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Abstract. Golog is a new programming language based on a theory of
action in the situation calculus that can be used to develop multi-agent
applications. The Golog interpreter automatically maintains an explicit
model of the agent’s environment on the basis of user supplied axioms
about the preconditions and effects of actions and the initial state of
the environment. This allows agent programs to query the state of the
environment and consider the effects of various possible courses of action
before deciding how to act. This paper discusses a substantial multi-agent
application developed in Golog: a system to support personal banking
over computer networks. We describe the overall system and provide
more details on the agent that assists the user in responding to changes
in his financial situation. The advantages and limitations of Golog for
developing multi-agent applications are discussed and various extensions
are suggested.

1 Introduction

Golog is a new logic programming language for developing intelligent systems
that are embedded in complex environments and use a model of the environment
in deciding how to act [7, 4]. Tt is well suited to programming expert assistants,
software agents, and intelligent robots. The language is based on a formal theory
of action specified in an extended version of the situation calculus. The Golog
interpreter automatically maintains an explicit model of the system’s environ-
ment on the basis of user supplied axioms about the preconditions and effects of
actions and the initial state of the environment. This allows programs to query
the state of the environment and consider the effects of various possible courses
of action before committing to a particular alternative. The net effect is that
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programs may be written at a much higher level of abstraction than is usually
possible. A prototype implementation in Prolog has been developed.

In this paper, we discuss the most substantial experiment done so far in using
Golog to develop an application. The application is a system that assists its users
in doing their personal banking over computer networks. The system is realized
as a collection of Golog agents that interact. Users can perform transactions using
the system. They can also have the system monitor their financial situation for
particular conditions and take action when they arise, either by notifying them
or by performing transactions on their behalf. Currently, the system only works
in a simulated financial environment and has limited knowledge of the domain.
But with more than 2000 lines of Golog code, it is certainly more than a toy.

The personal banking application made an excellent test domain for a num-
ber of reasons. A shift from branch-based to PC-based banking would have far
reaching and largely positive effects for customers and banks alike. Most banks
and other financial institutions are actively investigating PC-based banking and
electronic commerce. However, successful implementations of home banking will
undoubtedly require more flexibility and power than a simple client-monolithic
server environment can provide. Software agents can fill this need. Financial sys-
tems need to be extremely flexible given the number of options available, the
volatility of markets, and the diversity of the user needs. Software agents excel
at this type of flexibility. Furthermore, the distributed nature of information in
the financial world (i.e. banks do not share information, users do not trust out-
side services, etc.) requires that applications have a distributed architecture. As
well, Golog’s solid logical foundations and suitability for formal analysis of the
behavior of agents are attractive characteristics in domains that involve finan-
cial resources. Finally, personal banking applications raise interesting problems
which vary substantially in complexity; this experiment resulted in a system that
has some interesting capabilities; it is clear that it could be extended to produce
a very powerful application.

In the next section, we outline the theory of action on which Golog is based.
Then, we show how complex actions can be defined in the framework and explain
how the resulting set of complex action expressions can be viewed as a program-
ming language. In section 5, we present the overall structure of the personal
banking system and then focus on the agent that assists the user in responding
to changes in his financial situation, giving more details about its design. In the
last section, we reflect on this experiment in the use of Golog: what were the
advantages and limitations of Golog for this kind of multi-agent application? We
also mention some extensions of Golog that are under development and address
some of the limitations encountered.

2 A Theory of Action

Golog is based on a theory of action expressed in the situation calculus [11], a
predicate calculus dialect for representing dynamically changing worlds. In this
framework, the world is taken to be in a certain state (or situation). That state



can only change as a result of an action being performed. The term do(a, s)
represents the state that results from the performance of action a in state s. For
example, the formula ON (B, By, do(PUTON(By, B2), s)) could mean that B is
on By in the state that results from the action PUTON(Bj, B2) being done in
state s. Predicates and function symbols whose value may change from state to
state (and whose last argument is a state) are called fluents.

