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Abstract

This work is motivated by the existence of two
useful but quite different knowledge represen-
tation formalisms, the situation calculus due to
McCarthy, and the logic ��� of only knowing
due to Levesque. In this paper, we propose the
logic �	�
� , which combines both approaches in
a clean and natural way. We present a seman-
tics for ����� which generalizes the semantics
of �
� to account for actions, and a sound and
complete set of axioms for ����� which gener-
alizes the Lin and Reiter foundational axioms of
the situation calculus to account for only know-
ing. The logic is compatible with earlier work
on knowledge and action in that the solution to
the frame problem for knowledge proposed by
Scherl and Levesque becomes now a theorem
of ����� . We also demonstrate that the logic
avoids certain anomalies present in related work
by Lakemeyer. Finally we provide a mapping
from �
� into ����� such that a sentence of �
�
is valid iff its mapping is a theorem of �	�
� ,
thus providing, for the first time, a complete ax-
iomatic characterization of �
� .

1 Introduction

This work is motivated by the existence of two useful but
quite different knowledge representation formalisms:

� the situation calculus [McC63] is a dialect of first or-
der logic for representing and reasoning about the pre-
conditions and effects of actions. A recent second-
order refinement explored by Lin and Reiter [LR94]
has been shown to be useful for high-level robot and
agent control [LRL97], exploiting a simple solution to
the frame problem presented in [Rei91].

� the logic of only knowing �
� [Lev90] is a quantified
modal logic for representing and reasoning about the
de dicto and de re knowledge1 of an agent, and all that
that agent knows.2 This language has been found use-
ful for capturing autoepistemic reasoning [Moo85b]
within a purely monotonic logic, as well as certain
forms of relevance [Lak95].

In this paper, we propose the logic �	�
� , which includes
in a clean and natural way both the situation calculus noted
above and an embedding of the logic of only knowing. The
amalgamation is carried out at both the semantic and the
syntactic levels. While the semantics naturally extends the
model theory of ��� to account for actions, the axioms,
which are sound and complete for the semantics, can be
seen as a version of the foundational axioms of the situation
calculus proposed in [LR94], generalized to deal with the
much richer ontology required for only knowing.

The motivation for the amalgamation is perhaps best seen
in the following example. Suppose we have a robot that
knows nothing about the initial state of the environment,
but that there is a sensing action, reading a sonar, which
tells the robot when it is getting close to a wall. Then we
would like to prove the following:

1. in the situation that results from reading the sonar, the
robot knows whether the wall is close;

2. assuming the robot knows the sonar is working, it also
knows in the initial state that it will know whether the
wall is close after checking its sonar;

3. suppose the robot checks its sonar and discovers that
the wall is not close. If it now moves towards the wall,
it no longer knows whether or not the wall is close; if

1De dicto and de re knowledge refers to the distinction be-
tween knowing that and knowing who [Kap71].

2Actually, it is belief that is dealt with in 
�� , but we will use
the two terms interchangeably, unless noted otherwise.



it moves away from the wall instead, it continues to
know whether or not it is close.

These are all simple and reasonable properties involving
knowledge and action. Observe that to get them right,
it is necessary to reason about the effects of sensing ac-
tions, knowledge about knowledge and action, and all that
is known. The latter is necessary, in particular, if an agent
wants to reason about its own ignorance without having
to be told explicitly what it does not know. Furthermore,
knowledge about ignorance plays an important role in guid-
ing an agent’s actions such as deciding whether it is neces-
sary to use a sensor.

Ours is certainly not the first approach combining knowl-
edge and action (see, for example, [Moo85a, SL93,
Lak96]). In fact, ����� is compatible with this line of work
in that the solution to the frame problem for knowledge
proposed by Scherl and Levesque [SL93], which builds
on [Moo85a], becomes a logical consequence of the ax-
ioms. So far, only Lakemeyer [Lak96] has proposed an
amalgamation of only knowing and action in a quantified
logic.3 However, he provides only a semantics, but no ax-
ioms. In this paper we also point to certain anomalies in
his logic and demonstrate how they are avoided in ����� .
Finally we provide a mapping from ��� into ����� such
that a sentence in ��� is valid iff its mapping into ����� is
a logical consequence of the axioms. This provides, for the
first time, a complete axiomatic characterization of ��� .

The rest of the paper is organized as follows. In Sections 2
and 3, we briefly review the situation calculus and the logic
��� , respectively. In Section 4, we present the new logic
����� , both semantically and axiomatically. The proper-
ties of knowledge and action are studied in more detail in
Section 5. Section 6 formalizes the robot example above.
In Section 7, we show an embedding of �
� into ���
� .
In Section 8, we compare our approach with the amalga-
mation presented in [Lak96]. Section 9 presents a brief
summary and suggests areas of future work.

2 Situation Calculus

One increasingly popular language for representing and
reasoning about the preconditions and effects of actions
is the situation calculus [McC63]. We will only go over
the language briefly here noting the following features: all
terms in the language are one of three sorts, ordinary ob-
jects, actions or situations; there is a special constant ���
used to denote the initial situation, namely that situation
in which no actions have yet occurred; there is a distin-
guished binary function symbol do where do �����	��
 denotes

3In the context of modeling belief revision, [dVS94] provide
axioms for only knowing in the situation calculus, but these are
limited to the propositional case.

the successor situation to � resulting from performing the
action � ; relations whose truth values vary from situation
to situation, are called relational fluents, and are denoted
by predicate symbols taking a situation term as their last
argument; similarly, functions varying across situations are
called functional fluents and are denoted analogously; fi-
nally, there is a special predicate Poss �������

 used to state
that action � is executable in situation ���
Within this language, we can formulate theories which de-
scribe how the world changes as the result of the available
actions. One possibility is a basic action theory of the fol-
lowing form [Rei91]:

� Axioms describing the initial situation, � � .
� Action precondition axioms, one for each primitive

action � , characterizing Poss �����	��
 .
� Successor state axioms, one for each fluent � , stating

under what conditions ���
�� � do �������

�
 holds as a func-
tion of what holds in situation ��� These take the place
of the so-called effect axioms, but also provide a solu-
tion to the frame problem [Rei91].

