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Abstract

In this paper, we describe the process specification language ConGolog
and show how it can be used to model business processes for requirements
analysis. In ConGolog, the effects of actions in a dynamic domain are spec-
ified in a logical framework. This supports modeling even in the absence of
complete information. The behavior of agents in the domain is specified in
a concurrent process language, whose semantics is defined in the same logi-
cal framework. We then describe a simulation tool implemented in terms of
logic programming technology. As well, we discuss a verification tool which
is being developed based on theorem proving technology.

1 Introduction

Dynamic models of aspects of the world constitute an essential ingredient of infor-
mation systems engineering. Such models are useful during requirements analysis
where the operational environment of a system-to-be needs to be described, along
with the role the system will play within that environment. Dynamic models also
play a key role during design when the functions of the system and its major com-
ponents are specified.

Existing dynamic models come in two flavors. State-based models describe the
processes of a dynamic world in terms of states and (state) transitions. Finite-state
machines, Petri nets [14], statecharts [7], and workflows are examples of modeling
frameworks which adopt a state-oriented view of the world. A major advantage of
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state-based models is that they can be simulated, showing the sequence of state tran-
sitions that will take place for a particular sequence of input signals. Alternatively,
predicative models [1, 20] describe processes in terms of pre/post-conditions, i.e.,
in terms of a condition that has to be true before a process is launched (the pre-
condition) and a condition that will be true once the process execution has been
completed (the postcondition). Predicative models admit a type of formal analysis
where properties of a process can be verified. For example, one can show that a cer-
tain invariant is preserved by a process in the sense that if the invariant holds before
the process begins, it will also hold at the end of the process.

Predicative models typically do not support simulation and state-based models
do not support formal property analysis. This paper describes a modeling frame-
work for dynamic worlds that supports both simulation and verification. The frame-
work is based on the language ConGolog, originally developed as a high level lan-
guage for programming robots and software agents [3].1ConGolog is based on a
logical formalism, the situation calculus, and can model multi-agent processes, non-
determinism, as well as concurrency. Because of its logical foundations, ConGolog
can accommodate incompletely specified models, either in the sense that the initial
state of the system is not completely specified, or in the sense that the processes
involved are nondeterministic and may evolve in any number of ways. These fea-
tures are especially useful when one models business processes and open-ended real
world situations.

Section 2 of the paper introduces the framework and how it is used for mod-
eling states, actions, and processes, and presents a simple example involving the
handling of orders by a business. Section 3 demonstrates the ability of the frame-
work to support both simulation and verification, while section 4 describes the se-
mantics of ConGolog and the formal theory on which it is based. Finally, section
5 summarizes the contributions of this research and suggests directions for further
research.

2 Modeling a Domain in ConGolog

In the ConGolog framework, an application domain is modeled logically so as to
support reasoning about the specification. A ConGolog model of a domain involves
two components. The first component is a specification of the domain dynamics, i.e.
how the states are modeled, what actions may be performed, when they are possible,
what their effects are, and what is known about the initial state of the system. This
component is specified in a purely declarative way, in a language called the Golog

1ConGolog is an extended version of the Golog (AlGOl in LOGic) language described in [10].
Earlier work on modeling business processes in Golog appeared in [15].
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Domain Language (GDL).2

The second component of a ConGolog domain model is a specification of the
processes that are unfolding in the domain; this can also be viewed as a specification
of the behavior of the agents in the domain. Because we are interested in modeling
domains involving complex processes, this component is specified procedurally in
the ConGolog process description language.

Both GDL and the ConGolog process language have formal semantics defined
in a language of predicate logic called the situation calculus. Various mechanisms
for reasoning about properties of a domain have been implemented using this situ-
ation calculus semantics. We outline the semantics in section 4.

To illustrate the use of the framework to model a domain, we use a running ex-
ample involving a simple mail-order business. We assume that the business sells
only one product. We also assume that there are only two agents in the business,
who could be single people or whole departments:

� the order desk operator, who processes payment for orders while waiting for
the phone to ring, and when it does, receives an order from a customer; and

� the warehouse operator, who fills the orders that the order desk operator has
received, and ships orders for which the order desk operator has processed
payment; whenever a shipment is delivered by a supplier, the warehouse op-
erator receives the shipment.

Orders can be processed in two possible ways as described in the diagram in Fig-
ure 1. The example is kept artificially simple so that it can be presented in its
entirety.

