
Rational Action in Agent Programs with Prioritized Goals

Sebastian Sardiña
Dept. of Computer Science

University of Toronto
Toronto, ON, M5S 3G4, Canada

ssardina@cs.toronto.edu

Steven Shapiro
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia

steven@cse.unsw.edu.au

ABSTRACT
Agent theories and agent programs are two very different
styles of specification of agent behavior. The former are
declarative in nature, while the latter have an imperative fla-
vor. In this paper, we combine ideas from both areas, yield-
ing a powerful mode of agent specification that also gives the
specifier a good deal of control over the complexity of the
specified agent. In particular, we extend Shapiro et al.’s [16]
agent theory to handle prioritized goals and then integrate
it with the IndiGolog agent programming language. The
result is a new IndiGolog construct that transforms a given
nondeterministic, concurrent program δ into a new program
δ′ that can be described as a rational implementation of the
original program, in the sense that δ′ is an implementation
of δ, and furthermore, δ′ is the most rational of all imple-
mentations of δ relative to a given set of prioritized goals
and the agent’s knowledge. With this construct, we can
specify an agent that will attempt to achieve as many goals
as possible in priority order even if the agent does not know
of a plan that is guaranteed to achieve all the goals. In this
case, the agent will select a plan that she thinks has the best
chance of achieving the goals.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Languages, Theory, Economics

Keywords
Agent Programming Languages, Rational Action, Situation
Calculus

1. PRELIMINARIES
In general terms, this paper is concerned with how to

conveniently specify the behavior of an intelligent agent or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

robot with respect to her knowledge and goals. Her conduct
should, in general, be rational [13]: she will try her best to
satisfy her goals according to what she knows.

Most of the approaches to agent systems [16, 6, 2, 11, 18]
either do not represent goals explicitly or use a flat repre-
sentation in the sense that all goals are equally important.
This is clearly not adequate for some scenarios. For exam-
ple, ensuring that the spaceship does not explode is much
more important than any other goal for a space agent and
cannot be sacrificed, in principle, for any number of other
less important goals.

In this paper, we first extend the framework given in [16]
to accommodate agent’s goals at different levels of prior-
ities. We then define what rational action is for such an
agent. Finally, we show how to specify rational behavior by
combining a procedural notion of action with a declarative
representations of goals. In particular, we present a novel
construct in the IndiGolog [4] agent framework that dictates
rational behavior from an agent program and a set of goals.

1.1 Situation Calculus
The situation calculus [9, 12] is a second-order language

specifically designed for representing dynamically changing
worlds in which all changes are the result of named actions.
There is a set of initial situations corresponding to the ways
the agent believes the domain might be initially; the ac-
tual initial state of the domain is represented by the distin-
guished initial situation constant S0. There is also a distin-
guished binary function symbol do(a, s) denoting the succes-
sor situation to s resulting from performing action a. Rela-
tions whose truth values vary from situation to situation are
called fluents, and are denoted by predicate symbols taking
a situation term as their last argument; a special predicate
Poss(a, s) is used to state that action a is executable in s.

Within this language, we can formulate action theories
that describe how the world changes as the result of the
available actions. In Reiter [12], action theories of a special
form, called basic action theories, were introduced. Such
theories include domain-independent foundational axioms
that describe the structure of the situations, one successor
state axiom per fluent, one precondition axiom per action,
and initial state axioms that describe what is true initially.
Whereas successor state axioms offer a principled solution
to the frame problem by providing an axiomatization of the
effects and invariants of actions; precondition axioms state
the conditions under which an action can be performed.

Suppose we want to model a world in which there is a
safe with a combination lock [10]. If the safe is locked and
the correct combination is dialed, then the safe becomes un-

locked. However, if the incorrect combination is dialed, the
safe explodes. The agent can only dial a combination if the
safe is intact, and it is not possible to change the combina-
tion of the safe. Here are the axioms for the domain:1

Exploded(do(a, s)) ≡
[∃c(a = dial(c) ∧ Comb(s) 6= c) ∨ Exploded(s)]

Locked(do(a, s)) ≡
[∀c(a 6= dial(c) ∨ Comb(s) 6= c) ∧ Locked(s)]

Comb(do(a, s)) = c ≡ [Comb(s) = c]
Poss(dial(c), s) ≡ ¬Exploded(s)

The first successor state axiom states that the safe has ex-
ploded after doing action a iff a denotes the action of dialing
the wrong combination, or if the safe has already exploded.
The last axiom is a precondition axiom and it says that it
is possible to dial a combination number for the safe in s iff
the safe has not exploded in s.