An action is specified by first stating the conditions under which it can be
performed by means of a precondition ariom using a distinguished predicate
Poss. For example,

Poss(CREATEALERT (alert M sg, max Prio, monlD), s) =
—Jalert M sg', max Prio’ ALERT (alert M sg’, max Prio', monID, s)

(1)

means that it is possible in state s to create an alert with respect to the monitored
condition monlD with the alert message alert M sg and the maximum priority
max Prio, provided that there is not an alert for the condition monID already;
creating an alert leads the agent to send alert messages to the user with a
degree of obtrusiveness rising up to maz Prio until it gets an acknowledgement.
Secondly, one specifies how the action affects the world’s state with effect arioms.
For example,

Poss(CREATEALERT (alert M sg, max Prio,monID),s) D
ALERT (alert M sg, max Prio, monID,
do(CREATEALERT (alert M sg, max Prio, monID), s))

says that if the action CREATEALERT (alert M sg, max Prio, monlID) is possible
in state s, then in the resulting state an alert is in effect with respect to the
monitored condition mon/D and the user is to be alerted using the message
alert M sg sent at a priority up to maxz Prio.

The above axioms are not sufficient if one wants to reason about change.
It is usually necessary to add frame axioms that specify when fluents remain
unchanged by actions. The frame problem [11] arises because the number of
these frame axioms is of the order of the product of the number of fluents and
the number of actions. Our approach incorporates a treatment of the frame
problem due to Reiter [14] (who extends previous proposals by Pednault [12],
Schubert [16] and Haas [3]). The basic idea behind this is to collect all effect
axioms about a given fluent and assume that they specify all the ways the value
of the fluent may change. A syntactic transformation can then be applied to
obtain a successor state ariom for the fluent, for example:

Poss(a,s) D

[ALERT(alert M sg, maz Prio, monID, do(a, s)) =

a = CREATEALERT(alert M sg, max Prio, monID) V (2)
ALERT (alert M sg, max Prio,monID,s) A

a # DELETEALERT(monlD)].

This says that an alert is in effect for monitored condition monID with message
alert M sg and maximum priority max Prio in the state that results from action



a being performed in state s iff either the action a is to create an alert with these
attributes, or the alert already existed in state s and the action was not that of
canceling the alert on the condition. This treatment avoids the proliferation of
axioms, as it only requires a single successor state axiom per fluent and a single
precondition axiom per action.? It yields an effective way of determining whether
a condition holds after a sequence of primitive actions, given a specification of
the initial state of the domain.

3 Complex Actions

Actions in the situation calculus are primitive and determinate. They are like
primitive computer instructions (e.g., assignments). We need complex actions to
be able to describe complex behaviors, for instance that of an agent.

Complex actions could be treated as first class entities, but since the tests
that appear in forms like if ¢ then §; else d; endIf involve formulas, this means
that we would have to reify fluents and formulas. Moreover, 1t would be necessary
to axiomatize the correspondence between these reified formulas and the actual
situation calculus formulas. This would result in a much more complex theory.

Instead we treat complex action expressions as abbreviations for expressions
in the situation calculus logical language. They may thus be thought of as macros
that expand into the genuine logical expressions. This is done by defining a
predicate Do asin Do(d, s, s') where § is a complex action expression. Do(4, s, s')
is intended to mean that the agent’s doing action J in state s leads to a (not
necessarily unique) state s'. Do is defined inductively on the structure of its first
argument as follows:

— Primitive actions:
Do(a, s, s') Lf Poss(a,s) A s' = do(a,s).

— Test actions:

Do(¢?,s,s') d:ef¢[5] As=s

¢[s] denotes the situation calculus formula obtained from ¢ by restoring
situation variable s as the suppressed situation argument.
— Sequences:

Do([61;82], 5, 5') 35" (Do(61,5,5*) A Do(ds, 5%, 5)).
— Nondeterministic choice of action:
Do((81 | 82),s,s") Lt Do(81,5,8') V Do(8a,s,s).
— Nondeterministic choice of argument:
Do(rz §(z),s,s) 3, Do(8(z),s,s').