2.1 Modeling Domain Dynamics in GDL

The first component of a ConGolog model is a specification of the dynamics of the
domain and of what is known about its initial state. For this, our framework uses
GDL. In our models, we imagine the world as starting out in a particular initial
situation (or state), and evolving into various other possible situations through the
performance of actions by various agents. Situations are described in terms of flu-
ents. Relational fluents are relations or properties whose truth value can vary from
situation and to situation and functional fluents are functions whose value varies
from situation to situation. For instance in our example, we use the action term�������	��

����
	�����������


����

� to represent the action of agent �
�	� shipping �

�����
 , and
the relational fluent ��

����

� �����!�����"���


����

� to represent the property that ��

����
 has

2GDL is related to Gelfond and Lifschitz’s action language # [6]; one significant difference
though, is that GDL is a first-order language, while # is essentially a propositional language.
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Figure 1: An informal diagram showing the two possible paths in the life-cycle of
an order.

been shipped. This fluent might be false in the initial situation, but true in a situation
that is the result of the action �������	��

����
	�����������


����

� .

The modeler chooses the fluents and actions in a domain model according to the
desired level of abstraction. A GDL domain specification starts with a set of decla-
rations for the fluents used in the model. Each fluent declaration specifies the name
of the fluent, the number of arguments it takes and whether it is a functional fluent
or not. Optionally, one can also specify what value the fluent has in the initial situa-
tion. The GDL fluent declarations for our example domain appear in Figure 2. Note
that orders are identified by a number determined by the value of the ��

����
����	��
�� ��

fluent when the order is received.

Next, a GDL domain specification includes action declarations, one for each
primitive action. These specify the name of the action, the arguments it takes, and
action’s preconditions, i.e. the conditions under which it is possible. The GDL ac-
tion declarations for our example domain appear in Figure 2. The last two represent
actions performed by customers and suppliers that impact on the business. We view
customers and suppliers as agents that are outside the system and are not interested
in modeling their behavior in detail. We only consider their effect on the system
through these two actions, which we call exogenous actions.

Finally, a GDL specification includes a set of effect declarations, one for each
fluent that is affected by an action. The effect declarations for our example domain
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Fluent Declarations

fluent ���������
	��
�����
�����
� % the phone is ringing
initially ��������� ;

fluent ����������� �!����������������� % ��������� has been made
initially ��������� ;

fluent ����"$#%�
��&'�(����)*�
�����
��������������� % payment for ��������� has been
initially ��������� ; % processed

fluent �������������+�,���
���
�����!����� % ��������� has been filled
initially ��������� ;

fluent ����������-.���0/$/1����������������� % ��������� has been shipped
initially ��������� ;

fluent -32$/�/4���
���*56&'-.���0/$/1�
����7%��)*8��
� % incoming supplies are at
initially ��������� ; % the shipping dock

functional fluent �������
��9(21����&'�:&'"4������������� % the quantity of items requested
initially ; ; % in ���������

functional fluent �������
��<(��21��&'������� % the value of the order counter
initially = ;

functional fluent �>&'��)*8���� % the quantity of items in stock
initially =
; ;

functional fluent �
��)*��#?�
��������������9�2��!��&'�:&'"4�
� % the quantity of items requested
initially ; ; % in the incoming order

functional fluent �
��)*��#?�
����-32�/$/4�
�����
9(21����&'�:&'"1�
� % the quantity of items delivered
initially ; ; % in the incoming shipment

Action Declarations

action ���
)*���
@$���������
���
����&'� % �A��& receives the incoming phone order
possible when ���������
	��
�����
������� ;

action /1����)*���
������"$#%�
��&
�
�A�$&
BC�����!����� % �A��& processes payment for �������
�
possible when �������
��� ���������������
��� ;

action D1�,�+���������������A�$&
BC�������
��� % �A��& fills ���������
possible when �������
��� ���������������
��� ;

action �
���E/��������
���
�A�$&
BC�����!����� % �A��& ships �����!���
possible when �������
��� ���������������
����F%�������
���(�+�+�
�
��������������� ;

action ���
)*���
@$��-.2�/$/����
�
�����A��&'� % �A��& receives supplies at the loading dock
possible when -32$/�/4���
�
�G5H&'-3���E/�/1�
����7%��)*8����
FI�C&'��)*8J���LKM����)G��#?�
����-32$/�/4���
���
9�2�����&'�N&'"��
�POQ=�;$; ;

exogenous action #?84�(���!������)G21�>&
B'R�� % customer )*2��C& makes an order for R items
possible when ST���������
	��
�����
�����
� ;

exogenous action ���*���
@$����-32$/�/4���
���$�
��2$/�/LBCR�� % supplier �
2�/$/ delivers R items of new stock
possible when ST-32$/�/4���
���*56&'-.���0/$/1�
����7U��)G8���� ;