� Domain closure and unique names axioms for the
primitive actions.

� A collection of foundational, domain independent ax-
ioms.

In [LR94] the following foundational axioms are consid-
ered:4

1. ����������� ���� do �������

 .
2. ���! ����#"$���� %�	�
"$� do ���! $�	�% �
 � do ���#"$�	�
"

'&

���! � �("*)+�% � �,"�
 .
3. ��-'�%-��.���

/)10 �2�������3��-�����
*&4-�� do ��������
5
5
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���
-�����
 .
4. �����%8'���:94� � 
 .
5. �������
;<�����=���>9 do �����	�
;?
A@B� Poss �����	�
;C
�)D�FEG�
;3
�
H�

where �FE4� ; is an abbreviation for �>94� ;(I � � � ; .

The first three axioms serve to characterize the space of all
situations, making it isomorphic to the set of ground terms
of the form do ���  �KJKJ,J�� do ���#L���� � 
�JKJKJ�
 . The third of these
is a second-order induction axiom that ensures that there
are no situations other than those accessible using do from
����� The final two axioms serve to characterize a 9 relation
between situations. Later, we will be introducing abbre-
viations of various sorts into our representation language,

4In addition to the standard axioms of equality



and we can in fact do so here, defining the 9 relation as an
abbreviation for a certain second-order formula:

�F94� ; �� ��-�0 �K�,�=&4-��.���	� ; 
76
where the ellipsis stands for the conjunction of

�������$� Poss �����	��
 & -������ do �����	��
5

�2�  �	� " ��� � � -��.�  ��� " 
2) -���� " ��� � 
 & -����  ��� � 


It is not hard to show that with this definition, the final two
axioms do not have to be postulated, and are in fact logical
theorems.

3 The Logic
���

The language of ��� is a modal first-order dialect with
equality and function symbols plus a countably infinite set
of standard names � ���	��
 � �
� � ��� �K�,�K��� which will serve
as our universe of discourse. As discussed in more detail
in [Lev84], standard names allow interesting distinctions
between de dicto and de re beliefs (see below for an ex-
ample). Terms and atomic formulas are defined as usual.
A term is called primitive if it consists of a function sym-
bol followed by standard names as argument. Similarly a
formula is called primitive if it consists of a predicate sym-
bol followed by standard names. Arbitrary formulas of �
�
are constructed in the usual way from the atomic formulas,
equality, the connectives 8 and I , the quantifier � ,5 and the
modal operators � and � , where ��� should be read as
“the agent knows � ” and ��� as “the agent only knows � .”
Sentences are formulas without free variables. A formula
is called objective if it does not contain any modal opera-
tors. Vector notation will be used freely for sequences, for
example, � �� for � �  JKJKJ � ��� .

The semantics of ��� is based on the familiar notion of a
world, which assigns meaning to the nonlogical symbols
of the language. ��� makes the assumption that all worlds
have as their universe of discourse the same set which is
isomorphic to the standard names, that is, an individual is
identified with a unique name. A world is then completely
specified by providing the meaning of every primitive term
and formula:

Definition 3.1: A world � is a function from primitive
expressions into ��
 � � ����� , where �:0 � 6�� � 
 � � � for prim-
itive formulas � , and �:0 ! 6"�#� for primitive terms ! .
Given a world � , the denotation of an arbitrary ground term
! is defined recursively as

$ %&$ ' � %
, where

%
is a standard name.

5Other logical connectives like ( , ) , and * and the quantifier+
are used freely and are defined in the usual way.

$ , �-!� ��,�K�K�,�.! � 
 $ ' � �:0 , � %  $�K�,�K�,� % � 
 6 , where
%0/ � $ ! /1$ ' .

We often write
$ �! $ ' instead of 2 $ !  $ ' �K�K�,�K� $ ! � $ '43 .

While the truth of objective sentences is determined by a
single world � , the meaning of sentences of the form ���
and ��� is defined relative to a set of worlds 5 . ��� holds
if � is true in all worlds of 5 . ��� holds if ��� holds and,
in addition, every world that satisfies � is also a member
of 5 . This way 5 minimizes what is known besides � . 5 is
also called an epistemic state and a pair ( 5(�6� ) is sometimes
referred to as a an ��� model.

The semantic rules which determine the truth of a sentence
� at a given world � and epistemic state 5 (denoted as
5(�.� $ � � ) are defined as follows:

5��6� $ � ��� �!5
 798 �:0 ���K�% 
76 ��� and �% � $ �! $ ' ,
where ��� �!5
 is atomic.

5��6� $ � !� � ! ":798 $ !� $ ' � $ ! " $ '
5��6� $ � 8;� 798 5(�.� $ �� �
5��6� $ � � I=< 798 5(�.� $ � �?>A@"5(�.� $ � <
5��6� $ � � � � 798 5(�.� $ � �"BL for all

% �C�
5��6� $ � ��� 798 for all � ;��?5 , 5(�.� ; $ � �
5��6� $ � �D� 798 for all � ; , � ;��?5 iff 5(�.� ; $ � �

A formula � is valid (
$ �

OL � ) iff 5(�.� $ � � for all worlds �
and all sets of worlds 5 .6 We sometimes write � $ � � if �
is an objective sentence.

Here we only briefly discuss the operators � and � . For a
detailed discussion of ��� , we refer the reader to [Lev90]
and [LL9x]. � has the usual properties of the logic K45 or
weak S5 [HC68] whose characteristic axioms are:

K: �4�-� & < 
 & �E�F� &G� < 

4: ��� &H�F�I�
5: 84��� &H� 84�I�

The Barcan formula �C� � ���G&J� � � � 
 is also valid since
we are assuming a fixed universe of discourse [HC68].
While � is very well understood, this is less the case for �
except perhaps when � is applied to an objective sentence.
Consider an atomic sentence � . It is easy to see that the only
epistemic state 5 where �K� is satisfied is 5 �J� � $ � $ � �0� ,
that is, the set of all worlds where � is true. It is the “iff”
in the semantic rule of � which has the effect of maximiz-
ing 5 . As a result, the objective sentences known at 5 are
exactly the logical consequences of � , which captures the
idea that � is all that is known. Note that the meaning of �
crucially depends on 5 as well as on the complement of 5 .
In particular, for ��� to be true, � has to be known and all
worlds not in 5 have to falsify � . The story becomes much
more complicated with arbitrary formulas in the scope of

6Levesque used so-called maximal sets to define validity, a
complication we ignore here for simplicity.