1.2 Knowledge and Perception
So far, in this scenario, the only agents that can defi-

nitely unlock the safe are ones that know the combination
in advance because if an agent tries a random combination,
the safe will likely explode. Suppose the correct combina-
tion is written on a piece of paper, and that the agent can
read the combination from the paper. How can we model
the effects on the world of reading the combination? Scherl
and Levesque [15] called this type of action (e.g., perception
and communication actions) knowledge-producing actions,
and they provided an account of how to represent these ac-
tions in the situation calculus. Such actions affect the men-
tal state of the agent rather than the state of the external
world. For instance, after performing the action readComb,
an agent might know the combination of the safe she is
trying to open, i.e., the formula ∃cKnow(Comb(now) =
c, do(readComb, s)) holds.2 Knowledge is represented by
adapting the possible worlds model to the situation calculus
(as first done in [10]). K(s′, s) represents the fact that in
situation s, the agent thinks that she could be in situation
s′. We call s′ an alternative situation to s. Know(φ(now), s)
is an abbreviation for the formula ∀s′.K(s′, s) ⊃ φ(s′).

Scherl and Levesque showed how to obtain a successor
state axiom for K that completely specifies how knowledge
is affected by actions. In our example, the only knowledge-
producing action is the readComb action. The axiom for K

can be specified as follows:

K(s∗, do(a, s)) ≡
∃s′[K(s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′) ∧

(a = readComb ⊃ Comb(s′) = Comb(s))]

First note that for non-knowledge-producing actions (e.g.,
dial(c)), the specification ensures that the only change in
knowledge that occurs in moving from situation s to sit-
uation do(dial(c), s) is the fact that the action dial has
been successfully performed. For the case of a knowledge-
producing action such as readComb, the idea is that in mov-
ing from s to do(readComb, s), the agent not only knows

1From now on, free variables will be assumed to be univer-
sally quantified in the widest scope.
2Some formulae will contain a placeholder now instead of
a situation argument, e.g., ¬Locked(now). Where the in-
tended meaning is clear, we suppress the placeholder, e.g.,
¬Locked. φ(s) is the formula that results from substituting
s for now in φ.

that the action has been performed, but also the value of
the associated fluent Comb. Since in this case we require
that Comb(s′) = Comb(s), Comb will have the same value in
all s′ such that K(do(readComb, s′), do(readComb, s)). Ob-
serve that for any situation s, Comb(do(readComb, s)) = c

iff Comb(s) = c. Therefore, Comb has the same value in all
alternative situations s∗ such that K(s∗, do(readComb, s)),
and ∃cKnow(Comb(now) = c, do(readComb, s)) holds. We
require K to be transitive and Euclidean over initial situ-
ations. This ensures that the agent always knows whether
he knows something (i.e., he has positive and negative intro-
spection). Scherl and Levesque showed that these properties
are preserved by the successor state axiom for K.

Throughout the paper we will use a simple extension of
the safe problem suggested at the end of [16]: the combina-
tion of the safe may be illegible. If the paper is legible, then
the agent knows the combination of the safe after reading
it, as before. But if the combination of the safe is not legi-
ble, then it is not possible to read the combination, i.e., the
precondition of action readComb does not hold. We add a
new fluent PaperLegible(s) which means that the paper is
legible in s (whose value is initially unknown to the agent)
and a new knowledge-producing action senseLegible, which
tells the agent whether the combination is legible. We as-
sume that there are four initial situations the agent thinks
she may be in (depicted in Figure 1): (i) in S0 the paper
is legible and the combination number is 1; (ii) in S2

0 the
paper is legible and the safe’s number is 2; (iii) in S3

0 the
paper is not legible and the safe’s number is 1, and (iv) in
S4

0 the paper is not legible and the combination is 2.
In Figure 1, situations are nodes in the graph, and the

edges are labeled by actions. Part of the K relation is rep-
resented by the dashed ovals around the nodes. If a situa-
tion s appears in the same box as another situation s′, then
K(s′, s). The figure illustrates that the agent knows neither
the combination of the safe nor the state of the paper in S0,
since the value of Comb and the truth value of PaperLegible

vary in the alternative situations S0, S
2
0 , S3

0 and S4
0 . How-

ever, K only relates do(senseLegible, S0) to itself and to
do(senseLegible, S2

0), therefore, in this situation, the agent
does know that the paper is legible.