% This discussion ignores the ramification and qualification problems; a treatment com-
patible with our approach has been proposed by Lin and Reiter [9].



— Nondeterministic iteration:*

Do(d*,s,s") défVP{

Vsl[P(sl,sl)] /\
Vs1, S2,s3[P(s1,s2) A Do(d, sa,s3) D P(s1,53)] }
D P(s,s).

There is another case to the definition that handles procedure definitions (in-
cluding recursive ones) and procedure calls. The complete definition appears in
[7].

As in dynamic logic [13], conditionals and while-loops can be defined in terms
of the above constructs as follows:

if ¢ then 6, else 6, endIf % [?;4]|[¢7;62],

while ¢ do § endWhile = [[47;]*; ~7].
We also define an iteration construct for x : ¢(x)[d(x)] that performs §(x) for
all 2’s such that ¢(z) holds (at the beginning of the ]oop).5

4 Golog

The theoretical framework developed above allows us to define a programming
language called Golog (alGOl in LOGic). A Golog program includes both a
declarative component and a procedural component. The declarative component
specifies the primitive actions available to the agent, when these actions are
possible and what effects they have on the agent’s world, as well as the initial
state of the world. The programmer supplies:

— precondition axioms, one per primitive action,
— successor state axioms, one per fluent,
— axioms specifying what fluents holds in the initial state Sj.

The procedural part of a Golog program defines the behavior of the agent. This
behavior is specified using an expression in the language of complex actions intro-
duced in the previous section (typically involving several procedure definitions

* We use second order logic here to define Do(8*,s,s’) as the transitive closure of the
relation Do(d,s,s') — transitive closure is not first order definable. A first order
version is used in the implementation of Golog, but it is insufficient for proving that
an iterative program does not terminate.

® for v : ¢(x)[6(x)] is defined as:

[proc P(Q) /* where P is a new predicate variable */
if 3y Q(y) then my, R[Q(y) AVz(R(z) = Q(z) Az # y)?;6(y); P(R)] endIf
endProc;

T Q[V2(Q(2) = 6(2))% P(Q)]]



followed by one or more calls to these procedures). Here’s a simple example of a

Golog program to get an elevator to move to the ground floor of a building;:

proc DOWN(n)

(n=0)7 | DPOWNONEFLOOR; DOWN(n — 1)
endProc;
mm [ATFLOOR(m)?; DOWN ()]

In the next section, we will see a much more substantial example.
Golog programs are evaluated with a theorem prover. In essence, to execute
a program, the Golog interpreter attempts to prove

Axioms = IsDo(program, Sp, s).

that is, that there exists a legal execution of the program. If a (constructive)
proof is obtained, a binding for the variable s = do(a,, .. .do(az, do(as, Sp)) .. .) is
extracted, and then the sequence of actions ay, as, ..., a, is sent to the primitive
action execution module.

The declarative part of the Golog program 1s used by the interpreter in two
ways. The successor state axioms and the axioms specifying the initial state
are used to evaluate the conditions that appear in the program (test actions
and if/while/for conditions) as the program is interpreted. The action pre-
conditions axioms are used (with the other axioms) to check whether the next
primitive action is possible in the state reached so far. Golog programs are often
nondeterministic and a failed precondition or test action causes the interpreter
to backtrack and try a different path through the program. For example, given
the program (a; P?) | (b;c), the Golog interpreter might determine that « is
possible in the initial state Sp, but upon noticing that P is false in do(a, Sp),
backtrack and return the final state do(c,do(b, Sp)) after confirming that b is
possible initially and that ¢ is possible in do(b, Sp).

