
Ability and Knowing How in the
Situation Calculus

�

Yves Lespérance, Hector J. Levesque,
�

Fangzhen Lin, and Richard B. Scherl
�

Department of Computer Science
University of Toronto

Toronto, ON, M5S 1A4 Canada
{lesperan,hector,fl,scherl}@ai.toronto.edu

January 1995

Abstract

Most agents can acquire information about their environments as they
operate. A good plan for such an agent is one that not only achieves the
goal, but is also executable, i.e., ensures that the agent has enough information
at every step to know what to do next. In this paper, we presents a formal
account of what it means for an agent to know how to execute a plan and
to be able to achieve a goal. Such a theory is a prerequisite for producing
specifications of planners for agents that can acquire information at run time.
It is also essential to account for cooperation among agents. Our account is
more general than previous proposals, handles “while loops” properly, and
incorporates an approach to the frame problem. It can also be used to prove
programs containing sensing actions correct.

�
This research received financial support from the Information Technology Research Center

(Ontario, Canada), the Institute for Robotics and Intelligent Systems (Canada), and the Natural
Science and Engineering Research Council (Canada).�

Fellow of the Canadian Institute for Advanced Research.�
Current address: Department of Computer and Information Science, New Jersey Institute of

Technology, University Heights, Newark, NJ 07102 USA

1 Introduction

Work in the classical planning paradigm has generally made very strong assumptions
about the domain in which planning is taking place, in particular, that the planner
has complete knowledge of the initial state, and that actions are such that the planner
can compute a complete description of any state reachable by doing a sequence
of actions in the initial state (for instance, STRIPS operators). Such assumptions
cannot be sustained in most real applications (e.g., robotics, information gathering
agents); there, agents need to acquire knowledge at execution time by sensing their
environment.

Some recent work, for instance [3], has attempted to generalize classical planning
techniques to deal with this. But a key problem is that in such domains, it is not
even clear what a plan is and when it is a solution to a particular planning problem.
Plans must at the very least include conditional control structures so that the choice
of action can depend on the result of sensing. But then it appears that standard
programming language notions of correctness are insufficient. Even if it can be
shown that a plan must achieve the goal (and terminate), the agent may not have
enough knowledge to execute it. For example, suppose that the agent knows that
behind one of two doors there is a treasure and behind the other there is a monster,
but does not know which. Then even though the plan

if TREASUREBEHINDDOOR1 then GOTHROUGH � DOOR1 �
else GOTHROUGH � DOOR2 �

can be shown to achieve the goal of getting the treasure, the agent does not know
how to execute it because he cannot evaluate the test. Similarly,

GOTHROUGH � DOORTOTREASURE �
achieves the goal, but cannot be executed because the agent does not know which
primitive action the program stands for. The nondeterministic plan �

�
GOTHROUGH � DOOR1 ��� GOTHROUGH � DOOR2 ���	� ATTREASURE

also achieves the goal, but cannot be executed as the agent does not know which
branch to take. However, if he can look through a window on one of the doors to
determine what is behind it, then the following plan is adequate:

Example 1

LOOKTHROUGHWINDOW �
if TREASUREBEHINDDOOR1 then GOTHROUGH � DOOR1 �

else GOTHROUGH � DOOR2 �
�
Our use of test actions may be confusing to some; read ��
���� as “action � occurring when �

holds,” and for ������
 , read “action � occurs after which � holds.” Thus, the plan in the example
involves either going through DOOR1 or going through DOOR2, so that one ends up at the treasure.

2

It must achieve the goal and the agent will know how to execute it.
Whether an agent knows how to execute a plan depends on how smart he is —

how much he knows and what sort of inferences he can perform. A very smart agent
that can do lookahead would know how to execute the following nondeterministic
plan:

Example 2

LOOKTHROUGHWINDOW �
pick ���

�
DOOR ��� �
 � GOTHROUGH ��� �	���

ATTREASURE

A dumber executor would not.

All this is really part of our common sense knowledge about agents. We do not
delegate a goal to someone unless we believe he is able to achieve it. And even if
someone does not know how to achieve a goal on his own, we may still enlist his
help by providing instructions he knows how to follow. Such instructions would
typically not specify the plan down to the last detail; we assume some intelligence
on the part of the executor.

The classical planning paradigm involves a very smart planner and a very dumb
executor — it is assumed that the difficult problem solving is performed at planning
time, and that execution is relatively direct. But there is no real reason to restrict our
attention to this picture. In some cases, planning from scratch may be so hard that it
is better to try to build a smart executor that the user can program at a high level — we
pursue this in [6]. Others have suggested that the right role for plans is as advice to a
relatively smart improvisation module [1]. Also, multi-agent systems are becoming
more common and typically involve agents at different levels of smartness. All this
suggests studying what knowing how or ability means for agents with varying levels
of intelligence.

Before one even starts talking about plans, it is useful to have a formal account
of what sort of knowledge is involved in the ability to achieve a goal. This is what
we develop in section 3. Plans are partial representations of this kind of knowledge;
how complete they must be depends on how smart the intended executor is. In
section 4, we develop two accounts of knowing how to execute a plan, one for a
very smart agent and another for a much dumber one. In fact, these are merely
two points in a space of agents with various kinds of abilities. But as argued in
the concluding section, the framework we propose provides a useful foundation for
further exploration of this space.