1.3 Strategies and Ability
With the addition of knowledge to the language, it be-

comes possible to specify what goals the agent knows how
to achieve. In [8], Can(φ, s) was defined to mean that the
agent knows how to achieve φ starting in situation s. In-
tuitively, the definition specifies that in order for the agent
to be able to achieve φ starting in s, she must know in s of
some strategy that she can follow to achieve φ eventually.
A strategy is formalized as a function from situations to ac-
tions, which we call an action selection function (ASF). As
we will see, this way of formalizing strategies is quite expres-
sive. In particular, it allows the agent’s choice of action to
vary depending on what knowledge she acquires as she acts.

To see how an ASF can be a model for a strategy, consider
our safe example. One strategy the agent can use to unlock
the safe is to verify that the piece of paper is legible, find
out the combination of the safe by reading it from the paper,
and then dial the combination. Notice that this strategy is
not just a pair or sequence of actions, since the third action
varies according to the actual combination (dial(c) is a dif-
ferent action than dial(c′), if c 6= c′). The strategy allows

PSfrag replacements

S0S2
0S3

0S4
0

dial(1)

dial(1)
dial(1)

dial(1) dial(1)

dial(1) dial(1) dial(1)

dial(1)

dial(1)

dial(2)

dial(2)dial(2)dial(2)

dial(2) dial(2) dial(2)

dial(2)

dial(2)

dial(2)

senseLegible senseLegible senseLegible senseLegible

readCombreadComb

H1

H1

H1

H1 H1

H1H1

H1

H1

H1 H1

H1

H1 H1

H1

H1 H1

H1H1

H2

H2

H2

H2 H2

H2 H2

H2

H2H2

K

Comb = 1Comb = 1 Comb = 2Comb = 2

PaperLegible¬PaperLegible

K K

K

Figure 1: The possible world approach to knowledge and the ASF σ1 (thick edges). Hi stands for H(σ, i, s);
and an unlabeled edge represents a noOp action.

the agent to take different actions depending on the knowl-
edge she acquires as she follows the strategy. Let σ be an
ASF, i.e., a mapping from situations to actions. Given a
starting situation s0, σ defines an infinite sequence of situ-
ations: s0, s1, s2, ... where si = do(σ(si−1), si−1) for i ≥ 1.
We define OnPath(σ, s, s′) to mean that situation s′ is in
the situation sequence defined by σ and s:3

OnPath(σ, s, s′)
def
=

s ≤ s′ ∧ ∀a, s∗(s < do(a, s∗) ≤ s′ ⊃ σ(s∗) = a)

If an ASF σ maps different alternative situations to dif-
ferent actions, then the agent cannot ‘follow’ it. She also
cannot follow it if a prescribed action is not possible. We
are only interested in ASFs that the agent is able to follow.
We formalize this notion as follows:

CanFollow(σ, s)
def
=

∀s′.OnPath(σ, s, s′) ⊃
∃aKnow(σ(now) = a, s′) ∧ Poss(σ(s′), s′)

(1)

The actions labeling the transitions between situations in
the sequence σ can be thought of as a possible course of
action for the agent to follow if she is in situation s. In fact,
this is the case for every alternative situation s∗ that the
agent thinks she might be in when she really is in s, i.e., σ

also defines a course of action from s∗.
In our example, the agent does not know initially (i.e., in

S0) whether the combination is 1 or 2, nor does she know
whether the piece of paper is readable. An ASF σ1 modeling
the strategy outlined earlier has the following mappings:

3s < s′ means that there is a sequence of possible actions
that can be performed starting in situation s and which
results in situation s′. s ≤ s′ is an abbreviation for s <
s′ ∨ s = s′.