Another way to look at this is that the Golog interpreter automatically main-
tains a model of the world state using the axioms and that the program can query
this state at run time. If a program is going to use such a model, it seems that
having the language maintain it automatically from declarative specifications
would be much more convenient and less error prone than the user having to
program such model updating from scratch. The Golog programmer can work
at a much higher level of abstraction.

This use of the declarative part of Golog programs is central to how the
language differs from superficially similar “procedural languages”. A Golog pro-
gram together with the definition of Do and some foundational axioms about the
situation calculus is a formal theory about the possible behaviors of an agent in
a given environment. And this theory is used explicitly by the Golog interpreter.
In contrast, an interpreter for an ordinary procedural language does not use its
semantics explicitly. Nor do standard semantics of programming languages refer
to aspects of the environment in which programs are executed [1].

Note that our approach focuses on high-level programming rather than plan
synthesis at run-time. But sketchy plans are allowed; nondeterminism can be



used to infer the missing details. For example, the plan
while 36 ONTABLE(b) do b REMOVE (b)) endWhile

leaves it to the Golog interpreter to find a legal sequence of actions that clears
the table.

Before moving on, let us clarify one point about the interpretation of Golog
programs. The account given earlier suggests that the interpreter identifies a
final state for the program before any action gets executed. In practice, this
is unnecessary. Golog programs typically contain fluents that are evaluated by
sensing the agent’s environment. In the current implementation, whenever the
interpreter encounters a test on such a fluent, it commits to the primitive actions
generated so far and executes them, and then does the sensing to evaluate the
test. One can also add directives to Golog programs to force the interpreter to
commit when it gets to that point in the program. As well, whenever the inter-
preter commits and executes part of the program, it rolls its database forward
to reflect the execution of the actions [8, 10].

We have developed a prototype Golog interpreter that is implemented in
Prolog. This implementation requires that the program’s precondition axioms,
successor state axioms, and axioms about the initial state be expressible as
Prolog clauses. Note that this is a limitation of the implementation; not the
theory. For a much more complete presentation of Golog, its foundations, and
its implementation, we refer the reader to [7].

Prior to the personal banking system documented here, the most substantial
application developed in Golog had been a robotics one [4]. The robot’s task was
mail delivery in an office environment. A high-level controller for the robot was
programmed in Golog and interfaced to a software package that supports path
planning and local navigation. The system currently works only in simulation
mode, but we are in the process of porting it to a real robot.

Golog does not in itself support multiple agents or even concurrent processes;
all it provides is a sequential language for specifying the behavior of a system.
A straightforward way of using it to implement a multi-agent system however,
is to have each agent be a Golog process (under Unix with its own copy of the
interpreter), and provide these agents with message passing primitive actions
that are implemented using TCP/IP or in some other way. This is what was
done for the personal banking system described below.

5 The Personal Banking Application

5.1 System Overview

As discussed in the introduction, the multi-agent paradigm is well suited to
the decentralized nature of network banking applications. In our experimental
system, different agents correspond to the different institutions involved and/or
to major subtasks to be handled by the system. The different types of agents in
our system and the kind of interactions they have are represented in figure 1.

We have:
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Fig. 1. System components.

— personal banking assistant agents, which perform transactions under the di-
rection of their user and monitor his account balances for problem conditions;
when the agent detects such a condition, it tries to alert the user or resolve
the problem on his behalf;

— bank agents, which perform operations on users’ accounts at the agent’s
bank in response to requests; they also provide information on the types of
accounts available at the bank;

— transfer facilitator agents, which take care of funds transfer between different
institutions;

— router agents, which keep track of agents’ actual network addresses and
dispatch messages;

— automated teller machine agents, which provide a simple ATM-like interface
to bank agents (not represented on the figure).

Figure 2 shows the system’s graphical user interface, which is implemented by
attaching C and Tcl/ Tk procedures to Golog’s primitive actions for the domain.
Currently, the personal banking assistant agents are the most interesting part of
the system and are the only agents to have any kind of sophisticated behavior.
We describe their design in detail in the next section. A complete description of
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the whole system appears in [15].