Figure 2: Example GDL domain specification – part 1.
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Effect Declarations

occurrence ���
)*���
@$���������
���
����&'� results in ����������� ���!��������������<���2���&'�
���
� � always;
occurrence ���
)*���
@$���������
���
����&'� results in
����������<���2���&'�
���
� � �������
��<(��21��&'��������K = always;

occurrence ���
)*���
@$���������
���
����&'� results in ST�(�1������	������4��������� always;
occurrence ���
)*���
@$���������
���
����&'� results in
����������9�2��!��&'�:&'"4�
�������
��<���2���&'������� � � �
��)*��#?�
�����(���!����9�2�����&'�N&'"���� always;

occurrence /1����)*���
������"$#%�
��&
�
�A�$&
BC�����!����� results in �(�!"�#?����&'������)*���
�����1�
�������
��� always;
occurrence ���
)*���
@$��-.2�/$/����
�
�����A�$&'� results in ST-32$/�/4���
�
�G5H&'-3���E/�/1�
����7U��)*8���� always;
occurrence ���
)*���
@$��-.2�/$/����
�
�����A�$&'� results in
�>&'��)*8��
� � �C&'��)*8J���LK �
��)*��#?�
����-32�/$/���������9�21����&'�:&'"4�
� always;

occurrence D1�,�+���������������A�$&
BC�������
��� results in �(���!�������,�+���������������
���
when �������
��9(21����&'�:&'"4������������� O �C&'��)*8J��� ;

occurrence D1�,�+���������������A�$&
BC�������
��� results in �>&'��)*8��
� � �C&'��)*8J����� ����������9�21����&'�:&'"4�
�����!�����
when �������
��9(21����&'�:&'"4������������� O �C&'��)*8J��� ;

occurrence �
���E/��������
���
�A�$&
BC�����!����� results in �������
��-3���E/�/1���1�
�������
��� always;
occurrence #?84������������)�BCR�� results in ���1������	������4��������� always;
occurrence #?84������������)�BCR�� results in ����)*��#%�����4�������
��9(21����&'�:&'"4��� � R always;
occurrence �!�G���
@$����-32$/�/4���
�
������2 B'R�� results in -32$/�/4���
���*56&'-.���0/$/1�
����7%��)*8��
� always;
occurrence �!�G���
@$����-32$/�/4���
�
������2 B'R�� results in �
��)*��#?�
����-32�/$/4�
�����
9(21����&'�:&'"1�
� � R always;

Figure 3: Example GDL domain specification – part 2.

appear in Figure 3. Note the declaration for the action
� ����� ��

����
 . Its effects de-

pend on the context, in that it only causes the order to become filled when there is
sufficient stock to do so; otherwise, the action behaves as a no-op.

2.2 Modeling Domain Processes in ConGolog

As mentioned earlier, a ConGolog domain model includes a second component that
describes the processes unfolding in the domain. This is specified in a procedu-
ral sublanguage where actions can be composed into complex processes, possibly
involving concurrency and nondeterminism. This ConGolog process specification
language provides the constructs listed in Figure 4.

Let us go over some of the less familiar constructs in the language. The non-
deterministic constructs include ���
	��
��� � , which nondeterministically choses be-
tween processes � 	 and � � , ���������� , which nondeterministically picks a binding for
the variables in the list �� and performs the process � for this binding of �� , and ��� ,
which means performing � zero or more times. Concurrent processes are mod-
eled as interleavings of the actions involved. The actions themselves are viewed as
atomic and cannot be interrupted. A process may become blocked when it reaches a
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� primitive action�
? wait for a condition��� 	�� �
��� sequence��� 	 � �
� � nondeterministic choice between actions

� �� � ��� nondeterministic choice of arguments
� � nondeterministic iteration
if
�

then � 	 else �
� endIf conditional
while

�
do � endWhile loop��� 	�� �
� � concurrent execution��� 	���� �
� � concurrency with different priorities

�
	 	 concurrent iteration� ��
� ��� ��� interrupt
proc � � ��	� � endProc procedure definition
� � �� � procedure call
noOp do nothing

Figure 4: Constructs in ConGolog process specifications.

primitive action whose preconditions are false or a wait action
�

? whose condition�
is false. Then, execution of the system may continue provided another process

executes next. In ��� 	���� �
� � , ��	 has higher priority than ��� , and �
� may only ex-
ecute when � 	 is done or blocked. � 	 	 is like nondeterministic iteration � � , but the
instances of � are executed concurrently rather than in sequence. Finally, an inter-
rupt � ��
� ��� ��� has a list of variables �� , a trigger condition

�
, and a body � . If

the interrupt gets control from higher priority processes and the condition
�

is true
for some binding of the variables, the interrupt triggers and the body is executed
with the variables taking these values. Once the body completes execution, the in-
terrupt may trigger again. With interrupts, it is easy to write process specifications
that are reactive in that they will suspend whatever task they are doing to handle
given conditions as they arise.