σ1(S0) = σ1(S
2
0) = σ1(S

3
0) = σ1(S

4
0) = senseLegible

σ1(do(senseLegible, S0)) = readComb

σ1(do(senseLegible, S2
0)) = readComb

σ1(do(readComb, do(senseLegible, S0))) = dial(1)
σ1(do(readComb, do(senseLegible, S2

0))) = dial(2)
σ1(do(senseLegible, S3

0)) = dial(1)
σ1(do(senseLegible, S4

0)) = dial(1)

Observe that this strategy guesses the combination to be
1 when the paper is found to be illegible (last two map-
pings). The two interesting alternative strategies σ2 and
σ0 are like σ1 except that they prescribe different behav-
ior whenever the paper is found to be illegible: σ2 dictates
dialing 2 whereas σ0 dictates doing nothing, i.e., σ2 (σ0,
resp.) prescribes action dial(2) (noOp,4 resp.) in situations
do(senseLegible, S3

0) and do(senseLegible, S4
0).

Strategy σ1 is illustrated in Figure 1 via thick edges. Ob-
serve that strategy σ1 succeeds in all possible worlds, except
when the agent cannot read the paper and the combination
turns out to be 2 (i.e., in S4

0).
It can be proven that if the agent knows in S0 that the safe

is intact and that the paper is legible (i.e., if situations S3
0

and S4
0 were not accessible from S0,) then she can unlock

the safe: the agent can use σ1, σ2, or σ0 to achieve the
goal. On the other hand, if the agent were unable to read
the combination in situation S0 (and still did not know the
combination in S0), we could show that ¬Can(¬Locked, S0)
holds. Ability can be formally specified as follows (see [8]):

Achieve(φ, σ, s)
def
= Know(CanFollow(σ, now), s) ∧

Know(∃s′.OnPath(σ, now, s′) ∧ φ(s′), s)

Can(φ, s)
def
= ∃σ.Achieve(φ, σ, s)

4noOp is the dummy action that has no effects.

2. PRIORITIZED GOALS
In [16], a flexible way of specifying the goals of an agent

was presented. Shapiro et al. characterized the goals of
the agent by specifying the paths (sequences of situations,
which were modeled using ASFs) in which all the goals (both
maintenance goals and achievement goals) are achieved. A
(happy) predicate H(σ, s) was used to denote whether the
path defined by σ starting at s satisfies the agent’s goals.
For instance,

H(σ, s) ≡ Eventually(¬Locked ∧ ¬Exploded, σ, s)

states that the agent’s goal paths are those where eventually
the safe is unlocked and intact. Relation Eventually(α, σ, s)5

(Always(α, σ, s), resp.) means that α will eventually (al-
ways, resp.) hold along the path defined by σ starting at s:

Eventually(α, σ, s)
def
= ∃s∗.OnPath(σ, s, s∗) ∧ α(σ, s∗)

Always(α, σ, s)
def
= ∀s∗.OnPath(σ, s, s∗) ⊃ α(σ, s∗)

Shapiro et al. defined the goals of the agent to be those
formulae that completely characterize the agent’s H-paths
which are consistent with what she knows.

OGoal(φ, s)
def
= ∀σ, s′.K(s′, s) ⊃ (H(σ, s′) ≡ φ(σ, s′))

Finally, they defined Rational(σ, s), meaning that σ is a
rational strategy in s w.r.t. the goals of the agent in the sense
that there is no other alternative behavior that is known
to the agent to be strictly better than σ. A drawback of
this account of goals is that it may be overly flat for some
problems due to the fact that all goals are equally important.
The consequence of this limitation is that, as Shapiro et al.
explained, it could sometimes be rational for the agent to
guess the combination (as strategies σ1 and σ2 dictate after
realizing the paper is not readable.) Although this allows the
agent to unlock the safe in some possible worlds, in most,
the safe will explode! Clearly, this might be a poor strategy
for the agent to take.

What we are missing is a way of specifying goals with
different priorities: even though we strongly want the safe
unlocked, it is more important to keep the safe intact. In this
setting, a rational agent would never jeopardize the safe in
order to try to unlock it, if she is unsure of the combination.