A number of assumptions and simplifications were made, chiefly regarding
communication: messages exchanged between agents, users, and other system
components always reach their destination in a relatively timely manner; com-
municating processes do not change their addresses without telling the router,
and reliable connections can be made quickly and at any time. Furthermore, each
agent assumes that the other agents and processes it relies on are available most
of the time, and respond to queries and commands within certain time bounds
(often very generous). We also ignore all issues associated with security and au-
thentication. Undoubtedly, these assumptions would have to be lifted and overall
robustness improved in order to move beyond our experimental prototype.

5.2 The Personal Banking Assistant Agents

Monitoring account balances is the primary duty of the personal banking as-
sistant (PBA) agent. The user specifies “monitors” by giving the account and
institution, the limit at which the balance going below or above triggers action,
and the action to be taken. The PBA refreshes the balances of monitored ac-
counts by sending messages to the bank agents where the accounts are held.



The frequency of account balance queries depends on the user-specified volatil-
ity of the account. The PBA agent checks all monitors on an account when an
institution replies with the current balance for the account.

Two types of actions in response to a monitor trigger are currently supported:
alerting its owner of the trigger, and actually resolving the trigger via account
transfers. When the PBA is to resolve the trigger by itself, its action depends on
whether the trigger involved an account balance going above a maximum limit
or below a minimum limit. In the latter case, it arranges to bring all account
balances up-to-date, and then chooses an account to transfer funds from, con-
sidering: rate of return, owner instructions on moving funds out of that account,
minimum allowed balance in that account (user or bank restricted), and current
account balance.

In response to an account being above its maximum limit, the PBA first
gathers information about accounts at various financial institutions. This is ac-
complished by asking the router agent to broadcast a message to all financial
institutions containing its owner’s investment profile (risk level, liquidity needs,
and growth-versus-income needs) and requesting an account recommendation.
The PBA then waits for account recommendations (the length of the wait de-
pends on the overall urgency of monitors and can be controlled by the user).
When the waiting period has elapsed, the agent examines all of the relevant ac-
count recommendations and chooses the best. If the user already has an account
of this type at the given institution, the PBA orders a transfer into it; if not it
opens an account of this type for the user and then orders the transfer.

Some of the fluents that PBA agents use to model the world are:

— USERACCOUNT(type, bank, account, balance, lastUpdate, rateO f Return,
move Funds,minBalance,penalty,refresh Rate, s): the agent’s owner has an
account of type at bank in situation s,

— MonNITOoR(type, bank, account, limit, lowerOr Higher, priority, response,
monlD,s): the agent is monitoring account of type at bank in situation
S,

— WAITINGUPDT(bank, account, s): the agent is expecting an update on account
at bank in situation s,

— ALERT(alertMessage, maxz Priority, monID,s): the agent must alert its
owner that monitor moniD has been triggered,

— ALERTSENT (medium, priority, timeStamp, monI D, s): an alert has been sent
via medium at timeStamp in situation s,

— ALERTACKNOWLEDGED(monID, s): the alert on monitor monID has been
acknowledged by the agent’s owner in situation s,

— MESSAGE(s): the last message read by the agent in situation s.

Note that many of these fluents, for example WAITINGUPDT, represent proper-
ties of the agent’s mental state. This is because the agent must be able to react
quickly to incoming messages from its owner or other agents. Golog does not
support interrupts or any other mechanism that would allow the current pro-
cess to be suspended when an event that requires immediate attention occurs

