instances of the exogenous actions occur.
From the GDL action declarations, one can define using a predicate /'zo, which
actions can occur exogenously. For our domain, we would have:

Fzo(a) = Jeust, g a = mkOrder(cust, q)
V dsupp, q a = deliver Supplies(supp, q)

One can then define a specia process for exogenous actions:

(SEXOg(ﬂ' a. Ezo(a)?;a)*

Executing this program involves performing zero, one, or more nondeterministi-
cally chosen exogenous actions. Then we make the user-specified process ¢ run
concurrently withégxo:

5 || 5F}XO

In thisway we allow exogenous actions whose preconditions are satisfied to asyn-
chronously occur (outside the control of &) during the execution of 4.

A more detailed description of the ConGolog process language and its formal
semantics appear in[3, 4]. Onelimitation of the semanticsisthat it does not handle
non-terminating processes.

44 Usingthe Semanticsin Verification

Now that we have outlined the semantics of ConGolog let us show how it can
be used in verification. We show that our mail-order business domain specification
satisfiesthe property that no order isshipped before payment is processed (provided
that thisistrueinitialy). Formally, we want to prove that:

Vs, s'.[Vo. OrderShipped(o, sg) D PaymentProcessed(o, So)]
A Do(main || $gxo0,S0,8) N8’ <sD
[Vo. OrderShipped(o, s’) D PaymentProcessed(o, s')].

57'rans* can be defined as the (second-order) situation calculus formula:
Trans*(a,s,0', sl)dzerT[. ..DT(a,5,0',s")]
where the ellipsis stands for:

Vs. T'(o,8,0,8) A
Vs, 8,8, 8", 8" . T(o,8,8',s')ATrang(8', s',6",s") D T(o,s,8",s").

20

We provethisby contradiction. Supposethat there existsasituation s’ that isduring
an execution of main || dpxo such that OrderShipped(o,s’) and
—Payment Processed(o, s"). We can a so supposethat s’ isthe earliest such situ-
ation, sinceif thisisnot the case, we can always moveto an earlier situation. Now
s’ # Sy since we are given that no order has been shipped without payment being
processed initidly. So s’ = do(a, s) for some a and s” and

OrderShipped(o, s") D Payment Processed(o, s"),

since s’ is the earliest situation where this doesn’'t hold. As well, since
—Payment Processed(o, s'), it followsthat = Payment Processed(o, s") by the
successor state axiom for Payment Processed, i.e.

Payment Processed(o, do(a, s)) =
Jdagt a = processPayment(agt, 0) V Payment Processed(o, s).

Therefore—OrderShipped(o, s"). By thesuccessor stateaxiomfor OrderShipped,
i.e
OrderShipped(o,do(a,s)) =
Jagt a = shipOrder(agt, o)V OrderShipped(o, s)

the only action that can cause OrderShipped(o,s’) to become true is
shipOrder(agt, o), thuss’ = do(shipOrder(agt, o), s").

Now using the compl ete semantics of the ConGol og processlanguage, it can be
shown that

Vs, s" agt,0.Do(main, Sy, s) A do(shipOrder(agt,0),s") < s D
Payment Processed(o, s")

i.e. the process never performs shipOrder(agt, o) in asituation when payment has
not been processed on order o in the situation. Intuitively, thisis because the only
place where shipOrder appears in the process specification is in the body of the
second interrupt of runW arehouse and Payment Processed(o) isoneof thecon-
juncts of thetrigger condition of theinterrupt. A contradictionfollows. Noticethat
the proof does not require anythingto be known about theinitia situation other than
the fact that the property wasn't already false there.

5 Conclusion

The ConGol og framework isan attempt to develop amiddle ground between state-
oriented and predicate-oriented models of dynamic domains. The paper hasillus-
trated how ConGolog combines elements of both approaches to support the model -
ing of complex dynamic domains and analyze such model s through simulation and

21

verification. Our work on applying ConGol og to requirements analysisand process
modeling is part of alarger project dealing with process reengineering and model -
ing the rationalefor various design alternatives|[21].