We begin our account of rational action w.r.t. a set of pri-
oritized goals by introducing different levels of goals; H(σ, s)
is replaced by H(σ, n, s), where n is a positive integer, de-
noting those paths that satisfy the agent’s level n goals. The
lower the level n, the higher the priority, the more impor-
tant the goal is. Here, the high-priority goal of keeping the
safe intact would be specified as a level 1 goal (formally, by
an axiom H(σ, 1, s) ≡ Always(¬Exploded, σ, s)); and the
low-priority goal of unlocking the safe would be specified at
level 2 (that is, H(σ, 2, s) ≡ Eventually(¬Locked, σ, s)).

In order to represent a finite number k of prioritized goals,
we make H(σ, i, s) identically true for every path whenever
i > k. We use an axiom parameterized by k, called I(k), for
this purpose:

I(k)
def
= ∀i, σ, s.i > k ⊃ (H(σ, i, s) ≡ TRUE) (2)

5Some formulae will contain two placeholders sit and asf.
Again, we suppress the placeholder where possible. φ(σ, s)
is the formula that results from replacing asf with σ and sit

with s in φ.

Given a specification for H, we can formally state what
we mean by a goal. In contrast with [16], our framework
distinguishes goals at different levels. OGoal(α, n, s) holds
if α is the level n goal of the agent in situation s:

OGoal(φ, n, s)
def
= ∀σ, s′.[K(s′, s) ⊃ (H(σ, n, s′) ≡ φ(σ, s′))]

From now on, we will use D (possibly with decorations)
to denote a basic action theory (including the axiom for K),
and H (possibly with decorations) to denote a set of axioms
defining H, i.e., a set of axioms of the following form: for
some r > 0, φ1, . . . , φr: {∀σ, s.H(σ, i, s) ≡ φi(σ, s) | 1 ≤ i ≤
r} ∪ {I(r)}. In particular, if we let DSafe and HSafe stand
for the safe example axiomatization, then HSafe would be
formed by the above axioms for H(σ, 1, s) and H(σ, 2, s) to-
gether with the axiom I(2). We can then show that, initially,
the agent has a high-priority goal of keeping the safe intact
and a low-priority goal of unlocking the safe:

DSafe ∪HSafe |= OGoal(Always(¬Exploded), 1, S0) ∧
OGoal(Eventually(¬Locked), 2, S0)

We write (φ1 > φ2 > ... > φn)s when the agent has n (non-
trivial) priority goals, and φi is an OGoal in s at level i

(e.g., (Always(¬Exploded) > Eventually(¬Locked))S0
).

Observe that while the goal at level 1 is a maintenance goal,
the goal at level 2 is an achievement goal.

3. RATIONAL ACTION
In this section, we define what we mean by rational action

in the context of prioritized goals. Acting rationally involves
both knowledge and desires; what we know and what we
want. The latter is represented by our goals, which should
constrain our future actions.

If an agent is acting rationally, then to the best of her abil-
ities she is acting to bring about (and maintain) her goals
[13]. In other words, if an agent’s actions are rational start-
ing in situation s, then, ideally, she is following an ASF σ

such that ∀n.H(σ, n, s). But since the agent may be uncer-
tain as to which situation the world is actually in, she ought
to be following a course of action that she knows will achieve
her goals, i.e., ∀s′.K(s′, s) ⊃ ∀n.H(σ, n, s′). However, there
may not always be such a σ for the agent to follow. In
many cases, although it may not be possible for the agent
to guarantee success w.r.t. (all) her goals, it is rational to try
a strategy with the best chance of success while respecting
the goals’ priorities. To that end, we will define an ordering
over ASFs for each situation. We say that σ1 is as preferred
as σ2 up to priority n in situation s (i.e., P (σ1, σ2, n, s)), if:
(i) σ1 is as preferred as σ2 in all higher priorities (i.e., in all
lower priority levels); and (ii) σ1 dominates σ2 at level n (i.e,
σ1 �s

n σ2), that is, it achieves the agent’s goals at priority
level n in all the alternative situations in which σ2 achieves
these goals. We formalize this ordering with the following
definition and recursive axiom:

σ1 �s
n σ2

def
= ∀s′.K(s′, s) ∧ H(σ2, n, s′) ⊃ H(σ1, n, s′)

P (σ1, σ2, n, s) ≡ σ1 �s
n σ2 ∧

(∀n′.n′ < n ∧ P (σ2, σ1, n
′, s) ⊃ P (σ1, σ2, n

′, s))
(3)

Finally, we say that a strategy σ1 is as good as σ2 in s iff
whenever σ2 is as preferred as σ1 up to some level n, it is
the case that σ1 is as preferred as σ2 up to that level too.