10



(although the more recent concurrent version of the language, ConGolog, does
[5]). So to get reactive behavior from the agent, one must explicitly program it
to monitor its communications ports, take quick action when a message arrives,
and return to monitoring its ports. When a new message arrives, whatever asso-
ciated actions can be performed immediately are done. The agent avoids waiting
in the middle of a complex action whenever possible; instead, its mental state
is altered using fluents such as WAITINGUPDT. This ensures that subsequent
events are interpreted correctly, timely reaction to conditions detected occurs
(e.g., sending out a new alert when the old one becomes stale), and the agent is
still able to respond to new messages.
Among the primitive actions that PBA agents are capable of, we have:

— SENDMESSAGE(method, recipient, message): send message to recipient via
method,

— STARTWAITINGUPDT (bank, account): note that the agent is expecting an
update on account from bank,

— sTOPWAITINGUPDT (bank, account): note that the agent is no longer expect-
ing an update on account from bank,

— CREATEALERT(message, max Priority, monID): note that the user must be
alerted with message and keep trying until maxz Priority is reached,

— SENDALERT (priority, message, medium, monID): send an alert to the user
with priority via medium containing message,

— DELETEALERT(monlID): stop attempting to alert the user that monitor
monlD was triggered,

— READCOMMUNICATIONSPORT(channel): check the communications channel
(TCP/IP, e-mail, etc.) for messages and set the fluent MESSAGE appropri-
ately,

— UPDATEBALANCE(bank, account, balance, return, time): update the balance
on the user’s account at bank.

PBA agents are programmed in Golog as follows. First, we provide the re-
quired axioms: a precondition axiom for each primitive action, for instance, ax-
iom (1) from section 2 for the action CREATEALERT; a successor state axiom for
each fluent, for instance, axiom (2) for ALERT; and axioms specifying the initial
state of the system — what accounts the user has, what conditions to monitor,
ete.S
Then, we specify the behavior of the agent in the complex actions language.

The main procedure the agent executes is CONTROLPBA:

 In this case, the axioms were translated into Prolog clauses by hand. We have been
developing a preprocessor that does this automatically. It takes specifications in a
high level notation similar to Gelfond and Lifschitz’s A [2]. Successor state axioms
are automatically generated from effects axioms.

11



proc CONTROLPBA
while TrRUE do
REFRESHMONITORED ACCTS;
HANDLECOMMUNICATIONS (TCP /IP);
GENERATEALERTS
endWhile

endProc

Thus, the agent repeatedly does the following: first request balance updates for
all monitored accounts whose balance has gotten stale, second process all new
messages, and third send out new messages alerting the user of monitor trig-
gers whenever a previous alert has not been acknowledged after an appropriate
period. The procedure for requesting balance updates for monitored accounts
appears below:

proc REFRESHMONITOREDACCTS
for type, where, account, lastUpdate, re fresh Rate :
USERACCOUNT(type, where, account, _, lastUpdate, _, _, _, _, re freshRate)
A MONITOR(type, where, account, ., _, ., _ ) A
STALE (lastUpdate, re freshRate) A = WAITING UPDT(where, account)|
/* ask for balance */
coMPOSEREQUESTFORINFORMATION (type, request)?;
SENDMESSAGE(TCP /TP, where, request);
STARTWAITING UPDT(where, account)
JendProc

Note how the fluent WarriNgUpDT is set when the agent requests an account
update; this ensures that the request will only be made once.
The following procedure handles the issuance of alert messages:

proc GENERATEALERTS
for msg, max Priority, monID: ALERT(msg, max Priority, monID)[
if Imedium, last Priority, time (
ALERTSENT (medium, last Priority, time, monID) A
— ALERTACKNOWLEDGED (monID) A STALE (last Priority, medium,time)
A last Priority < max Priority) then
7 p,newM edium, last Priority [
(ALERTSENT (., last Priority, -, monID) A p is last Priority + 1 A
APPROPRIATEMEDIUM (p, new M edium) A WORTHWHILE(new M edium))?;
SEND ALERT (p, msg, newM edium, monID)]
endIf