Let us look at how this language can be used to specify the processes in our
mail-order business domain; the specification appears in Figure 5. The whole sys-
tem is specified by the � ��� 
 procedure. It executes two concurrent processes, one
for each agent in the domain. The agents in our system are very reactive. Their
behavior involves monitoring the progress of orders, and when certain conditions
hold, performing some step in the processing of the order. So we specify their be-
havior using interrupts. The behavior of the order desk operator is specified by the
 ��
 ��

����
�� ����� procedure. This agent has two responsibilities: receiving an order
when the phone rings and processing payments for orders. Each of these is han-

7



Process Specifications

proc 
	��
 ��

����
�� ����� � ����� ��� �� ��� �	
"��� � 
 ��� 
 � � 

��� ������� ��

����
	���
��� �	� �
�
� �
� �


����
���� 
�����
	� ������� ��

����

��

� ����� � ��
���� 

��� ��������� ���

�����

�� ��

�	� ������� ��� � ��
 � ���
��� �	������

����

� �

endProc

proc 
	��
�� ��

��� �	����������� �	� �
� � �!�!�
��� ����� � � �����!��� 
	� � ��� � � 
���� ��������� �!� �
��� ��������� �	� � �
� �
� �


����
���� 
�����
	� ������� ��

����

��
 ��

����
	� ���������"���


����

�


�� ��� � � 
 ��� 

�	� ��������� ���


����

��
�� � 
�����

� ��� � ����� ���


����
��
� ����� � ��

����
	����� �	� � �

� �
� �


����
���� 
�����
	� ������� ��

����

��

� ��

����
	� ���������"���


����

�
� � ����� � 

����
������ ��� �
�

endProc

proc � ��� 

	��
 ��

����
�� ����� � ��

����
�� ������� ��� � � 
	��
�� ��

�����	��������� ��

�����	������� ��� �
endProc

Figure 5: Example ConGolog process specification.
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dled by an interrupt. Since receiving orders when the phone rings is more urgent
than processing payments, the interrupt for receiving orders runs at higher priority
than the one for processing payments. The interrupt for processing payment non-
deterministically picks an order for which payment has not yet been processed, and
processes its payment.

The 
	��
�� ��

��� �	����� procedure specifying the behavior of the warehouse op-
erator involves three interrupts each running at a different priority. At the highest
priority, the operator should receive an incoming shipment when the shipping door
bell rings. When there is no shipment to receive, the next highest priority is to ship
orders that are ready to ship (orders that are filled and for which payment is pro-
cessed), if there are any, picking at random. At the lowest priority, the operator
should fill any order that has been received but not yet filled, picking the order ar-
bitrarily.3

3 Analyzing Domain Specifications using ConGolog Tools

3.1 Validation through Simulation

Simulation is a useful method for validating domain models. We have developed
a tool for incrementally generating execution traces of ConGolog process specifi-
cations. This tool can be used to check whether a model executes as expected in
various conditions. For example, our simulation tool can be used to confirm that
our model of the mail-order business domain can process a single order in two dif-
ferent ways, either filling the order before payment is processed, or vice versa. In
Figure 6, we see a trace of the first execution of the specification, where a single
order by customer ��� for � items ( � ����

����
	�����!� � � ) is made and where payment is
processed on the order before it is filled. The figure shows the simulation tool at
the end of the execution. A list of executed actions appears at the top right of the
viewer, with later action occurrences at the top. The (partial) state of the system is
displayed at the top left of the viewer. A trace of a second execution of the specifi-
cation where the order is filled before payment is processed appears in Figure 7.

Our simulation tool is based on a logic programming technology implementa-
tion of the ConGolog framework. It involves two main components:

� the GDL compiler, which takes a domain specification in GDL and produces

3Note that the action �������
	���
���� succeeds in filling the order only if there is sufficient stock, oth-
erwise it has no effect. Thus, the agent may repeatedly attempt to fill an order until it succeeds. If
one wants to ensure that the agent gives priority to the orders that it has sufficient stock to fill, one
needs to add a copy of the interrupt with the additional condition ����
����������������
� ��!
����
����#"%$'&��(��)+*
running at a higher priority than the existing interrupt.

9



Figure 6: The ConGolog simulation tool at the end of a first execution of the mail-
order domain specification.
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Figure 7: The simulation tool at the end of a second execution of the mail-order
domain specification.

a Prolog implementation of the corresponding situation calculus domain the-
ory;

� the ConGolog interpreter, which takes a ConGolog process specification and
a domain theory, and generates execution traces that satisfy the process spec-
ification given the domain theory; the interpreter uses the domain theory in
evaluating tests and checking whether action preconditions are satisfied as it
generates the execution traces; the Prolog implementation of the interpreter
is described in [4].

These two components are at the core of a toolkit. The kit includes a graphical
viewer, shown in Figures 6 and 7 for displaying simulations of ConGolog process
specifications. This tool, which is implemented in Tcl/Tk, displays the sequence of
actions performed by the ConGolog process specification and the value of the flu-
ents in the resulting situation (or any situation along the path). The process execu-
tion can be stepped through and exogenous events can be generated either manually
or at random according to a given probability distribution. The manner in which
state information is displayed can be specified easily and customized as required.