� . For example, as shown in [Lev90], using � it is possi-
ble to fully reconstruct and extend Moore’s Autoepistemic
Logic [Moo85b]. However, in this paper we will not be
concerned with such issues, and all the examples used here
consider only knowing applied to objective sentences.

[Lev90] presents an axiomatization of �
� , which is com-
plete for the propositional case, but was recently shown to
be incomplete for the full first-order language [HL95]. An
interesting by-product of our work is that, by appealing to
second-order logic, a complete axiom system for ��� ob-
tains.

To see the utility of � , consider an agent who knows the
standard name for the current temperature, which could be
a particular value on some temperature scale. If this is all
she knows then it should follow that she knows what the
temperature is and that she does not know what the baro-
metric pressure is. In ��� this can be expressed by the fol-
lowing valid sentence, where

%
is a standard name and both

temperature and pressure are ordinary constants:

� � temperature � % 
 &� � �4� temperature � � 
F) 8 ��� �4� pressure � � 
H�
Note that the implication would not go through if we re-

placed � by � : knowing the temperature does not rule out
knowing the barometric pressure as well. We feel that be-
ing able to derive facts about what is not known without
having to state them as premises is a useful feature of the
language that becomes even more important when reason-
ing about knowledge and action.

4 The Logic � ���

There are two ways of understanding what is required to
amalgamate the situation calculus and the logic ��� : we
can view it in terms of extensions to ��� , and how the se-
mantics there needs to be modified, or we can view it in
terms of extensions to the situation calculus, and how the
foundational axioms need to change. Our approach can be
seen as taking both views. We begin by proposing a seman-
tics which extends that of ��� by adding actions and apply-
ing it to a slightly extended language of the situation calcu-
lus to account for knowledge and standard names. We then
provide a small set of axioms which are sound and com-
plete for the semantics and which, taken by themselves, can
be thought of as foundational axioms for an extended situ-
ation calculus.

The language of ����� will be a dialect of the second-order
predicate calculus, like the situation calculus introduced in
Section 2. Again we have three sorts: ordinary objects, ac-
tions and situations. The constant � � , the function do, and
special predicate Poss ��������
 are exactly as before. We will
however require two new special predicates, SF �������

 and

� �(����
 , a new constant � of sort ordinary object, and a new
function symbol succ � � 
 , which maps ordinary objects to
ordinary objects. The set of (relational and functional) flu-
ents as well as the set of action function symbols is assumed
to be finite.

For simplicity, we also make the following restrictions:
there are no constants or functions of the situation sort other
than ��� and do; action functions do not take situations as
arguments; all ordinary object functions other than � and
succ are fluents; and all predicates other than those men-
tioned above are fluents. Finally, we assume that fluents
only have situation terms as arguments in the final position.

Recall that �
� assumes a fixed countably infinite do-
main of ordinary objects, isomorphic to the set of standard
names. We want to use standard names as objects in �����
as well. However, in order to facilitate the axiomatization
later on, we will not represent them using infinitely many
distinct predicate calculus constants ��
 , �0� , �,�K� , but instead
construct them using � and succ. The idea is that � will
play the role of � 
 , succ ���(
 the role of � � , etc. (similar to
the way numerals are represented in number theory). As
before, we refer to the set of standard names (now ground
terms) as � .

To deal with knowledge in ����� , the biggest change is that
we imagine that in addition to �2� and its successors, there
are an uncountable number of other initial and non-initial
situations considered as possible epistemic alternatives. To
state what is known in � � , we use

� � . Informally, taking
� � to be the situation counterpart to the given world � in
��� ,

� � is the counterpart to the given epistemic state 5
in ��� . In other words,

� � �.��
 is intended to hold if � is
a situation considered by the agent in � � to be possible.
How knowledge changes when performing an action � in
situation � is governed by SF �����	��
 and Poss �����	��
 and will
be discussed later in Section 5.

4.1 Semantics

Recall that in ��� , there are worlds corresponding to all
possible interpretations of the predicate and function sym-
bols (over the domain of standard names). Different ap-
plications, of course, will use different subsets as part of
the given 5 , but the complement of 5 is still relevant be-
cause of only knowing. We need the same in ����� with
respect to

� � , but more: we need to allow for all possible
interpretations of the predicate and function symbols after
all possible sequences of actions. That is, to ensure that it
is possible to know the initial value of a term or formula
without also necessarily knowing its value in successor sit-
uations, it is necessary that there be initial situations that
agree on the values of all terms and formulas but that have



successors that disagree on these values.7 Thus instead of
defining a world as a function from primitive expressions to
suitable values as we did in ��� , we define a world in ���
�
as a function from primitive expressions and sequences of
actions to these values. We then define a situation as a pair
consisting of a world and a sequence of actions.

Worlds and situations

More precisely, the standard names for objects, as al-
ready mentioned, are ground terms involving just � and
succ; the standard names for actions are terms of the form� �-!  �,�K�,���.! L!
 where

�
is an action function and each ! / is a

standard name; there are no standard names for situations,
since there will be more situations than expressions in the
language. The primitive terms � are object terms of the
form

, �-!� ��,�K�,�K�.! L 
 where each ! / is a standard name, and, � �  %�,�K�,��� � L �	��
 is a functional fluent. The primitive for-
mulas � are atoms of the form ���-!	 $�K�,�K���6! L 
 where each ! /
is a standard name, and ��� �  $�K�,�K�K� � L ���

 is a relational flu-
ent, or � is one of Poss or SF. Note that except for Poss and
SF, primitive expressions are all fluents with the situation
argument suppressed.

Let Act � be the set of all sequences of standard names for
actions including the empty sequence � .
Definition 4.1: An ����� world � is a function:

�������	� Act ��
 � �
��� Act �,

��� ��
 � � � � �
such that

�:0 � �%���6�� � 
 � � � for all � ��� .

�:0 !H����(6��#� for all ! ��� .