JendProc

It directs the agent to behave as follows: for every monitor trigger of which
the user needs to be alerted, if the latest alert message sent has not been ac-
knowledged and is now stale, and the maximum alert priority has not yet been
reached, then send a new alert message at the next higher priority via an appro-
priate medium.
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proc HANDLECOMMUNICATIONS(channel)|
READCOMMUNICATIONSPORT(channel);
while = EMPTY(MESSAGE) do [
if TYPE(MESSAGE) = STARTMONITOR A
SENDER(MESSAGE) = PERSONALINTERFACE then
7 type, bank, account, limit, lh, prio, resp, monlD |
ARGS(MESSAGE) = [type, bank, account, lirnit, lh, prio, resp, monl D]?;
START MONITOR(type, bank, account, limit, lh, prio, resp, monl )]
else if TYPE(MESSAGE) = ACKNOWLEDGEALERT A
SENDER(MESSAGE) = PERSONALINTERFACE then
m monlD [ARGS(MESSAGE) = [monl D]?; ACKNOWLEDGEALERT(monlD)]
else if TYPE(MESSAGE) = UPDATECONFIRMATION A
ISBANK(SENDER(MESSAGE)) then
7 from,account,amount, rate, time [
ARGS(MESSAGE) = [from,account,arnount, rate, time]?;
HANDLE UPDATECONFIRMATION( from, account,amount, rate, time)]
else if TYPE(MESSAGE) = UPDATEREJECT A
ISBANK(SENDER(MESSAGE)) then
LOG(UPDATEREJECT,SENDER ( MESSAGE),ARGS( MESSAGE))
/* other cases handling message types STOPMONITOR, */
/* TransferConfirmation, ACCOUNTOPENED, and */
/* RECOMMENDEDACCOUNT are omitted */
endIf
READCOMMUNICATIONSPORT(channel)
JendWhile
JendProc

Fig. 3. Main message handling procedure.

The procedure in figure 3 contains the main message handling loop. It re-
peatedly reads a message from the port and dispatches to the appropriate action
depending on the type of message and sender, for as long as the message queue
is not empty. For instance, when a STARTMONITOR message is received from
the personal interface, the agent starts monitoring the condition of interest;
and when an ACKNOWLEDGEALERT message is received, the agent notes the
acknowledgement. Some cases are left out for brevity.

The most interesting case involves UPDATECOMFIRMATION messages from
banks. Here, the agent must note the account’s updated balance, check whether
this triggers a monitor, and take action if it does. HANDLECOMMUNICATIONS sets
this in motion by dispatching to the procedure HANDLEUPDATECONFIRMATION
which appears in figure 4. When a monitor trigger is detected in the above
procedure, the reaction of the agent depends on whether the account balance
has gone lower or higher than the limit and whether it is directed to alert the
user or solve the problem itself. The soLvELLOWBALANCE procedure in figure 5 is
invoked when the PBA must solve an account balance going below its limit. The
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proc HANDLEUPDATECONFIRMATION(bank, account, amount, rate, time)|
UPDATEBALANCE(bank, account, amount, rate, time);
STOP WAITING UPDT(bank, account);
/* check monitors on the account */
for type, limit, lh, prio, resp, monl D:
MONITOR(_, bank, account,limit, lh, prio, resp, monl D)[
if (lh = LOWER A amount < limit A “ALERT(_, -, monI D)) then
if resp = SOLVE then
SOLVELOWBALANCE(bank, account, amount, limit, lh, prio, monI D)
else
ALERT LOWBALANCE(bank, account, amount, limit, Lh, prio, rnoni D)
endIf
else if (lh = HIGHER A amount > limit A ~ALERT(_, , mon/ D)) then
if resp = SOLVE then
SOLVEHIGHBALANCE(bank, account, arnount, limit, lh, prio, monl 1)
else
ALERTHIGHBALANCE(bank, account, amount, limit, lh, prio, monlI D)
endIf
else if ALERT(_,_,monID) A ((lh = LOWER A amount > limit) V
(Ilh = HIGHER A amount < limit)) then
HANDLEMONITORUNTRIP(resp, monl D) endIf
]lendProc