The toolkit also includes a module for progressing the initial situation, i.e. up-
dating the specification of the initial situation to make it correspond to a later situ-
ation [12]. This makes the reasoning performed by the system more efficient and
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allows it to simulate the execution of long running processes.
The logic programming technology implementation of the ConGolog frame-

work is fairly efficient and can be used for both simulation and for deploying actual
applications when one provides implementations for the actions used. However, the
current implementation is limited to specifications of the initial situation that can be
represented as logic programs, which are essentially closed-world theories. This is
a limitation of the logic programming implementation, not the ConGolog frame-
work. Note also that we are currently working on extending the implementation to
support limited types of incompleteness.

3.2 Verification

One may be interested in verifying that the processes in a domain satisfy certain
properties. The ConGolog framework supports this through its logic-based seman-
tics. For example, given our specification of the mail-order business domain, we
may be interested in showing that no order is ever shipped before payment is pro-
cessed, i.e.

� ��

����
�� � 

����
�� �����!����� ���


����

��� � ��� � ��
���� 

��� ��������� ���

�����

���

In fact, we can prove that if the above property holds in the initial situation, it will
hold for every situationduring an execution of our process specification. Intuitively,
this is the case because (1) once payment is processed for an order no action can
cause it to become unprocessed, (2) the only action that can cause an order to have
been shipped is �������	��

����
 , and (3) in the process specified, �������	��

����
 is only
performed when payment has been processed on the order. We give a proof of the
property in section 4.4. Note that the property follows even if the domain specifi-
cation includes no information about the initial situation other than the fact that the
property holds initially.

Another important property to verify for a mail-order business is that it should
have income, i.e. that there is a situation where

� �


����
 � ��� � ��
 ��� 

�	� ��������� ���


����
����

holds. However, for the process specifications given earlier there is no guarantee
of this. Hence, the business is not certain to make any money, even if it gets many
orders. In fact, we can prove that if the phone always rings as soon as any order is
taken, no payment would ever be processed, because the order desk operator would
be too busy answering the phone.

This problem can be fixed by introducing the concept of a backlog of orders
with the following declarations
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functional fluent � ��� ��� � � ��� initially � ;
occurrence 

��� ������� ��

����
	������� � results in

� � � ��� � � ����� � ��� ��� � � ����� � always;
occurrence ��

�	� ������� ��� � ��
�� �����������


����
�� results in

� � � ��� � � ����� � ��� ��� � � ����� � always;

and changing the highest priority interrupt of the 
	��
 ��

����
�� ����� procedure from

� � ���	
 ��� � 
 � � 
	� � 

��� ������� ��

����
	���
��� �	� �
�

to

� � � �	
"��� � 
 ��� 
 � 
 � ��� ��� � � ��� � �
	 � 

��� ������� � 
�����
	���
��� �	� � �

With these changes to the specification, one can verify that if at least one order is
placed and there is sufficient stock to fill it, then the business has some income
(note that a steady stream of supplies deliveries cannot cause problems because
the warehouse is assumed to have a fixed capacity; see the action declaration for
���� ��������� �!� �
��� ��� ).

A user-assisted verification tool that can handle arbitrary ConGolog theories,
i.e. incompletely specified initial situationsand specifications of agents’ mental states
(knowledge and goals), is being developed [19]. The user would provide a proof
strategy and the tool would produce the detailed steps of a proof automatically. The
tool is based on theorem proving technology and relies on an encoding of the ConGolog
semantics in a form that the PVS program verification system can reason with.

4 ConGolog Semantics

In this section, we describe the logical foundations of the ConGolog framework.
These foundations are what supports its use in both simulation and verification.

4.1 The Situation Calculus and the Semantics of GDL

As mentioned earlier, the semantics of GDL and of the ConGolog process specifi-
cation language are specified in the situation calculus [13], a language of predicate
logic for representing dynamic domains. The reasoning performed by our tools is
also based on the situation calculus. Let us briefly introduce this language. In the
situation calculus, all changes to the world are the result of named actions. A pos-
sible world history, which is simply a sequence of actions, is represented by a first
order term called a situation. The constant ��� is used to denote the initial situa-
tion, namely that situation in which no actions have yet occurred. There is a dis-
tinguished binary function symbol ��� and the term ���	� � ����� denotes the situation

13



resulting from action � being performed in situation � . Actions may be parame-
terized. So for example, ����� 
���� ������� ��

����
	���
�	� � � ��� would denote that situation re-
sulting from �
�	� having received the incoming phone order when the world was in
situation � . Notice that in the situation calculus, actions are denoted by function
symbols, and situations (world histories) are also first order terms. For example,