Let � denote the set of all ����� worlds.

Definition 4.2: An �	�
� situation is a pair �-�>����!
 , where
� ��� and ��H� Act � . An initial situation is one where
�� � � .
Definition 4.3: An action model � is a pair 2E5��6� 3

, where
� ��� and 5���� �

As in ��� , � is taken to specify the actual world, and 5
specifies the epistemic state as those worlds an agent has
not yet ruled out as being the actual one. As we will see
below, a situation term � will be interpreted semantically
as an �	�
� situation �-�>����!
 , consisting of a world and a
sequence of actions that have happened so far. A fluent
���.��
 will be considered true if �:0 �������6 ��� .
Because situations cannot have standard names, to interpret
formulas with variables, we need to use variable maps. A

7In some applications this generality will not be required.

variable map � maps object, action, and situation variables
into standard names for objects and actions, and into �����
situations, respectively. In addition, � assigns relations of
the appropriate type8 to relational variables. For a given � ,
� B� denotes the variable map which is like � except that � is
mapped into � .
The meaning of terms

We write
$ J $ ��� � for the denotation of terms with respect to

an action model � � 2E5��6� 3
and a variable map � . Then

$ � $ ��� � � � ;$
succ �-!5
 $ ��� � � succ � $ ! $ � � � 
 ;$ , � �!H�6!"!H
 $ ��� � � � ; 0 , � $ �! $ � � � 
H�%���6 , where

, � �!	�6!"!�
 is a
functional fluent, and

$ !#! $ � � � � � � ; �%��=
 ;$ � � �!�
 $ ��� � � � � $ �! $ � � � 
 , where
� � �!5
 is an action term;$ ��� $ ��� � � � �>�#��
 ;$

do �-!"$#�.!"!H
 $ � � � � � � ;��%��'J7�#
 , where
$ !%! $ ��� � � � � ;.�%��#
 ,

and
$ !"$ $ ��� � � � ;$ � $ ��� � � �2� � 
 , where � is any variable, including

predicate variables.

Observe that in a model � � 2-5(�.� 3
, the only way to refer

to a situation that does not use the given world � is to use
a situation variable.

The meaning of formulas

We write � �&� $ � � to mean formula � comes out true in
action model � and variable map � :

� �&� $ � ��� �!H�6! ! 
 iff � ; 0 ��� $ �! $ ��� � 
������6 ��� , where
��� �!H�.! ! 
 is a relational fluent, and

$ ! ! $ ��� � � �-� ;.����=
 ;
� �&� $ �(' � �!5
 iff

$ �! $ ��� � ����� ' 
 , where ' is a
relational variable;

� �&� $ � Poss �-!"$#�6!"!H
 iff � ; 0 Poss � $ !"$ $ ��� � 
H�����6 ��� ,
where

$ !%! $ � � � � � � ;��%��=
 ;
� �&� $ � SF � ! $ �.! ! 
 iff � ; 0 SF � $ ! $ $ ��� � 
������6 ��� ,

where
$ ! ! $ � � � � � � ;��%��=
 ;

� �&� $ � � ���-! ! 
 iff
$ ! ! $ ��� � � � � ;.�#��
 and � ;��?5 ;

� �&� $ � !  � ! " iff
$ !  $ ��� � � $ ! " $ ��� � ;

� �&� $ � 8;� iff � �#� $ �� � ;

� �&� $ � � I=< iff � �&� $ � � or � �#� $ � < ;

� �&� $ � � � � � iff � �#��B� $ � � for all � of the appro-
priate sort (object, action, situation, relation).

8The type determines the arity and the sort of each argument
of the relations the variable ranges over. Since, in our examples,
the type will always be obvious from the context, we leave this
information implicit.



For sentences � we sometimes write � $ � � instead of
� �#� $ � � .

Validity is defined in the usual way as truth in all models,
that is, a formula � is valid in ����� (

$ �
AOL � ) iff for all

action models � � 2-5(�.� 3
and variable maps � , � �&� $ �

� .

4.2 An axiomatization

The first three axioms tell us that the set of objects is iso-
morphic to the set � of standard object names. Indeed the
formulation resembles the usual second-order definition of
the natural numbers, that is, the following three axioms do
no more than give us domain closure and unique names ax-
ioms for objects.

F1: � � � succ � � 
 �� �
F2: � � � � � succ � � 
 � succ � � 
 & � � �
F3: ��-'�=0 -�� ��
�) � � ��-�� � 
'& -�� succ � � 
�
5
76�&

� � � -�� � 


Next we need to say that the actions consist precisely of the
primitive actions and that they are all distinct. This can be
done in the usual way.

F4: Domain closure and unique names
axioms for actions.

Neither SF nor Poss need special axioms since their mean-
ing is left completely user-defined. The only foundational
axiom concerning

� � is one saying that it only applies to
initial situations. To be precise, let

� %�� !���� ; 
 �� 8 � ��������� ; � do �������

��
Then we have

F5:
� %�� !������

F) ����� � ������
'& � %�� !�����


Finally we have the job of characterizing the set of situa-
tions. As in the original dialect of the situation calculus, we
first want to say that any non-initial situation is the result
of applying do to an initial situation. We use variants of the
previous axioms:

F6: ���  �	� " �	�  �	� " � do ���  ���  
 � do ��� " �	� " 
 &
���  � � " )D�  � � " 
 .

F7: ��-'�=�?�������
;<� � %�� !��.�

 )+���4�
;�& -����
;?
5
'&
�2��� -��.�



where we have

��� � ; �� ��� 0 �K�,�=&�� �.����� ; 
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with the ellipsis standing for the conjunction of

�2�� ���� �.�� %�	�% �

�������% 
�	� �.�% �� do �����	�% K
5

�2�  �	� " ��� � �	� �.�  �	� " 
2)
� �.� " �	� � 
 &�� ���  ��� � 


Then the only remaining job is to characterize the set of
initial situations. Looking back at the semantics of ����� ,
recall that for a correct interpretation of only knowing, we
had to insist that there be an initial situation correspond-
ing to any conceivable outcome of the fluents initially and
after any sequence of actions. Given the power of second-
order logic, it is possible to precisely capture this property
axiomatically.9

To handle sequences of actions, we begin by introducing an
abbreviation � �.��;�����
 intended to say that ��; and � involve
the same sequence of actions from perhaps different initial
states:

� �.� ; ���

 �� �
� 0 �K�K�=&�� ��� ; �	��
 6
where the ellipsis stands for the conjunction of

�2�� ��	�
"$� � %�� !��.�% �
2) � %�� !��.�
"K
'&�� �.�� $�	�
"


�������% 
�	�
"$�	� ���% %�	�
",
'&�� � do �����	�% �
�� do �����	�
"

5
��

With this in place, we can use situations � where � ���4� as
a canonical way of talking about sequences of actions.