We will discuss related work as it becomes relevant. It is worth singling out,
however, the very similar work of Ernest Davis [2]. Like us, Davis develops accounts
of knowing how to execute a plan for both smart and dumb executors. However
in [2], he fails to show that his account really handles unbounded iteration, a key
problem area in earlier work. Nor does he discuss ability to achieve a goal and
its relation to knowing how. Although developed independently, our accounts of

3

knowing how are remarkably similar, and it seems that most of our results could
have been obtained using his axiomatization as a starting point. We point out some
of the differences as they become pertinent.

2 A Theory of Action

Our theory is based on an extended version of the situation calculus [8], a predicate
calculus dialect for representing dynamically changing worlds. In this formalism,
the world is taken to be in a certain state (or situation). That state can only change
as a result of an agent doing an action. The term ����������� � represents the state that
results from the agent’s performance of action � in state � . For example, the formula
ON � A � B � ��� � PUTON � A � B ����� � � could mean that A is on B in the state that results
from the agent’s doing PUTON � A � B � in state � . Predicates and function symbols
whose value may change from state to state (and whose last argument is a state) are
called fluents.

An action is specified by first stating the conditions under which it can be
performed by means of a precondition axiom. For example,

� �	�	��� PICKUP ��
 ����� �
������� HOLDING ������� ��� NEXTTO ��
���� �

means that it is possible for the agent to pick up an object
 in state � iff he is not
holding anything and is standing next to
 in � . Then, one specifies how the action
affects the world’s state with effects axioms, for example:

� �	����� DROP ��
 ����� ��� FRAGILE ��
 ��� BROKEN ��
�� ����� DROP ��
 ����� � ���

Note that we write �����! iff �! is the result of doing some sequence of actions in � ,
where the actions are possible in the situation where they are done.

The above axioms are not sufficient if one wants to reason about change. It is
usually necessary to add frame axioms that specify when fluents remain unchanged
by actions. The frame problem [8] arises because the number of these frame axioms
is of the order of the product of the number of fluents and the number of actions.
Our approach incorporates a treatment of the frame problem due to Reiter [12]
(who extends previous proposals by Pednault [11], Schubert [14] and Haas [5]).
The basic idea behind this is to collect all effects axioms about a given fluent and
assume that they specify all the ways the value of the fluent may change. A syntactic
transformation can then be used to obtain a successor state axiom for the fluent, for
example:

� ���	��������� ��� �
BROKEN ��
"� ��� ���#��� � �
�

�%$ DROP ��
 ��� FRAGILE ��
 ��& BROKEN ��
���� ���'�)($ REPAIR ��
 �	���
This says that
 is broken after the agent does action � in state � iff either the action
was dropping
 and
 is fragile, or
 was already broken in � and the action was not

4

repairing it. This treatment avoids the proliferation of axioms, as it only requires a
single successor state axiom per fluent and a single precondition axiom per action. �

Scherl and Levesque [13] have generalized this account to handle knowledge-
producing actions. Such actions affect the mental state of the agent rather than the
state of the external world. For example, after performing the action SENSEDOWN,
an agent would know whether the tree he is trying to cut is down (KWhether � � ��� �
stands for Know � � ��� ��& Know � � � ��� �):

� �	����� SENSEDOWN ��� � � KWhether � DOWN � ����� SENSEDOWN ��� � ���

Similarly, after doing READCOMBOFSAFE an agent might know what the combina-
tion of the safe he is trying to open is:

� ���	��� READCOMBOFSAFE ��� � ����
Know � COMBOFSAFE $ � � ����� READCOMBOFSAFE ��� � ���

Knowledge is represented by adapting the possible world model to the situation
calculus (as first done by Moore [9]). � ���� ��� � represents the fact that in state � , the
agent thinks the state of the world could be � . Know � � ��� � is an abbreviation for the
formula ��� ��� ��� ��� � � � ��� � � . For clarity, we sometimes use the pseudo-variable
now to represent the state bound by the enclosing Know; so Know � DOWN � now ����� �
stands for ��� ��� ��� ��� ��� DOWN ��� � � . We require � to be transitive and euclidean,
which ensures that the agent always knows whether he knows something (i.e.,
positive and negative introspection).

For a domain with the two sensing actions described above, the successor state
axiom for the knowledge fluent � can be specified as follows:

� �	�	��������� � � ��� ���	� � �������#��� � � �� � � � ��� ��� ���'�	� $ ��� ���#���! ��� � �	�������#��� ���
���%$ SENSEDOWN � � DOWN ��� � � DOWN ��� � � ���
���%$ READCOMBOFSAFE � COMBOFSAFE ��� �
$ COMBOFSAFE ��� � �	� ���

First note that for non-knowledge-producing actions (e.g. DROP ��
 �), the specifi-
cation ensures that the only change in knowledge that occurs in moving from �
to ����� DROP ��
 ����� � is the knowledge that the action DROP has been successfully per-
formed. For the case of a knowledge-producing action such as SENSEDOWN, the idea
is that in moving from � to ��� � SENSEDOWN ��� � , the agent not only knows that the ac-
tion has been performed (as above),but also the truth value of the associated predicate
DOWN. Since in this case we require that DOWN ���� � � DOWN ��� � , DOWN will have
the same truth value in all �	 such that � ������� SENSEDOWN ���! � , ����� SENSEDOWN ��� � � .
Observe that for any situation � , DOWN is true at ����� SENSEDOWN ��� � iff DOWN is
true at � . Therefore, DOWN has the same truth value in all worlds �
� such that

�
This discussion ignores the ramification problem; a treatment compatible with our approach has

been proposed by Lin and Reiter [7].