Theclosest rival to thiswork isthe SCR (Software Cost Reduction) framework
of formal specification [8], which allows both proofs of formal properties and sim-
ulation. Unlike ConGolog, the SCR framework is based on a vector representation
for states and a collection of finite state machines for processes. In thisrespect, the
ConGolog framework is more general and more readily applicableto businesspro-
cess and enterprise modeling.

The most pressing task for future research is to complete the development of
the ConGol og verification tool so that it can support adesigner in verifying prop-
erties of process specifications along the lines described in sections 3 and 4. Even
though ConGol og has been used to model and analyze several exampledomains, we
plan to experiment with the scal ability of the ConGol og toolsby trying them out on
larger and more redlistic examples. We are aso investigating ways of combining
the ConGolog framework with the design rationale modeling formalism described
in[21].

References

[1] D. Bjorner and C.B. Jones. The Vienna Devel opment Method: The Metalan-
guage, volume 61 of LNCS. Springer-Verlag, 1978.

[2] A.Borgida, J. Mylopoulos, and R. Reiter. ...and nothing else changes: The
frame problem in procedural specifications. In Proc. ICSE-93, 1993.

[3] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Reason-
ing about concurrent execution, prioritized interrupts, and exogenous actions
in the situation calculus. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 1221-1226, Nagoya, Japan, Au-
gust 1997.

[4] GiuseppeDe Giacomo, YvesL espérance, and Hector J. Levesque. ConGolog,
a concurrent programming language based on the situation calculus: Lan-
guage and implementation. In preparation, 1998.

[5] GiuseppeDe Giacomo, YvesL espérance, and Hector J. Levesque. ConGolog,
aconcurrent programming language based on the situation calculus: Founda-
tions. In preparation, 1998.

[6] M. Gelfondand Lifschitz. Representing action and change by |ogic programs.
Journal of Logic Programming, 17(301-327), 1993.

22

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Harel. Statecharts: A visua formalism for complex systems. Science of
Computer Programming, 8, 1997.

C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consistency checking of
requirements specifications. ACM Transactionson Software Engineering and
Methodol ogy, 5(5), July 1996.

Todd Kelley and Yves L espérance. The Golog Domain Language: an abstract
language for specifying domain dynamics. In preparation, 1998.

Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A logic programming language for dynamic do-
mains. Journal of Logic Programming, 31(59-84), 1997.

Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of
Logic and Computation, 4(5):655-678, 1994.

Fangzhen Lin and Raymond Reiter. How to progress a database. Artificial
Intelligence, 92:131-167, 1997.

John McCarthy and Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie, editors, Ma-
chinelntelligence, volume4, pages463-502. Edinburgh University Press, Ed-
inburgh, UK, 1979.

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
Englewood Cliffs, NJ, 1981.

Dimitris Plexousakis. Simulation and analysis of business processes uning
GOLOG. In Proceedings of the Conference on Organizational Computing
Systems, Milpitas, CA, August 1995.

G. Plotkin. A structura approach to operational semantics. Technical Report
DAIMI-FN-19, Computer Science Dept., Aarhus University, Denmark, 1981.

Raymond Reiter. The frame problem in the situation calculus: A simple solu-
tion (sometimes) and a completeness result for goal regression. In Viadimir
Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Compu-
tation: Papersin Honor of John McCarthy, pages 359-380. Academic Press,
San Diego, CA, 1991.

Raymond Reiter. Proving properties of statesin the situation calculus. Artifi-
cial Intelligence, 64:337-351, 1993.

23

[19] Steven Shapiro, Yves Lespérance, and Hector J. Levesgue. Specifying com-
muni cative multi-agent systems with ConGolog. In Working Notes of the
AAAI Fall 1997 Symposium on Communicative Action in Humans and Ma-
chines, Cambridge, MA, November 1997.

[20] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.

[21] EricK.S. Yu, JohnMylopoulos, and YvesLespérance. Al modelsfor business
process reengineering. |EEE Expert, 11:16-23, August 1996.

24