Suppose that our language contains relational fluents
�  �,�K�K�K��� L .10 Then we can write our final axiom as:

F8: �2��� � %�� !�����
 @4����0 �,�K�=&�������
 6

where the ellipsis stands for

��-  %�K�K�,����- L�� "�� � �,;��������
;?
2) � %�� !����
;?
2)
� ��  ��,� �3�3�(�� L �6!H��� �����
�
;�� !�)D��������)�� � !H����
'&
�  $�,��  $�.!5
A@ -  $�,��  $����
/) �K�K�
)
� L �,�� L �.!5
A@ - L �
�� L ����
/)
Poss �����.!5
 @ - L��  ���������
/)
SF �����6!5
 @G- L�� "���������


To see how this axiom works, imagine that
% � � , �  � � ���



is a unary fluent, and ignore Poss and SF. Then, the set of
initial situations is the least set such that for every mapping
from sequences of actions (here represented by the � ) to
sets of objects, there is an initial situation �$; such that �  
holds on exactly that set of objects in the situation ! that
results from doing those actions starting in �$; .

9We are indebted to Fangzhen Lin who pointed this out to us.
10Recall that apart from the special predicates ��� , Poss and

SF, our language has only finitely many relational and functional
fluents. To make things simple, we omit functional fluents com-
pletely from this axiom. They require functional variables in the
language.



These are all the axioms we need, and we will refer to them
collectively as AX from now on, and we let ��� $ � � stand
for “ � is logically implied by AX” in ordinary (second-
order) logic.

It is not hard to show that the axioms are sound with respect
to the semantics of ����� . Moreover, action models are, in
a sense, the only models of the axioms. More precisely,
one can show that for any arbitrary Tarskian model

�
of

the axioms there is an action model � such that
�

and �
agree on all sentences. The key property is that the objects,
actions, and situations of an arbitrary model of AX are iso-
morphic to the objects, actions, and situations, respectively,
of action models. With that we obtain the main result.

Theorem 4.4: For any � ,
$ �

AOL � iff ��� $ � � .11

Given this result one may wonder what the point of intro-
ducing a non-standard semantics for ���
� is in the first
place, that is, why not just use the axioms? Perhaps the
strongest argument in favor of the semantics is that it lends
independent support to the claim that the axioms are indeed
reasonable. The fact that the semantics generalizes that of
��� in a natural way adds further credence to that claim.

5 Knowledge and Action

Before going into details about the connection between
knowledge and action in ����� , a few words are in order
about how we should envisage using �	�
� to model a par-
ticular domain of interest.

Instead of simply writing a basic action theory as presented
in Section 2 describing what holds in � � and after perform-
ing actions, the user must now worry about the other initial
situations.

Consider, for example, a precondition axiom for an action�
. In the ordinary situation calculus, the user would write

an axiom of the form

�2��� Poss � � ����
A@�� $ ����
H�
where � $ is some formula does not mention Poss. The in-
tent of the quantification (given the previous foundational
axioms) was for this to hold in � � and all its successors.
But in �	�
� , the quantification over all situations is much
too strong. By virtue of F8 there will be initial situations
where Poss and � $ have different truth values, and so the
axiom as it stands is false! To achieve the desired effect,
the user should write instead

�2� ; �$� � �G� ; & 0 Poss � � ��� ; 
A@�� $#��� ; 
 6 �
11For reasons of space proofs are generally omitted and de-

ferred to a longer version of this paper [LL98].

to ensure that the precondition applies to � � and its succes-
sors. It is then a separate step to assert that the precondition
is known, if desired. To do so, the user would write

�2���	� ; � � � ����
�)D���G� ; & 0 Poss � � ��� ; 
A@�� $#��� ; 
 6 �
This ensures that the axiom is considered to hold in any sit-
uation initially considered possible and all of its successors.
Similar considerations apply to writing successor state ax-
ioms. In general, we write initial state axioms, precondi-
tion axioms, and successor state axioms all parameterized
by the initial situation we wish to consider, and only quan-
tify over successors of that initial situation. We will see an
example shortly.

Given a specification of what is known in � � , the predicates
SF and Poss are then used to characterize what is known in
successor situations. Note that the logic itself imposes no
constraints on either SF or Poss; it is up to the user in an
application to write appropriate axioms. For Poss, these
are the precondition axioms; for SF, the user must write
sensed fluent axioms, one for each action type, as discussed
in [Lev96]. The idea is that SF �������

 gives the condition
sensed by action � in situation � . So we might have, for
example,

SF � sonar �	��
A@B� wdist ����
 9 � 
 

as a way of saying that the sonar sensing action in situ-
ation � tells the robot whether or not the distance to the
wall in � is less than 10 units. In case the action � has
no sensing component (as in simple physical actions, like
moving), the axiom should state that SF ��������
 is identically
TRUE. Having defined SF as a predicate, we essentially
confine ourselves to sensing truth values. If we want the
result of a sense action to be the value of a term such as a
sonar measuring the actual distance to the wall, we can do
so by simply redefining SF as a function and treating TRUE
and FALSE as special values returned by SF. To keep the
presentation simple, however, we ignore this issue here.