5

� ��� � � ����� SENSEDOWN ��� � � , and so KWhether � DOWN � ��� � SENSEDOWN ��� � � holds.
Similar reasoning explains why we must have

� �
Know � COMBOFSAFE $ � �

����� READCOMBOFSAFE ��� � � . This can be extended to an arbitrary number of knowl-
edge-producing actions in a straightforward way.

3 Ability

Very roughly, ability to achieve a goal involves knowing what to do when, so as
to arrive at a goal state. We make this more precise by appealing to the notion of
an action selection function, a mapping from situations to primitive actions. We
understand such a function as prescribing which action the agent should perform in
a situation. We say that situation �� is on the path prescribed by action selection
function � in situation � iff there is a path from � to � and at every step along the
way, the action performed is the one prescribed by � :

OnPath � � ��� ���! � def$�� � � ��%�"� �"�	� ����� �����������	� � � � �� � ���	� � $ � ���
Note that OnPath � � �������! � implies that all the actions prescribed by � between �
and � are possible.

We will say that the agent “can get” to a state where a goal
�

holds by following
action selection function � in state � iff there is a situation � on the path prescribed
by � in � where the agent knows that the goal holds, and at every step between �
and � , the agent knows what the next action prescribed by � is:

CanGet � � � � ��� � def$ � � � OnPath � � ��� ���! ��� Know � � ��� ���
���	� � � � �	� � �! � � � Know � � � now �
$������	� �	�����

Finally, we say that the agent can achieve a goal
�

in situation � iff there exists an
action selection function � such that he knows in � that he can get to a state where
the goal holds by following � :

Can � � ��� � def$ � � Know � CanGet � � � � � now ����� ���
For the example sketched in the introduction, where an agent wants to get to a

treasure but does not know which of two doors leads to it, it is straightforward to
verify that our definition yields the right results, i.e., that the agent can achieve the
goal iff it is possible for him to sense whether the treasure is behind a given door.
Our account also gives the right results for more challenging examples involving
unbounded iteration, such as the following:

Example 3 Consider a situation where an agent wants to cut down a tree. We
assume that the tree will fall down after some unknown number of primitive chopping
actions. This yields the following definition and axioms:

DOWN ��� � def$ REMAININGCHOPS ��� �
$����

6

� �	�������#��� � � �
REMAININGCHOPS ������������� � �
$�� �

�%$ CHOP � REMAININGCHOPS ��� �
$�� ��� &
� ($ CHOP � REMAININGCHOPS ��� �
$�� ���

� �	����� CHOP ��� �
� REMAININGCHOPS ��� ��� ���
We also assume that the agent can always find out whether the tree is down by
sensing. This yields the following successor state axiom for � and precondition
axiom for SENSEDOWN:

� ���	��������� � � ��� ���	� � ����������� � �
�� �! � � ��� ��� � �)�	� $ ����������� ��� � �	�	��������� ���
��� $ SENSEDOWN � � DOWN ��� �
� DOWN ��� � � �	� ���

� �	����� SENSEDOWN ��� �
���
	���
 �
Notice however that we do not assume that the agent knows how many chop actions
are necessary to get the tree down. Even then, it seems that the agent should be able
to achieve the goal of cutting the tree down; all he needs to do is to keep sensing and
chopping until the tree is down. Indeed, it is straightforward to verify that the above
axioms imply that Can � DOWN ����� � : Consider the action selection function such that
� ��� � is CHOP whenever

� � ��� $ ����� SENSEDOWN ��� � � , and SENSEDOWN otherwise.
It is easy to show that the agent must always know what action is prescribed by � .
And since in any belief alternative REMAININGCHOPS chops are sufficient to get the
tree down, it follows that the agent can get to a goal state by following � .

Example 4 Now suppose that the agent has no way of sensing whether the tree is
down. Then we get the following successor state axiom for K:

� ���	��������� � � ��� ���	� � �������#��� � � �� �! � � ��� ��� ���'�	� $ ����������� ��� � �	�	��������� �	� ���

Suppose also that � Know � DOWN ����� � . Then we would expect the agent to be
unable to get the tree down. Indeed, it can be verified that � Can � DOWN ����� � : the
assumptions imply that Know � �"� � � now

� � � � � Know � DOWN ��� � � ������� � ; by the
definition of Can, the result follows.

To our knowledge, this is the first time an account has been shown to handle both
ability and inability in cases involving unbounded iteration. The earlier accounts of
Moore [9] and Morgenstern [10] have problems with such cases; we explain their
inadequacies in the next section.

Let us now examine some properties of our definition of ability and see how some
alternative definitions fail to handle important cases. To simplify the discussion, for
the remainder of this section we will be assuming that all actions are possible, i.e.,
�"� �"� � �	�	��������� ��� Our results could easily be generalized. If one were to try to give
an inductive definition of Can, one would likely start from the observations that:

7

� if a goal is known to hold already, then it can be achieved, and

� if there is an action such that the agent knows that he can achieve the goal
after the action is performed, then he can achieve the goal from the beginning.

In fact, we have shown that given our definition, Can holds iff one of the above
conditions hold:
Proposition 5

Can � � ��� � � � Know � � ��� ��& � � Know � Can � � � ��������� now � ����� � ���
Note that establishing this result (in either direction) requires the assumption that
agents have negative introspection (i.e., that � is euclidean). This is one point over
which our account differs from Davis’s [2], so the proposition would not hold in his
system.