���	��

��� ������� ��

����
	� � 
�� ��
�� ������� � ��
 � � �����	� � ����

����
�� � ��� � � � ��
 �!���
� � � � � �

is a situation denoting the world history consisting of the sequence of actions

� � ����

����
	� � ��� � � � ��
 �!��� � � 

��� ������� � 

����
�� � 
�����
 � ������� � ��
 � � � �

In the situation calculus, relational fluents are represented by predicate sym-
bols that take a situation term as their last argument. This makes the dependence
of the value of the fluent on the situation explicit. So for example, the formula
� � ��

����
 � 
�����
	� ������� ��

����

��� � � would be used to represent the fact no order has
been made in the initial situation, and

� 
�����
	� ���������!�����	��

��� ������� ��
�����
�� ��
�����
�� ��� ��� ��� 
 � � �
���	� � ����

����
	� � � � � � � ��
 �!���!� ��� � � � �

would be used to represent the fact that order number � has been made in the situ-
ation obtained after customer � � � � � � ��
 � makes an order for � items and the or-
der desk agent receives it. Similarly, functional fluents are represented by function
symbols that take a situation as their last argument, as in �

�����
�� ��� 
�� �����"���


����

����� ,
i.e., the quantity of items requested in �

�����
 in situation � . In GDL specifications,
the situation argument of fluents is suppressed to make the notation less verbose.

The semantics of GDL maps GDL declarations into situation calculus axioms
that capture the meaning of the declarations. GDL fluent declarations can include
information about the value of the fluent in the initial situation in an initially clause.
If such a clause is present, it is mapped into an initial situation axiom. For our mail-
order business example, the fluent declarations in Figure 2 are mapped into the fol-
lowing initial situation axioms:

Initial Situation Axioms
� � � � 
 ��� � 
 � � 
 � ��� � �
� � 
�����
	� ������� ��

����

��� � �
� � ��� � ��
 ��� 

�	� ��������� ���


����

��� � �
� � 
�����
	� � ������� ���

�����

� � � �
� � 
�����

� ��� � ����� ���


����

� � � �
� � �!�!�
��� ����� � � �����!��� 
	� � ��� � � � � �
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A GDL action declaration specifies the preconditions of the action, i.e. the con-
ditions under which it is physically possible to perform it. Such a declaration is
mapped by the GDL semantics into an action precondition axiom. These axioms
use the special predicate � �
��� , with � ������� � ����� representing the fact that action �
is physically possible (i.e. executable) in situation � . For our example domain, the
action declarations in Figure 2 are mapped into the following action precondition
axioms are:

Action Precondition Axioms
� �
������

��� ������� ��

����
	������� � ����� � � ���	
 ��� � 
 � � 
	� �����
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 � � �	� � �����
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� �
����� � ����� ��

����
	�����������


����
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 � � 
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��� � � 
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 � � �	� � �����

Finally, we also have GDL effect declarations which specify how actions affect
the state of the world. These declarations are mapped by the GDL semantics into
effect axioms. Effect axioms provide the “causal laws” for the domain of applica-
tion. For our example, the effect declarations that appear in Figure 3 are mapped
into the following effect axioms:

Effect Axioms
��

����
	� �����������	��

��� ������� ��

����
	� �
�	� � � ��� �
�
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The full syntax and semantics of GDL are defined in [9].

4.2 Addressing the Frame Problem

The sort of logic-based framework we have described allows very incomplete infor-
mation about a dynamic domain to be specified. But this creates difficulties in rea-
soning about action and change Effect axioms state what must change when an ac-
tion is performed, but do not specify what aspects of the domain remain unchanged.
One way to address this is to add frame axioms that specify when fluents remain
unchanged by actions. For example, an agent �
�	� filling �


����
 does not cause new
supplies to appear at the shipping dock:

� � � �!�
��� ����� � � ��� � ��� 
 � � �	� � �������
� � � �!�
��� ����� � � ��� � ��� 
 � � �	� � �����	� � � ��� � 
�����
�������������

����
�� � ��� �

The frame problem arises because the number of these frame axioms is very
large, in general, of the order of � ������� , where � is the number of actions and
� the number of fluents. This complicates the task of axiomatizing a domain and
can make automated reasoning extremely inefficient. Most predicative approaches
do not address this problem [2].

To deal the frame problem, we use an approach due to Reiter [17]. The basic
idea behind this is to collect all effect axioms about a given fluent and make a com-
pleteness assumption, i.e. assume that they specify all of the ways that the value of
the fluent may change. A syntactic transformation can then be applied to obtain a
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successor state axiom for the fluent, for example:

� ���	
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 � � 
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����
	������� �

This says that the phone is ringing in the situation resulting from action � being
performed in situation � if and only if � is some customer making an order or if the
phone was already ringing in situation � and � is not some agent receiving the order.
Therefore, no other action has any effect on � � � 
 ��� � 
 � � 
 � . This approach yields
a solution to the frame problem — a parsimonious representation for the effects of
actions. Note that it relies on quantification over actions.4

For our example domain, applying the method to the other fluents yields the
following axioms:
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4This discussionassumesthat there are no state constraints; a treatment for these that is compatible
with the above approach is presented in [11].
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Given a GDL domain specification, successor state axioms are generated auto-
matically by the GDL compiler. The result is a theory of the following form:

� Axioms describing the initial situation, ��� .
� Action precondition axioms, one for each primitive action � , characterizing

Poss � � ����� .
� Successor state axioms, one for each fluent � , stating under what conditions
� � �� � do ��� ����� � holds as function of what holds in situation � �

� Unique names axioms for the primitive actions.