With these terms, we can now define
� ���%;�����
 as an abbre-

viation for a formula that characterizes when a situation � ;
is accessible from an arbitrary situation � :12

� �.� ; ���

 �� �
� 0 �K�,�=&�� ��� ; �	��
 6
where the ellipsis stands for the conjunction of

�2�  �	� " � � %�� !��.�  
2) � %�� !��.� " 
2) � � �.� " 
'&�� �.� " �	�  

�������  �	� " �	� ��� " �	�  
F)B� SF �����	� " 
A@ SF �������  
�
/)

� Poss �����	�
"

A@ Poss �����	�$ �
5
 &
� � do �������
",
H� do �������% �
�
H�

12We could have defined � , as well as � and � , as a predicate
in the language as is usually done, but we have chosen not to
simply because we wanted to keep the formal apparatus as small
as possible.



Space precludes a detailed analysis of this definition, ex-
cept to claim that it satisfies the successor state axiom for a
predicate

�
proposed in [SL93] as a solution to the frame

problem for knowledge and later reformulated in [Lev96],
whose notation we follow here:

Theorem 5.1: The following is a theorem of ����� :

����������� ; � Poss �����	��
 & � ��� ; � do �����	��
�
A@� �
; ;��%�
; � do �����	�
; ;3
 ) � ���
; ;�����
2) Poss �������
; ;3

)B0 SF ��������
A@ SF �����	�
; ;C
 6 .

Given
�

, knowledge can then be defined in a way simi-
lar to possible-world semantics [Kri63, Hin62, Moo85a] as
truth in all accessible situations. Similarly, only knowing
a sentence � at a situation � means that all and only those
situations with the same action history as � are accessible.
We denote the two forms of knowledge using the following
macros, where � may contain the special situation symbol% ��� . Let ��� ���! refer to � with all occurrences of

% ��� re-
placed by � . Then

���	��

� �-�*�	��
 �� ���
; � ���
;��	��
 & ��� ���!��
� ���	��
�� �-�*�	��
 �� �2� ; � ��� ; �	��
 & � � ��� ; ����
A@ � � ���! � 
 .

For example,
���	��
�� ����� ��� 5 % � � ������� 
��	� � 
 stands for

��� � �����	� � 
D&���� ��� 5 % � � �	��
 and should be read as “the
agent knows in � � that � is (now) broken.”

6 An Example

We now turn to an example showing how knowing and only
knowing can be combined with actions in ����� .

Imagine a robot that lives in a 1-dimensional world, and
that can move towards or away from a fixed wall. The robot
also has a sonar sensor that tells it when it gets too close to
the wall, say, less than 10 units away. So we might imag-
ine three actions, adv and rev which move the robot one
unit towards and away from the wall, and a sonar sensing
action. We have a single fluent, wdist �.��
 , which gives the
actual distance from the robot to the wall in situation � .
We begin by defining precondition axioms, sensed fluent
axioms and successor state axioms, all parameterized by
some initial situation � (as discussed in Section 5). Let
ALL �.�

 stand for the conjunction of these formulas:

�2� ; � ��� � ; & Poss � adv �	� ; 
A@ wdist ��� ; 
�� 

�2�,;�� ��� �
;�& Poss � rev ���
;?
A@ TRUE

�2�,;�� ��� �
;�& Poss � sonar �	��;?
 @ TRUE

�2�,;�� ��� �
;�& SF � adv �	�
;?
A@ TRUE

�2�,;�� ��� �
;�& SF � rev �	�
;?
A@ TRUE

�2�,;�� ��� �
;�& SF � sonar �	�
;?
 @ Close �.�
;3


�2�,;�� ��� �
;�&
����� wdist � do �����	��;3
�
 � � @

� � adv ) �:� wdist ����;?
 � �
I � � rev ) �:� wdist �.�
;?
"! �
I �:� wdist ��� ; 
2)+� �� adv ) � �� rev

The formula Close �.��
 in the above is an abbreviation:

Close �.��
 �� wdist �.��
 9 � 
 �
Now we are ready to consider some specifics having to do
with what is true initially. Assume the robot is located ini-
tially # units away from the wall in � � . For simplicity, we
also assume that all of the axioms above are true in ��� , that
they are also known in �2� , and this is all that is known. So
let $2� be the conjunction of the axioms in AX and:

wdist ��� � 
 � # ) ALL ��� � 
F) � ���	��
�� � ALL � % ��� 
��	� � 

With these in hand,13 we are ready to establish some prop-
erties of the relationship between knowledge and action.

1. After reading its sonar sensor, the robot knows that it
is close to the wall:

$2� $ � ���%��
�� � Close � do � sonar �����

�

The proof is as follows: Suppose � $ � $ � . Further
suppose that � �&� $ � � ����� do � sonar ��� � 
5
�� By Theo-
rem 5.1, we get that

� �#� $ � � � ; ��� � do � sonar �	� ; 

) � �����
;?
2) 0Close ���
;?
 @ Close �.����
 6 �

Since � $ � Close �.���

 and

� $ � �2��� � ������
 & � wdist � do � sonar ���

�
 � wdist �.�

�

by virtue of $ � , we get that � �#� $ � Close �.��
 . Thus,
we have that

� $ � �2��� � ����� do � sonar �	� � 
�
'& Close ����
��

2. Before reading its sensor, however, the robot does not
know if it is close to the wall:

$ � $ � 8 ���	��
�� � Close �	���


The proof is as follows: Suppose � $ � $ � . Let � ;
be the element of � which is just like � except that
� ; 0wdist �%��6 � � 
 . Then, when ���.��
 � � � ; �#�H
 , we
have that � �&� $ � 8 Close ����
 and � �&� $ � ALL �.�

��
From the latter and the fact that

� $ � ����� � %�� !�����
*& � � ���.��
A@ ALL �.��
5
H�
it follows that � �#� $ � � � �.��
H� Consequently,

� $ � 8 ����� � �.�������

 & Close �.��
H�
13Strictly speaking, we also need axioms for basic arithmetic

as needed by the example. For simplicity we ignore this compli-
cation here.