AsGood(σ1, σ2, s)
def
= ∀n.P (σ2, σ1, n, s) ⊃ P (σ1, σ2, n, s)

The following theorem makes explicit the relation between
dominance at each level and the AsGood relation. It says
that σ1 is as good as σ2 in s iff either σ1 dominates σ2 at all
levels where it is dominated by σ2, or this holds up to some
level m and σ1 strictly dominates σ2 at level m.

Theorem 1. 6

|= ∀σ1, σ2, s.AsGood(σ1, σ2, s) ≡
(∀n.σ2 �s

n σ1 ⊃ σ1 �s
n σ2) ∨

∃m.σ1 �s
m σ2 ∧ ∀i.i < m ⊃ (σ2 �s

i σ1 ⊃ σ1 �s
i σ2)

We now give some further properties of these definitions.
The first one says that if σ1 is strictly preferred to σ2 for
some level n, then σ2 will never be as preferred as σ1 for
any greater level and, as a consequence, strategy σ1 will be
strictly better than σ2.

Property 1:7

(i) {(3)} |= ∀s, m,n, σ1, σ2.P
6≈(σ1, σ2, n, s) ∧

m ≥ n ⊃ ¬P (σ2, σ1, m, s), and
(ii) {(3)} |= ∀s, σ1, σ2.(∃n.P 6≈(σ1, σ2, n, s)) ⊃

AsGood 6≈(σ1, σ2, s)

The next property, and the most important, says that it is
preferable to perform as well as possible w.r.t. a particular
priority k goal, than to satisfy any number—even all—of the
lower priority goals. In this sense, goal priorities are strict.

Property 2:

{(3)} |= ∀σ1, σ2, s, k.(∀j.j < k ⊃ (σ1 �s
j σ2 ≡ σ2 �s

j σ1)) ∧
σ1 �s

k σ2 ⊃ AsGood 6≈(σ1, σ2, s)

We are now able to define what we mean by rational ac-
tivity with respect to a set of prioritized goals. In a nutshell,
we say that an ASF σ describes a rational course of action in
s, if the agent knows that it is possible to execute σ starting
from s, and as far as the agent knows, σ is as good as any
other (known executable) strategy.

RationalPrio(σ, s)
def
=

Know(CanFollow(σ, now), s) ∧
(∀σ′.Know(CanFollow(σ′, now), s) ⊃ AsGood(σ, σ′, s))

Again, we should remark that, under this account of ra-
tionality, the priority ordering among goals is strict, i.e.,
lexicographic, in that a rational agent will prefer a more im-
portant goal to even all lower priority ones together. In any
case, we can show that whenever there is only one priority
level of goals (i.e., level 1), our account coincides with the
one proposed in [16]. Recall that Rational(σ, s) stands for
rational action in Shapiro et al.’s framework [16].

Theorem 2. Let H be the axioms {I(1), ∀σ, s.H(σ, s) ≡
H(σ, 1, s)}. Then,

H∪ {(3), (∀σ, s.CanFollow(σ, s))} |=
∀σ, s.RationalPrio(σ, s) ≡ Rational(σ, s)

In this way, Shapiro et al.’s approach is subsumed by ours.
On the other hand, the next result shows that our framework
is more general in that the agent respects goal priorities.

6σ1 �s
n σ2 stands for σ1 �s

n σ2 ∧ ¬(σ2 �s
n σ1)

7P 6≈(σ1, σ2, n, s) stands for P (σ1, σ2, n, s) ∧
¬P (σ2, σ1, n, s). Similarly, AsGood 6≈(σ1, σ2, s) stands
for AsGood(σ1, σ2, s) ∧ ¬AsGood(σ2, σ1, s).