� Some foundational, domain independent axioms.

The latter foundational axioms include unique names axioms for situations, and
an induction axiom. They also introduce the relation � over situations. � � ���
holds if and only if � � is the result of some sequence of actions being performed
in � , where each action in the sequence is possible in the situation in which it is
performed; ��� � � stands for � � � � � � � � � . Since the foundational axioms
play no special role in this paper, we omit them. For details, and for some of their
metamathematical properties, see Lin and Reiter [11] and Reiter [18].

4.3 Semantics of the ConGolog Process Description Language

In [3], a semantics for the ConGolog process description language is developed
within the situation calculus. This semantics, a kind of structural operational se-
mantics [16], is based on the notion of transitions, i.e. “single steps” of computa-
tion. A step here is either a primitive action or testing whether a condition holds
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in the current situation. Two special predicates are introduced, � � 
 � � and � 

� 
 � ,
where � � 
 � � � � ����� is intended to say that process � may legally terminate in situ-
ation � , and where � 

� 
"����� ��� � � � ��� � � is intended to say that process � in situation� may legally execute one step, ending in situation � � with process � � remaining.

� � 
 � � and � 

� 
"� are characterized by a set of axioms, each depending on the
structure of the first argument.5 Let us only list a few of these axioms to illustrate
the approach. For � � 
 � � , we have:

� � � 
"� � ������� ����� � � 
	���
i.e., if what remains to execute is the empty process we are done;

� � � 
"� � � � � 
 ��� ����� � � � �����
i.e., if what remains to execute is a primitive action we are not done;

� � � 
"� � � ��� 	�� �
� � ����� � � � 
 � � � ��	 ����� 
 � � 
 � � � �
�������
i.e. a sequence can be considered done in a situation � if both components
are done in � .

The axioms for � 

� 
"� include:

� � 

� 
 ��� � ��� ������� � � � � �
����� � ������
	� �
������
 � � � ���	� � �����
i.e., if we are in situation � and the process remaining is a primitive action� , we can do a transition to the situation ���	� � ����� with the empty process re-
maining provided that � is possible in � ;

� � 

� 
 ��� ��� 	�� �
� � ��� ������� � � � � � 
 � � ����	 ������
 � 

� 
 �����
�
���!������� � �
� � � � �
� � ��� � � �
� ��
 � 

� 
 ����� 	 ���!��� � ��� � �

i.e. a sequence ��� 	 � ��� � can do a transition by performing a transition from its
first component � 	 or by performing a transition from its second component
� � provided that the first component is already done.

With Final and Trans in place, one can complete the semantics by defining a
predicate � � , where � �	��� ���!��� � � means that process specification � , when executed
starting in situation � , has � � as a legal terminating situation. The definition of � �
is: � �	��� ���!��� � � def� � � � � 

� 
 � � ��� ��� ������� � � 
 � � 
 � � ������� � �

5Note that these quantify over process specifications and so it is necessary to encode ConGolog
process specifications as first-order terms, including introducing constants denoting variables, and so
on. As shown in [5], this is laborious but quite straightforward. We omit all such details here and
simply use process specifications within formulas as if they were already first-order terms.
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where Trans� is the transitive closure of Trans.6 In other words, � �	��� ���!��� � � holds if
and only if it is possible to repeatedly single-step the process � , obtaining a process
� and a situation � � such that � can legally terminate in � � .

When a domain contains exogenous actions, we are usually interested in execu-
tions of the process specification where instances of the exogenous actions occur.
From the GDL action declarations, one can define using a predicate � ��� , which
actions can occur exogenously. For our domain, we would have:

� � ��� ��� � � � ��� ����� � � � ����

����
	��� ��� �������
� � ���!�!� ��� � � ��� ��������

� �!�!�
�������������!�!� � �
�

One can then define a special process for exogenous actions:

������� def� � � � � � ���	������� ����� �

Executing this program involves performing zero, one, or more nondeterministi-
cally chosen exogenous actions. Then we make the user-specified process � run
concurrently with �	����� :

� � �������

In this way we allow exogenous actions whose preconditions are satisfied to asyn-
chronously occur (outside the control of � ) during the execution of � .