The above result might suggest a simpler way of defining ability: use the above
equivalence as an axiom to somehow define Can. Unfortunately, this approach does
not seem to work. By itself, the axiom is too weak; for instance, it is consistent
with it that Can (for any given goal) is always true. If on the other hand, we try to
define ability as the least fixed-point of the above equivalence, the resulting version
of ability ends up being too strong. Let

Can � � � ��� � def$�� � �
��� � � ��� � � Know � � ���! ��& � � Know � � ����������� now � �����! ����� � ��� � ��� (1)

Now using proposition 5, it is easy to show that Can � is stronger than Can:
�"��� Can � � � ��� �)� Can � � ��� � ��� However, Can � is not implied by Can. In fact,
Can � fails to handle our tree chopping example — we get that � Can � � DOWN �������
despite the fact that intuitively, the agent can get the tree down by repeatedly sensing
and chopping. To see this, take

�
to be true of a situation iff the tree is known to

be down in that situation. Then
�

clearly satisfies the equivalence in (1). But this
means that Can � will be true in no additional situations, as it is a least fixed point.
Since the tree is not down in the initial state � � , this means that Can � is false in ��� .

Historically, our definition of Can was motivated by Can � , and its failure on
the tree example. It remains an open question whether there is a natural fixed-
point equation like the equivalence inside (1) for which Can is the least fixed point
solution. We also considered an iterative analogue to Can � ; it too failed to handle
the tree example properly.

4 Knowing How

To get help from other agents in achieving our goals, we often need to give them
explicit instructions, some sort of program to execute. Whether an agent knows how
to execute a program depends on how smart the agent is. We will now formalize
some notions of knowing how that appear significant; towards the end, we also relate
knowing how to ability to achieve a goal.

8

4.1 Programs in the Extended Situation Calculus

Our programs will include the following nondeterministic forms:�
� �
�
� nondeterministic choice of branch�
 � ��
 � nondeterministic choice of argument� � � ��� � nondeterministic choice of primitive action

To be able to talk about the different deterministic execution paths through a nonde-
terministic program, we will extend our earlier notion of action selection function.
Let a path selection function � be a mapping from situations into pairs of objects
and actions. To simplify our notation, for any path selection function � , and any sit-
uation � , we denote the left member of � ��� � as ��� ��� � , and the right member as ��� ��� � ,
i.e. � ��� � $ � ��� ��� ��� ��� ��� � � . We will use ��� to pick an object in interpreting �
 � ��
 �
and similarly for �	� and � � � ��� � . To handle

�
� �
�
� , we introduce a reserved action

constant symbol � ��
�
 ; we will take the left branch iff ��� ��� � $ ����
�
 . Semantically,
� ��
�
 behaves like a no-op, and has no effects.

We introduce programs into the formalism as abbreviations (macros). The
abbreviation
 ��� � � � �������! � , where

�
is a program and � is a path selection function,

means that the execution of
�

according to � starting in state � terminates in the state
� . It is defined inductively as follows:

 ����� � � ������� � def$ � �	�	����� ��� ���'� $ ��� ������� ��� provided � is an action term.

 ��� �
 � � ������� � def$ � ��� ��� � $ ���

 ��� � � � � � � � ��� ��� � def$ � � ��
 ��� � � � � ������� ����
 ��� � � � � ��� ��� � ���

 ��� if �

then
�
� else

�
� �
� ������� � def$

� � ��� ����
 ��� � � � � ������� � ��� � � � ��� ����
 ��� ��� � ������� � �

 ��� � � � � � � � ������� � def$ � � � ��� � $�����
�
 ��
 ��� � � � ��� ��� ��� � ���

� ��� ��� � ($�� ��
�
)��
 ��� � � � � � ������� � ���

 ��� �
 � ��
 ��� � ��� ��� � def$�
 ��� � � ��� ��� � ��� � � ��� ��� ���

 ��� � � � ��� ��� � ������� � def$�
 ��� � � ��� ��� � ��� � � ������� ���

 ��� while

�
do

� � � ������� � def$
� ��� ��� � � � � ��� � ��� � ��� � ��� � � ���
��� � ��� � ������� � ��� � ����
 ��� � � � ��� � ��� � ��� � ��� � ����� � � � ��� � ����� � � � � � ��� ��� ���

Here � � is defined by the following axiom:

��� ��� ��� �
$ � ������� � ��
�
 ��� � ���
This is needed in order to properly handle cases like ��! �#" ��� �

and �
 � ��$! ��
�� $ � � .
So the ����
�
 action plays two roles: it handles the nesting of � and � operators by

9

advancing the path selection function after each selection, and as a possible value of
a path selection function, it is used to select which branch of

�
� �
�
� one should take.

Given a complex action
�

and a path selection function � , there is at most one
terminating state:

Proposition 6
 ��� � � � ������� � ���
 ��� � � � ������� � ����� � $ � � �
If � and � do not occur in a program

�
, we say that it is determinate. It is clear

from the definition that path selection functions play no role in the interpretation of
determinate programs:

Proposition 7

If
�

is determinate, then � � � � ������� ��
 ��� � � � ������� �
�
 ��� � � � ������� � ���
We write
 ��� � ������� � when executing

�
in � leads to � under some path selection

function:
 ��� � ������� � def$ � �
 � � � � � ������� ��� Then from the proposition we have that

if
�

is determinate, then � � ������� ��
 � � � ��� ��� �
�
 ��� � � � ������� � ���
In formalizing knowing how, we must consider not just terminating states, but

also all intermediate states. We shall use the abbreviation
 ��	 � ��� � � � � ������� � to mean
that state � occurs during the execution of