3. After reading its sensor and moving closer to the wall,
the robot continues to know that the wall is close:

$ � $ � ���	��

� � Close � do � adv � do � sonar �	�2�

�
5


The proof is as follows: Suppose � $ � $ � . Further
suppose that � �#� $ � � ����� do � adv � do � sonar ���2�

5
�
H�
By Theorem 5.1, we get that

� �&� $ � � �
;���� � do � adv � do � sonar �	��;?
5
2) � � ���
;C

) 0Close ���
;C
A@ Close ��� � 
76.�

Since � $ � Close �.���

 and

� $ � �2��� � ������
 &
� wdist � do � adv � do � sonar ����
5
5
 � wdist ����
 � � 


by virtue of $ � , we get that � �#� $ � Close �.��
 . Thus,
we have that

� $ � ����� � ����� do � adv � do � sonar ��� � 
�
5
'&
Close �.��
H�

4. After reading its sensor and moving away from the
wall, the robot is still close to the wall, but no longer
knows it:

$ � $ � Close � do � rev � do � sonar ������
5
5
�)
8 ���	��
�� � Close � do � rev � do � sonar �	����
5
�
H�

The proof is as follows: Suppose � $ � $ � . To show
that � $ � Close � do � rev � do � sonar �	� � 
�
5
�� we need
only observe that because of $ � , we have that

� $ � wdist � do � rev � do � sonar �	� � 
�
5
 ��� �

To show that

� $ � 8 ���	��
�� � Close � do � rev � do � sonar �	����
5
�
H�

we begin by letting � ; be the element of � this is
just like � except that � ; 0wdist �#��6 ��� . Then, when
���.��
 � �-� ;.�%�H
 , we have that � �#� $ � Close ����
 , and so
because of $ � , we get that � �#� $ � � �(����
 . It follows
that

� �#� $ � � � do � rev � do � sonar �	��
5
��
do � rev � do � sonar �����

5
�


and moreover, that

� �&� $ � wdist � do � rev � do � sonar �	��
5
�
 �J� 
 �
Thus, we have that

� �#� $ � � ��� � �.��� do � rev � do � sonar �	����
5
�
 )
8 Close ����
��

5. As for knowledge of the future, we have that the robot
knows initially that after it reads its sonar, it will know
whether or not it is close to the wall:

$2� $ � � �	��
�� ��0 ���	��

� � Close � do � sonar ������� 
5
 I���%��
�� �.8 Close � do � sonar ���
��� 
5
 6 �	�2��


The proof is as follows: Suppose � $ � $ � . Suppose
further that � �#� $ � � � �.�

 . There are two cases to
consider: suppose that � �&� $ � Close ����
H� Then, by an
argument similar to the one for (1) above, we get

� �#� $ � ���	��

� � Close � do � sonar �	��
�
��

if on the other hand, � �#� $ � 8 Close �.��
H� by a similar
argument we get that

� �#� $ � � �	��
�� �.8 Close � do � sonar ����
5
H�

Either way, we have that

� $ � ����� � ���.��
 & 0 ���%��
�� � Close � do � sonar �	��
5
 I���	��

� ��8 Close � do � sonar �	��
�
 6

6. As for knowledge of the past, we have for example
that after moving closer to the wall, the robot knows
that it was at least 1 unit away just before doing that
action:

$ � $ � ���	��
�� � � �
; 0 ����� � do � adv �	�
;?
2)
wdist ����;3
 � 
 6 � do � adv ������
5


The proof is as follows: Suppose � $ � $ � . Suppose
further that � �&� $ � � �.��� do � adv �	� � 
�
H� Then by The-
orem 5.1, we have that

� �#� $ � � � ; ��� � do � adv �	� ; 
2) � ���.� ; 
2) Poss ��� ; 
H�

From $ � , we get that

� $ � �2��� � � ����
 & 0 Poss � adv �	��
A@B� wdist ����
�� 
 
76.�
Thus, � �&� $ � � � ; ��� � do � adv �	� ; 
2) � wdist �.� ; 
�� 
 
H�
So we have that

� $ � �2��� � ����� do � adv �	� � 
�
 &
0 � � ; �$� � do � adv ��� ; 
 ) � wdist ��� ; 
�� 
 
 6 �

7 Embedding
�F�

in � ���

In this section we show that �	�
� is a faithful extension of
��� in the following sense. It is possible to translate every
sentence � of ��� into a sentence �*0 �K6 of ����� , where � is
any situation, such that � is valid in �
� iff �*0 � � 6 is a log-
ical consequence of the axioms. The following translation
is essentially the same as the one proposed in [Lak96].



Definition 7.1: Given any term or formula � in �
� , the
corresponding term or formula � 0 �K6 in �	�
� , where � is
any situation term, is defined as follows.

First, we let � denote the obvious translation from the stan-
dard names of ��� into those of �	�
� involving � and succ.
For example, ��� � � succ � succ � succ ���(
5
	
 .

� 0 ��6 � � if � is a variable% 0 �K6 � % � if
%

is a standard name, � !� ��,�K�,���.! L 
K0 �K6 � , � !� $0 �K6 �K�K�,�K�6! L 0 �K6 �	��

if
, � �!5
 is a term in �
�

��� !� ��,�K�,�K�.! L 
K0 �K6 � ��� !� $0 �K6 �K�,�K�K�6! L 0 �K6 �	��

if -�� �!5
 is an atomic formula in �
�

� !� � ! ",
�0 �K6 � � !� �0 �K6 � ! "�0 ��6<

��8;� 
�0 ��6 � 8;� 0 ��6
�-� I=< 
K0 �K6 � � 0 �K6 I=< 0 �K6
�?� � � 
K0 �K6 � � � �*0 �K6
�E��� 
K0 �K6 � ���	��
�� �-� 0 �����'6 �	��

�E�D� 
K0 �K6 � � ���	��
�� �E�*0 �
���'6.����


For example, let � � �/-����=
 &G8 � � � -�� � 
 . Then

� 0 � � 6 � 0 ����� �����	� � 
 & � � �.���	� � 
A@G-������.�

��	��
5
76�&
8 � � �?��� � �����	� � 
 &4-�� � ���

�
H�

Note that we tacitly assume that for each predicate and
function symbol in � there is a corresponding fluent of the
same name in ���
� . Since we are applying the transla-
tion only to sentences, one at a time, there is no problem in
making this assumption14

The embedding of ��� into ����� is established, roughly,
by proving that for every ��� model � there is an “equiv-
alent” action model � ; , and vice versa. Here “equivalent”
means that � satisfies � iff � ; satisfies �*0 ���K6 for any �
mentioning only fluents in �	�
� . We denote the set of all
fluents of ���
� as � . (Note that Poss is not part of � .)