A more detailed description of the ConGolog process language and its formal
semantics appear in [3, 4]. One limitation of the semantics is that it does not handle
non-terminating processes.

4.4 Using the Semantics in Verification

.
Now that we have outlined the semantics of ConGolog let us show how it can

be used in verification. We show that our mail-order business domain specification
satisfies the property that no order is shipped before payment is processed (provided
that this is true initially). Formally, we want to prove that:

� � ��� � � � � � � ��

����

� �����!�����"������� � � � � ��� � � 
 ��� 

�	� ��������� ������� � � �

 � ��� � ��� 
 � ������� ��� �
������
 � � � � �
� � � ��� 
�����

� ��� � ����� ������� � � � � ��� � � 
 ��� 

�	� ��������� ������� � � � �

6 
 ����� &�� can be defined as the (second-order) situation calculus formula:


 ������& � !
���+&	������� &�� " def��� 
�����������
 !
���+&�� �!�"� &#� "%$
where the ellipsis stands for:� & ��
 !
���+&�� ��� &#"'&� &��)( � � & � �)( � � � & � � ��
 !
���+&��)( � � & � "!& Trans !*( � � & � �)( � � � & � � " �+
 !
���+&��)( � � � & � � " �
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We prove this by contradiction. Suppose that there exists a situation � � that is during
an execution of � ��� 
 � ������� such that ��

����

� � � �!�����"� ����� � � and
� � � � � � 
 ��� 

�	� ���������"������� � � . We can also suppose that � � is the earliest such situ-
ation, since if this is not the case, we can always move to an earlier situation. Now� ���� � � since we are given that no order has been shipped without payment being
processed initially. So � � � ���	������� � � � for some � and � � � and

� 
�����

� ��� � ����� ������� � � � � � ��� � � 
 ��� 

�	� ��������� ������� � � � �

since � � is the earliest situation where this doesn’t hold. As well, since
� � � � � � 
 ��� 

�	� ���������"������� � � , it follows that � � ��� � � 
 ��� 

�	� ��������� ������� � � � by the
successor state axiom for � � � � � 
 ��� 

�	� ��������� , i.e.

� � � � � 
 ��� 
��	� ���������"� �������	��� ����� � �
� �
�	�	� � ��

��� ������� � � � � 
 � � �
�	������� � � � � � � 
 ��� 

�	� ���������"�����������

Therefore � ��

����

� � � �!� ��� ������� � � � . By the successor state axiom for � 

����
�� �����!����� ,
i.e. � 

����
�� �����!����� ���������	��� � ��� � �

� �
�	�	� � ����� � ��

����
	���
�	�����
� � ��

����

� � � �!� ��� ���������

the only action that can cause ��

����

� �����!�����"������� � � to become true is�������	��

����
	�����������
� , thus � � � ���	������� � ��

����
	���
�	�����
� � � � � � .
Now using the complete semantics of the ConGolog process language, it can be

shown that
� � ��� � � ����������� � � �	� � ��� 
 ��� � ������
 ���	������� � ��

����
	���
�	�����
� � � � � � � � �

� � � � � 
 ��� 

�	� ���������"������� � � �

i.e. the process never performs ��� � �	� 

����
�� �
�	������� in a situation when payment has
not been processed on order � in the situation. Intuitively, this is because the only
place where ��� � �	� 
�����
 appears in the process specification is in the body of the
second interrupt of 
	��
 � ��
������	����� and � ��� � ��
���� 

��� ��������� ���
� is one of the con-
juncts of the trigger condition of the interrupt. A contradiction follows. Notice that
the proof does not require anything to be known about the initial situation other than
the fact that the property wasn’t already false there.

5 Conclusion

The ConGolog framework is an attempt to develop a middle ground between state-
oriented and predicate-oriented models of dynamic domains. The paper has illus-
trated how ConGolog combines elements of both approaches to support the model-
ing of complex dynamic domains and analyze such models through simulation and
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verification. Our work on applying ConGolog to requirements analysis and process
modeling is part of a larger project dealing with process reengineering and model-
ing the rationale for various design alternatives [21].

The closest rival to this work is the SCR (Software Cost Reduction) framework
of formal specification [8], which allows both proofs of formal properties and sim-
ulation. Unlike ConGolog, the SCR framework is based on a vector representation
for states and a collection of finite state machines for processes. In this respect, the
ConGolog framework is more general and more readily applicable to business pro-
cess and enterprise modeling.

The most pressing task for future research is to complete the development of
the ConGolog verification tool so that it can support a designer in verifying prop-
erties of process specifications along the lines described in sections 3 and 4. Even
though ConGolog has been used to model and analyze several example domains, we
plan to experiment with the scalability of the ConGolog tools by trying them out on
larger and more realistic examples. We are also investigating ways of combining
the ConGolog framework with the design rationale modeling formalism described
in [21].
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