�
starting in � according to � . If there is a

state � � such that
 ��� � � � ������� � � holds, then
 ��	 � ��� � � � � ������� � holds iff � � � � � � .
However, we also want
 ��	 � ��� to hold for the states encountered in executions that
do not successfully terminate. For non-terminating executions, all states encountered
are
 ��	 � ��� ; so for example,
 ��	 � ��� � while �
	��
 do � ��
�
 � � �������	 � holds iff �! is a
successor of � where only � ��
�
 actions happen between � and � . For executions that
terminate unsuccessfully, all states between the starting state and the one where the
program fails are
 ��	 � ��� ; for example,
 ��	 � ��� � STACKONTO � A � B � ��� �
 �
�
 � � �������	 �
holds iff �! is � or ��� � STACKONTO � A � B ����� � . We omit the formal definition, which
is very similar to that given for
 � .
4.2 Executability under a Strategy

A path selection function specifies a kind of execution strategy. We say that an agent
can execute a program when he follows a given strategy iff the program terminates
when executed according to the strategy and at every point during the execution,
either the agent knows the program has terminated or knows which action to take
next. We define this formally as follows: �

�
Another way of understanding this is the following: the combination of a nondeterministic

program and an execution strategy stands for the deterministic specialization of the program obtained
by executing it with the strategy; then CanExec � �
	��
	���� stands for ability to execute the deterministic
program referred to by � ��	��
� .

10

CanExec � � � � ��� � def$ � � �
 ��� � � � ������� � ���
����� ��
 ��	 � ��� � � � � ����������� �� ��� ��� � � � ��� ��� ��� � ���! � ���������)� � � � �
 ��� � � � ���! ��� � �	��&� � �"� ��� � � � ��� ��� ��� � ��� � ����� ���'� � �! � ��
 ��	 � ��� � � � � ��� � ����������� � � �	�������

Note that an agent may be able to execute a program according to a strategy
without knowing in advance that the program will terminate:

(� $ CanExec � � � � ��� ��� Know � � �
 ��� � � � � now ��� ����� ���

For example, consider the program SENSE � � while � � do ����
�
 � Assume that
�

holds initially but the agent is not aware of that, i.e.,
� � � ��� �'� Know � � ������� . Then

the agent can execute the program in � � because after doing SENSE � , he will know
that

�
holds, and will not enter the infinite while loop. But initially, the agent

does not know that the program will terminate, because as far as he is concerned, it
may well be the case that � � . This implies that an agent may be able to execute a
program according to a strategy without realizing that this is the case:

(� $ CanExec � � � � ��� ��� Know � CanExec � � � � � � ��� ����� ���

It is also worth noting that since the execution of determinate programs does not
depend on the execution strategy, we have:

Proposition 8

For all determinate programs
�
,
� � CanExec � � � � ��� ��� � � CanExec � � � � ��� ���

4.3 Dumb Knowing How

One way an agent may execute a possibly nondeterministic program is by arbitrarily
picking an alternative at every choice point. Since we cannot rule out any execution
strategy, we must require that he be able to execute the program according to all
strategies to ensure he will succeed. This ability to blindly execute a program is
what we call dumb knowing how. We define the notion formally as follows:

DKH � � ��� � def$�� � � ��� �
 Know � � � now �
$�
���� ��� CanExec � � � � ��� �����
Note that we only consider path selection functions whose value is always known
to the agent, that is, strategies that the agent knows how to follow. With respect to
the situation described earlier where someone is seeking a treasure, a dumb agent
knows how to execute the program in example 1 but not the one in example 2.

One can show that if an agent can blindly execute a program, then the program
must terminate no matter what execution strategy is used:

11

Proposition 9 ����� DKH � � ��� � � � � � �
 ��� � � � ������� � ���
The DKH notion is particularly useful for cases where an agent wants to delegate

a task to another agent. For instance, in a cooperative environment, agent ! may
come up with a plan to achieve one of his goals, make sure that agent " knows how
to dumbly execute the plan, and then asks " to do it. If " executes the program, he
will eventually terminate and be able to go on to other business and ! ’s goal will be
achieved. (" , having faith in agent ! , need not know that he knows how to execute
the program; he can simply trust agent ! on this.) A special case is when ! and "
are the same agent. Then the agent knows that he knows how to dumbly execute the
program, i.e., Know � DKH � � � now ����� � .

4.4 Smart Knowing How

Another way an agent may execute a possibly nondeterministic program is by
considering ahead of time whether there are alternatives at every choice point whose
choice guarantees that he will be able to execute the program. Such an ideal agent
is looking ahead before committing to any execution strategy. It seems that if such
an agent knows of some strategy that he can execute the program under the strategy,
then we can be confident that he will pick that strategy (or some equally good one)
and succeed in executing the program. We call this ability to smartly execute a
program smart knowing how. It is defined formally as follows:

SKH � � ��� � def$ � � Know � CanExec � � � � � now ����� ���

For instance, a smart agent does know how to execute the program in example 2
(as well as that in example 1 of course). However, no agent will ever know how
to execute � �
 �
�
 �while �
	��
 do ����
�
 , because neither of its branches can be
executed; the first one fails and the second one loops forever.