Let us consider informally how to construct, given an ���
model � � �E5(�.� 
 , an equivalent action model � ; �
2-5�;��.� ; 3 . First, notice that the truth value of �*0 � � 6 is de-
termined by initial situations only. This means that, when
mapping � into � ; , we can simply ignore all actions and
non-initial situations. The mapping from � to �1; then,
roughly, amounts to the following. Let 5 denote the com-
plement of 5 . Then for each � � � 5 ( 5 ) make sure that 5�;
( 5 ; ) contains all those ����� worlds � ; whose initial situa-
tions agree with � � on � . There is only one complication.
It may be the case that there are �
� worlds �  and � " such
that �  ��5 and � " � 5 and both agree on � . In this case
we need to split the ���
� worlds whose initial situations

14There would be a problem if we were to apply the translation
to infinite sets of sentences, since � 
�� is restricted to finitely
many fluents, while 
�� is not. We will have a bit more to say
about how to deal with this mismatch at the end of this section.

agree with �  and � " on � into two nonempty sets and as-
sign them to 5%; and 5 ; , respectively. Such a split is always
possible and it can easily be arranged based on the truth
value of a predicate not occurring in � (such as Poss).

Similarly, one can also show the converse, namely that for
every action model � there is an equivalent ��� model � ;
such that � ; satisfies � iff � satisfies �*0 � � 6 .
This construction, together with the fact that validity in
����� is completely characterized by the axioms AX (The-
orem 4.4), then leads to the desired embedding of ��� .

Theorem 7.2: Let � be a sentence in �
� . Then � is valid
in �
� iff � 0 � � 6 is a logical consequence of AX.

This result then provides us, for the first time, with an ax-
iomatic characterization of the valid sentences of ��� .

The careful reader will have noticed that Axiom F8 needs
to vary depending on � , since F8 must mention explicitly
at least all those fluents occurring in � . In the full paper we
will show that it is possible to have a fixed axiom system
for all sentences of �
� by encoding the infinitely many
predicate and function symbols of �
� using only finitely
many fluents in �	�
� .

Apart from this technical issue, it should be noted that
the price of the axiomatization of ��� is high in that we
need to appeal to second-order logic. Whether there is a
first-order axiom system for �
� remains an open ques-
tion. Note, however, that Halpern and Lakemeyer [HL95]
have recently shown that, even if one exists, it cannot be
recursive.15 So chances are that we may have to settle for
second-order.

8 Comparison with Lakemeyer’s
�����

:

As already mentioned, Lakemeyer [Lak96] has also pro-
posed an amalgamation of only knowing and the situation
calculus. There are obvious differences between his logic
����� and ���
� . For one, ����� considers real knowledge
rather than belief, that is, whatever is believed in ����� is
also true in � � . For another, while ����� has a formal se-
mantics, there is no axiomatization. In addition, there are
deeper differences as well, which give rise to anomalies
when reasoning about only knowing in ����� which are not
present in �	�
� .

To start with, only knowing in ����� does have reasonable
properties quite similar to ���
� if it is confined to sen-
tences of the form � � �	��
�� �-� � % ��� 
H�.! ! 
 , where � contains

15There is a trivial nonrecursive “axiom system”, which is sim-
ply the set of all valid sentences of 
�� . The interesting question,
of course, is whether there is a system with a finite set of axiom
schemas.



no situation terms other than
% ��� and ! ! is a closed situa-

tion term. Intuitively, here we are looking only at what is
known about one particular situation, which is very similar
to ��� except that we can now ask queries about successor
situations as well.

Problems arise when we allow arbitrary sentences as argu-
ments of only knowing in �
� � , in particular those where
we talk about more than one situation as in precondition ax-
ioms. The difficulty is that �
� � models have, in a sense,
far fewer situations than there are in ����� . In particular,
in ����� there are only as many initial situations as there
are different valuations of the fluents (with the situation ar-
gument suppressed). This means that any two distinct ini-
tial situations in ����� must differ in the value of at least
one primitive expression. In other words, it is impossible
to represent within an �
� � model two different courses
of events which have completely identical initial situations
and only diverge after some actions have been performed.
In addition, Poss is handled as a function from situations
and actions into � 
 � � � , which further restricts the range of
possibilities. For example, there are �
� � models where
no actions are possible anywhere.

Without going into any further detail of the formalism, let
us consider again the example of Section 6. It is possi-
ble to construct an ����� model � such that � satisfies
ALL �.����
 ) wdist �.����
 � # , � does not satisfy ALL ����

for any other initial situation � (for example, by choos-
ing Poss � rev ���

 to be false), and �2� is the only situa-
tion epistemically accessible from � � . Then � satisfies
� ���%��
�� � ALL � % ��� 
H�	� � 
 since � � is the only initial sit-
uation where ALL holds. In addition, � also satisfies���	��
�� � Close ��� � 
 since the distance to the wall is 6 at � �
and there are no other epistemic alternatives. This is clearly
unintuitive since the robot has neither been told what its po-
sition is nor has it read its sensors. Moreover, the problem
arises precisely because there are not enough situations. In
particular, there are no initial situations where ALL holds
and the distance to the wall is greater than 9.

We believe that �	�
� fixes the problems of ����� in just
the right way.

9 Conclusion

In summary, we have introduced the logic �	�
� which
amalgamates both the situation calculus and the logic of
only knowing ��� . Besides a semantics we have provided
a sound and complete set of axioms. ����� is compatible
with earlier work on knowledge and action and improves
on a previous approach to only knowing in the situation
calculus. By way of examples we demonstrated that ���
�
allows us to make distinctions which are intuitive and, as
far as we know, cannot be handled by other formalisms.

Finally, as a side-benefit we obtained a complete axiomati-
zation of ��� .

����� should be understood as a specification of only
knowing within a theory of action. We do not expect �����
to be implemented in its full generality. On the other hand,
note that the second-order situation calculus forms the ba-
sis of the high-level control language GOLOG [LRL97],
which is used in real robots as in [BCF98]. We believe that
����� has a role to play in future extensions of GOLOG.
Other future work includes extensions of ���
� itself such
as a generalization to the multi-agent case.
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