Fig. 4. Procedure treating update confirmation messages.

agent picks the account with the highest score based on the account’s minimum
balance and associated penalties, its rate of return, the user-specified mobility
of funds in the account, whether the account’s balance is sufficient, and whether
a monitor exists on the account and what its limit is. If the score of the chosen
account is above a certain limit that depends on the monitor’s priority, a transfer
request is issued, otherwise the user is alerted. It would be interesting to try
to generalize this to handle cases where one must transfer funds from several
accounts to solve the problem.

6 Discussion

One conclusion that can be drawn from this experiment in developing the per-
sonal banking assistance system (2000 lines of Golog code), is that it is possible
to build sizable applications in the language. How well did Golog work for this?
Golog’s mechanism for building and maintaining a world model proved to be
easy to use and effective. Tt provides much more structure to the programmer
for doing this — precondition and successor state axioms, etc. — than ordinary
programming or scripting languages, and guarantees soundness and expressive-
ness.
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proc sOLVELOWBALANCE(bank, account, amount,limit, prio, monI D)
7 bank From, accountFrom, score,amtReq [
CHOOSEBESTACCOUNT(bank F'rrom, account From, score, amt Req, bank,
account, monlID)?;
if score > TRANSFERLIMIT(prio) then
TRANSFERFUNDS(bank From, account From, bank, account, amt Req)
else © msg |
cOMPOSEMsG(FAILED TOSOLVE, bank, account, amtReq, monI D, msg)?;
CREATEALERT(msg, prio, monl D)]
endIf
JendProc

Fig. 5. Procedure to resolve a low balance condition.

The current implementation of the banking assistance system did not make
much use of Golog’s lookahead and nondeterminism features. But this may be
because the problem solving strategies used by its agents are relatively simple.
For instance, if we wanted to deal with cases where several transactions are
necessary to bring an account balance above its limit, the agent would need to
search for an appropriate sequence of transactions. We are experimenting with
Golog’s nondeterminism as a mechanism for doing this kind of “planning”.

We also used Golog’s situation calculus semantics to perform correctness
proofs for some of the PBA agent’s procedures, for instance REFRESHMONI-
TOREDACCTS; the proofs appear in [15]. This was relatively easy, since there
was no need to move to a different formal framework and Golog programs al-
ready include much of the specifications that are required for formal analysis.

From a software engineering point of view, we found Golog helpful in that
it encourages a layered design where Golog is used to program the knowledge-
based aspects of the solution and C or Tcl/Tk procedures attached to the Golog
primitive actions handle low-level details.

On the negative side, we found a lot of areas where Golog still needs work.
Some things that programmers are accustomed to be able to do easily are tricky
in Golog: performing arithmetic or list processing operations, assigning a value
to a variable without making it a fluent, etc. The language does not provide as
much support as it should for distinctions such as fluent vs. non-fluent, fluents
whose value is updated using the successor state axioms vs. sensed fluents, the
effects of actions on fluents vs. their effects on unmodeled components of the
state, etc. The current debugging facilities are also very limited. Some standard
libraries for things like agent communication and reasoning about time would
also be very useful.

Perhaps the most serious limitation of Golog for agent programming appli-
cations is that it does not provide a natural way of specifying event-driven,
reactive behavior. Fortunately, an extended version of the language called Con-
Golog which supports concurrent processes, priorities, and interrupts is under
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development. This extended language allows event-driven behavior to be speci-
fied very naturally using interrupts. In [5], we describe how ConGolog could be
used to develop a simple meeting scheduling application.

Finally, there are some significant discrepancies between the Golog imple-

mentation and our theories of agency in the way knowledge, sensing, exogenous
events, and the relation between planning and execution are treated. We would
like to develop an account that bridges this gap. The account of planning in the
presence of sensing developed in [6] is a step towards this.
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