An immediate consequence of the definition is that if an agent knows how to
smartly execute

�
, then he knows that

�
has a terminating state:

Proposition 10 SKH � � ��� � � Know � � �	 �
 ��� � � now ���! ����� ���
We mentioned earlier that the accounts proposed by Moore [9] and Morgenstern

[10] are inadequate for dealing with unbounded iteration. The problem arises with
non-terminating programs such as while �
	���
 do � . Intuitively, we would want to
say that no agent knows how to execute such a program, as it is impossible to bring it
to termination. Our account conforms to this and yields � SKH � while � 	���
 do ����� �
as well as � DKH � while �
	 ��
 do ����� � . The axioms provided by Moore and
Morgenstern however, do not rule out an agent’s knowing how to execute such a
program.

12

4.5 Relationships among these Notions

It is interesting to examine the relationships among these notions. First, if one knows
that one knows how to dumbly execute a program, then one knows how to execute
it in a smart way:

Proposition 11

for all complex actions
�
, Know � DKH � � � now ����� ��� SKH � � ��� �

The converse does not hold in general because there may be strategies under which
the program cannot be executed and a smart executor will be able to avoid these,
while a dumb one will not. However, since the execution of determinate programs
is independent of any strategy, we have:

Proposition 12

for all determinate complex actions
�
, Know � DKH � � � now ����� � � SKH � � ��� �

Perhaps the most interesting feature of our account is that smart knowing how
can be related in a very natural way to the notion of ability to achieve a goal defined
earlier. Let us define

! ��� �
��
 � � � def$ while � Know � � � do � ���#�
! ��� �
��
 � � � is a kind of universal program for achieving the goal

�
. Then, we can

show that being able to achieve a goal is equivalent to knowing how to achieve it by
executing the universal program:

Proposition 13 Can � � ��� � � SKH ��! ��� �
��
 � � ����� ���
This is an appealing property. We could take this as a definition for Can, but we
find our earlier definition simpler and easier to work with.

5 Planning reconsidered

In this paper, we presented a definition of ability and two definitions of knowing
how as macro abbreviations in the situation calculus, and showed that they had
reasonable formal properties and generalized a number of other accounts. These
definitions, we claimed, were a necessary first step to any theory of planning in a
context involving incomplete knowledge of the initial state, knowledge-producing
actions, and actions with context-dependent effects.

What our account does not provide, however, is a theory of planning itself.
What exactly is a plan? If we simply say that it is any program that achieves a
goal and that the agent knows how to execute, then for smart agents, the planning
problem is absolutely trivial: when � Can � � ��� ��� there can be no plan for

�
; but

13

when Can � � ��� ��� the agent also knows how to execute the universal program defined
above: SKH ��! ��� �
��
 � � ����� ���

For dumber agents, however, the case is not so clear. Even if Can � � ��� ��� there
is no guarantee that there even exists a program

�
that will bring about

�
and

such that DKH � � ��� � holds. What would be ideal in this case would be a way of
synthesizing a suitable program from a proof of Can � � ��� ��� that is, from a proof
of

� � Know � CanGet � � � � � now ����� ��� This is can be thought of as a generalization
of answer extraction [4] that would somehow convert a selection function into a
program of the appropriate sort.

We can also imagine a variety of types of programs for agents of varying power.
For a very dumb agent, we might require that all tests in all if-then-elses and
while-loops in the program consist of comparisons among known sensor values.
This would decouple the agent from any background theory of the world. Another
alternative might be to allow tests that refer to values of fluents, and assume that
the agent can use successor state axioms at run time. Yet another possibility is to
allow tests and actions that incorporate limited versions of planning. For instance,
we might let the agent decide at run time whether or not it needs to perform a
knowledge-producing action before executing a test. There is clearly a tradeoff
here: the more we assume of our agent at execution time (with whatever effects on
performance this might have), the less work will be necessary at planning time.

References

[1] Philip E. Agre and David Chapman. What are plans for? Robotics and
Autonomous Systems, 6:17–34, 1990.

[2] Ernest Davis. Knowledge preconditions for plans. Technical Report 637,
Computer Science Department, New York University, 1993.

[3] Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh, and
Mike Williamson. An approach to planning with incomplete information. In
Bernhard Nebel, Charles Rich, and William Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Third Interna-
tional Conference, pages 115–125, Cambridge, MA, 1992. Morgan Kaufmann
Publishing.

[4] C.C. Green. Theorem proving by resolution as a basis for question-answering
systems. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4,
pages 183–205. American Elsevier, New York, 1969.

[5] Andrew R. Haas. The case for domain-specific frame axioms. In F.M. Brown,
editor, The Frame Problem in Artificial Intelligence: Proceedings of the 1987
Workshop, pages 343–348, Lawrence, KA, April 1987. Morgan Kaufmann
Publishing.

14

[6] Yves Lespérance, Hector J. Levesque, F. Lin, Daniel Marcu, Raymond Reiter,
and Richard B. Scherl. A logical approach to high-level robot programming – a
progress report. In Benjamin Kuipers, editor, Control of the Physical World by
Intelligent Agents, Papers from the 1994 AAAI Fall Symposium, pages 79–85,
New Orleans, LA, November 1994.

[7] Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of
Logic and Computation, 4(5):655–678, 1994.

[8] John McCarthy and Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 4, pages 463–502. Edinburgh University Press,
Edinburgh, UK, 1979.

[9] Robert C. Moore. A formal theory of knowledge and action. In J. R. Hobbs
and Robert C. Moore, editors, Formal Theories of the Common Sense World,
pages 319–358. Ablex Publishing, Norwood, NJ, 1985.