Theorem 3. For any formula φ(asf, now):

{(3)} |=
∀s, n, σφ.OGoal(Eventually(φ), n, s) ∧

Achieve(φ, σφ, s) ∧ RationalPrio(σ, s) ∧
¬Know(Eventually(φ, σ, now), s) ⊃

∃n′.n′ < n ∧ P 6≈(σ, σφ, n′, s)

Thus, whenever an agent has sufficient knowledge and ca-
pabilities to achieve a goal φ at some priority n, she would
only risk failing to achieve that goal for the sake of achieving
a goal with a higher priority. This type of behavior cannot
be represented in Shapiro et al.’s framework, since they do
not handle prioritized goals.

With this definition of rational action, we can show that
if the agent neither knows the combination nor whether the
paper is legible (as in Figure 1), then σ0 is a provably ra-
tional course of action whereas σ1 and σ2 are provably ir-
rational. The latter two strategies do not ensure that the
higher priority goal of keeping the safe intact is achieved in
a situation where the agent cannot read the combination.

4. AGENT PROGRAMS
So far we have seen how it is possible to represent prior-

itized goals and rational activity based on those goals. Un-
der this framework, we expect to derive the agent’s behavior
merely from a description of her knowledge and goals; this
approach is very similar to first-principle planning. Many
researchers, though, favor the agent programming approach
[17, 12, 7, 18] to action selection in which the user specifies
not just the goals, but also constraints on how they are to be
achieved, perhaps leaving small sub-tasks to be handled by
an automatic planner. Efficiency and practical reasons for
building agents are the most common arguments articulated
in favor of this alternative approach. In this section, we will
briefly go over IndiGolog [4], the most recent language in
the Golog family [12, 2]. In the following section, we shall
investigate how to incorporate the rationality account de-
veloped in Section 3 into this agent language so as to obtain
a rich tool for specifying agent conduct.

In IndiGolog, the agent’s behavior arises as the conse-
quence of executing a high-level program. By a high-level
program we mean one whose primitive instructions are domain-
dependent actions of the robot, whose tests involve domain-
dependent fluents affected by these actions, and whose code
may contain nondeterministic choice points. Instead of look-
ing for a legal sequence of actions achieving some goal, the
task now is to find a sequence that constitutes a legal exe-
cution of a high-level program.

To informally introduce the syntax and some of the com-
mon constructs of this programming language, we show a
possible program for our version of the safe scenario.

proc open safe

(πa.a)∗; (holding(paper))?;
senseLegible∗; readComb∗;
(πc.dial(c) | (true)?);
(open | call(locksmith));

end

where δ1; δ2 stands for sequence of programs δ1 and δ2;
πx.δ(x) for nondeterministic choice of argument x; δ1|δ2

for nondeterministic selection between programs δ1 and δ2;
and δ∗ for nondeterministic iteration of program δ (zero,

one, or more times). Lastly, action (φ)? checks that con-
dition φ holds and is the closest tool for representing a
goal in a declarative fashion. It is easy to observe that
the above program has many gaps due to nondeterminis-
tic choice points that need to be resolved by, e.g., an auto-
mated planner. For example, the first two complex actions
(πa.a)∗; (holding(paper))? require the agent to select some
number of actions (e.g., drop the object she is holding, open
the drawer, pick up the paper, etc.) such that after execut-
ing them she would have the paper in her hands. As the
reader may have noticed, that particular sub-task is very
similar to classical planning.8

4.1 Incremental Execution of Programs
Finding a legal execution of high-level programs is at the

core of the whole approach. A sequence of actions stand-
ing for a program execution will ultimately be taken as the
agent’s behavior. Originally, Golog and ConGolog programs
were conceived to be executed (verified) offline; the inter-
preter looks for a sequence of actions [a1, . . . , am] such that
Do(δ, s, do(am, do(am−1, . . . , do(a1, S0)))) is entailed by the
specification, where Do(δ, s, s′) is intended to say that sit-
uation s′ represents a legal execution of program δ starting
from situation s. Once a sequence like that is found, the
agent or robot is supposed to execute it one action at a
time. Clearly, this type of execution remains infeasible for
large programs and precludes both runtime sensing informa-
tion and reactive behavior. To deal with these drawbacks,
De Giacomo and Levesque [4] provided a formal notion of
interleaved planning, sensing, and action. In their account,
they make use of two predicates defined in [2] in order to
give a single-step semantics to programs by defining the so-
called online or incremental executions: Trans(δ, s, δ′, s′)
says that program δ in situation s may execute one step, end-
ing in situation s′ with program δ′ remaining; and Final(δ, s)
indicates that program δ may terminate in situation s.