[10] Leora Morgenstern. Knowledge preconditions for actions and plans. In Pro-
ceedings of the Tenth International Joint Conference on Artificial Intelligence,
pages 867–874, Milan, Italy, August 1987. Morgan Kaufmann Publishing.

[11] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and
the situation calculus. In R.J. Brachman, H.J. Levesque, and R. Reiter, editors,
Proceedings of the First International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 324–332, Toronto, ON, May 1989.
Morgan Kaufmann Publishing.

[12] Raymond Reiter. The frame problem in the situation calculus: A simple so-
lution (sometimes) and a completeness result for goal regression. In Vladimir
Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Compu-
tation: Papers in Honor of John McCarthy, pages 359–380. Academic Press,
San Diego, CA, 1991.

[13] Richard B. Scherl and Hector J. Levesque. The frame problem and knowledge-
producing actions. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 689–695, Washington, DC, July 1993. AAAI
Press/The MIT Press.

[14] L.K. Schubert. Monotonic solution to the frame problem in the situation
calculus: An efficient method for worlds with fully specified actions. In H.E.
Kyberg, R.P. Loui, and G.N. Carlson, editors, Knowledge Representation and
Defeasible Reasoning, pages 23–67. Kluwer Academic Press, Boston, MA,
1990.

15

A Additional Proofs and Results

A.1 Proof of Proposition 5

The proof uses three lemmas. Remember that for simplicity here, we are assuming
that primitive action are always physically possible. First, we show that whenever a
goal is known to already hold, it can be achieved:

Lemma 14 � $ ����� Know � � ��� � � Can � � ��� � ���
Proof: This follows from the fact that since Know � � ��� � holds, executing ! ��� �
��
 � � �
in any state �! that is accessible from � , i.e. � ���� ��� � terminates immediately without
ever entering the while loop.

Then, we show that if there is an action such that the agent knows that he can
achieve his goal after the action is performed, then he can achieve the goal from the
beginning:

Lemma 15

� $ �"� � � � Know � Can � � � ��������� now � ����� ��� Can � � ��� � ���

Proof: Suppose that Know � Can � � � ��� ���#� � ��� � ����� � . Then we have that

��� ��� ��� ��� � � Can � � � ����������� � � ���

so that
��� ��� ��� ��� ��� SKH ��! ��� �
��
 � � ��� ����������� � � ���

thus

��� ��� ��� ��� � � � ����� Know � CanExec ��! ��� �
��
 � � ��� ����� � � ��� ��� ����������� � � � � � �

i.e., for every � -accessible state �� , there is a action selection function ��� � that the
agent knows will get her to the goal. We will show that Can � � ��� � , by constructing
a single action selection function that works for every accessible state.

First, notice that we can partition the accessible states into equivalence classes
according to whether they remain mutually accessible after the performance of
action � . Given � � and � � such that � ��� � ��� � and � ��� � ��� � , let � �

� � � iff
� ������������� � ��� ����������� � � � . It is straightforward to show that � must be an equiva-
lence relation given the successor state axiom for � and the requirement that � be
transitive and euclidean. We must select a single action selection function for all
states in a given equivalence class in order to construct a global action selection func-
tion according to which the agent can execute ! ���
 �
�� � � � . Let

�
be some arbitrary

function that maps an equivalence class into the action selection function associated
with one of its member, i.e., such that

� � � � � � � $
���
	 where � �

� � � . We claim that
�"� ��� ��� ��� � � CanExec ��! ��� �
��
 � � ��� � � � �! ����� ����������� � � � , i.e., in every accessible

16

state the agent can execute ! ��� �
��
 � � � according to the action selection function
selected by

�
after doing � . To see this, suppose that

� � � � � � $ � ��� ; then � ��� � ��� �
and � ����� ���#��� ��� ����������� � � � ; so by � � � CanExec ��! ��� �
��
 � � ��� � ��� � ����������� � � .

Now let us define a global action selection function as follows:

� � ��� � � $
� � � � �! ��� � ��� � � if

� � ��� ��� ��� ���)� ����	� �
� otherwise

It follows that ���! ��� ��� ��� ��� CanExec ��! ��� �
��
 � � ��� � � �������#��� � � � . Since ���! ��� ��� ��� � �
��� ��� � $ � � , we must also have that ���	 ��� ��� ��� � � CanExec ��! ��� �
��
 � � ��� � ���! � � ,
and thus that Can � � ��� � .

Finally, we show the converse of the above two results:

Lemma 16

� $��"� � Can � � ��� ��� Know � � ��� ��& � � Know � Can � � � ��������� now � ����� �
Proof: We assume that Can � � ��� � and � Know � � ��� � and show that

� � Know � Can � � � ��������� � ��� � ����� ���
>From the first assumption, we have

� � Know � CanExec ��! ��� �
��
 � � ��� � � ����� ����� ��� � � �
Suppose � � is a state such that � ��� � ��� � . Such a state must exist because � is
euclidean. Let ��� ��� � �%$ � . Because � Know � � ��� � , �
 ����! ��� �
��
 � � ��� � ��� � ���	� � .
Thus from (*), we have that

� ��� � � ��� ��� ��� � ��� ��� �
$ � ��
 ��	 � ��� ��! ��� �
��
 � � ��� � ��� � ����������� � � ���
Thus from (*) and the definition of the program ! ��� �
��
 � � � , we have that

� �"� � � ��� ��� � � CanExec ��! ��� �
��
 � � ��� � � ����������� � ���
By our assumption about � , we then have that

� ��� � � ��� ��� ��� � ��� � ��� ��� � ����������� � � � CanExec ��! ��� �
��
 � � ��� � ��� � ���
Thus

� �"� � � ��� ��� ��� Know � CanExec ��! ��� �
��
 � � ��� � � � ��� ��� ����������� � ���
Thus

� �"� � � ��� ��� ��� SKH ��! ��� �
��
 � � ��� ����������� � ���
Thus

� ��� � � ��� ��� � � Can � � � ��� ���#��� � ���
Thus Know � Can � � � ��������� � ��� � ����� � .

17

A.2 An Iterative Definition of Ability

Let us consider a special case of Can when the goal can be brought about in a fixed
number of steps. We believe this is the case for many applications.

For any non-negative number � , we write Can
��
��� � � ��� � if the agent is able to

achieve
�

in � steps. Inductively, we define

Can
��
� ��� � ��� � def$ Know � � ��� ���

Can
��
��� � � � � ��� � def$ � � Know � Can

��
��� � � � ��� ���#� � ��� � ����� ���

We can show that for any ��� � , if Can
��
����� � ��� � , then Can � � ��� � :

Proposition 17

For any ��� � , � $ ����� Can
�� ����� � ��� ��� Can � � ��� � ���

Proof: We prove the proposition by induction over � . Can � � � ��� � $ Know � � ��� � ;
by proposition 14, this implies that Can � � ��� � . Assume that Can � � � ��� � � Can � � ��� �
for all

� ��� ; by definition, Can
�
� � ��� � $ � � Know � Can

�	� � � � � ��������� ��� � ����� � ; so
by the induction hypothesis, we must have that

� � Know � Can � � � ��������� � ��� ����� � ; by
proposition 15, this implies that Can � � ��� � .

We believe for a very wide variety of cases, if Can � � ��� � , then Can
��
��� � � ��� � for

some � . This is true for both the safe and the omelette examples. However, it fails
again on the tree example. Roughly speaking, we have

The agent knows that there is a � such that � chops are sufficient.

but

There is no � such that the agent knows that � chops are sufficient.

The easiest way to visualize this is to imagine that in each situation accessible from
��� , there is fixed finite number of chops that will fell the tree, but that there are
accessible situations for every natural number.

A.3 Proof of Proposition 13

Lemma 18

 ��	 � ��� ��! ��� �
��
 � � ��� � ������� �
�
OnPath � � ������� ��� �"� � ��� � � � � � � � Know � � ��� � � �

 ����! ��� �
��
 � � ��� � ������� � ��
 ��	 � ��� ��! ��� �
��
 � � ��� � ������� ��� Know � � ���! �

Lemma 19 Can � � ��� � � SKH ��! ��� �
��
 � � ����� �

18

Proof: Suppose that the antecedent holds, that is, that there exists a � such that
Know � CanGet � � � � � now ����� � . Take an arbitrary � � such that � ��� � ��� � . By the
assumption and the definition of CanGet, we have that

� ��� � OnPath � � ��� � ����� ��� Know � � ����� ���
����� � � � � ��������� � � � Know � � � now � $ ����� � � �	� ���

Since situations are well founded, we must also have
� ��� � OnPath � � ��� � ����� ��� Know � � ����� ���

����� � � � � ��������� � � Know � � ����� ��� � � Know � � � now � $ �#����� � �	� ���

Thus by lemma 18,
� � �
 ����! ��� �
��
 � � ��� � ��� � ��� � � . Take arbitrary � � ��� � and � � such

that � � � ��� � ��� � � ��� � ��� � � , � ��� � ������� , and � � � � � . By the above and posi-
tive introspection, it follows that if � � $ ��� then Know � � ���! � � . By the above and
negative introspection, it follows that if � � ($ ��� then � Know � � ���! � � . As well, by
the above, we must have OnPath � � ���� � ��� � � . Thus by lemma 18, we must have
 ��	 � ��� ��! ��� �
��
 � � ��� � ��� � ��� � � , and
 ����! ��� �
��
 � � ��� � ��� � ��� � � for � � $ ��� . There-
fore, CanExec ��! ��� �
��
 � � ��� � ��� � � .

Lemma 20 SKH ��! ��� �
��
 � � ����� � � Can � � ��� �

Proof: Suppose that the antecedent holds, that is, that there exists � such that
Know � CanExec ��! ��� �
��
 � � ��� � � now ����� � . Take an arbitrary � � such that � ��� � ��� � .
The assumption implies that

� � �
 � ��! ��� �
��
 � � ��� � ��� � ��� � � . Thus by lemma 18, we
have that

� ��� � OnPath � � ��� � ����� ��� Know � � ����� ��� ����� � � � � ��������� � � Know � � ��� � �	�����

Take an arbitrary ��� such that � � � ��� � ��� . Clearly, it must be the case that
�
 ����! ��� �
��
 � � ��� � ��� � ������� . Since � ��� � ��� � , we must also have that � ��� � ��� � � �
� ������������� . This implies that

���"� � ��� � � � ��� � ��� � ��� � ��� � ����� ���)� � � � � ��
 ����! ��� �
��
 � � ��� � ��� � ��� � �����

Thus, by the assumption and the definition of CanGet, we have that

� � ��� � ��� � � � ��� � ��� � ��� � ��� � ������� � � � � � � �
 ��	 � ��� ��! ��� �
��
 � � ��� � ��� � � ����������� � � �	���

Clearly ��� ������� $ � ; so we have
� � Know � ��� � now � $ ����� � � . Therefore, we have that

Know � CanGet � � � ��� � now ����� � .

19