We will refer with T to the set of axioms for Trans and
Final, and those needed for the encoding of programs as
first-order terms (see [2]). We omit the axioms here due to
space limitations.

Roughly speaking, an incremental execution of program
finds a next possible action, executes it in the real world,
obtains sensing information afterward, and repeats the cy-
cle until the program is finished. The fact that actions are
quickly executed without much deliberation and sensing in-
formation is gathered after each step makes the approach
realistic for dynamic and changing environments. However,
given that such an execution framework requires commit-
ting in the world at each step and programs may contain
nondeterministic points, some lookahead mechanism is re-
quired to avoid unsuccessful (dead-end) executions. To that
end, the authors developed a new language construct Σ, the
search operator, as a local, controlled form of offline verifi-
cation such that the amount of lookahead to be performed
is under the control of the programmer. As with all the
other language constructs, a single-step semantics for it can
be defined by giving the corresponding axioms for Trans

and Final: Σδ selects from all possible transitions of (δ, s)
those for which there exists a sequence of further transitions
leading to a final configuration (δ′, s′).

8In fact, one would prefer to avoid this kind of sub-task and
write more detailed programs since the search space required
for such sub-tasks will be huge.

The point is that in IndiGolog one is able to specify quick
reactive behavior as well as user-controlled deliberation. In
what follows, we shall try to incorporate the treatment of
rationality of Section 3 into this kind of limited deliberation.

5. RATIONAL ACTION AND PROGRAMS
One of the major drawbacks with most existing agent lan-

guages [12, 7, 11, 18] is that they usually underestimate the
utility of expressing desires in a declarative way. Behavior
modeling is therefore reduced to a procedural representa-
tion in which the only (implicit) goal is to find and follow a
legal execution of a given agent program. Combining proce-
dural goals, i.e., goals-to-do, and declarative goals has been
investigated by some researchers [19, 6], but mainly ignored.

In addition, many agent programming frameworks have
a restricted notion of declarative goals by reducing them
to tests in programs. The agent is then required either to
make the test true by selecting appropriate actions or to fail.
This is the case with languages like Golog [12, 2], 3APL [7],
and FLUX [18]. As a result, behavior like “just guess the
combination number because there is nothing better to do”
cannot be obtained unless explicitly programmed.

Here, we present our second contribution: a novel con-
struct for IndiGolog which combines both a procedural rep-
resentation of behavior and prioritized declarative goals. The
idea is simple: given a non-deterministic IndiGolog program
δ and a set of prioritized goals φ1 > ... > φn, the new
rational-search operator ∆rat(δ : φ1 > ... > φn) will pro-
duce a simple and ready-to-execute plan whose execution
will respect both the given program δ and the set of declar-
ative objectives.

To that end, we start by relating programs with strategies.
We say that a strategy is induced by a program in some
situation if, starting in that situation, it dictates the same
sequence of actions as some execution of the program.

Induced(δ, σ, s)
def
=

∀s∗.OnPath(σ, s, s∗) ⊃ ∃δ′.T rans∗(δ; δnoOp, s, δ
′, s∗)

where δnoOp = while True do noOp endWhile, and Trans∗

is the reflexive, transitive closure of Trans.
Notice that δnoOp is used to generate activity after δ termi-

nates. Hence, strategies induced by a terminating program
dictate a noOp action in every situation that is beyond the
program execution. The first thing to notice is that, be-
cause a program may be non-deterministic, it may induce
many equivalence classes of strategies w.r.t. a situation. We
say that two strategies are equivalent in a situation s if they
dictate exactly the same actions if executed from situation s.

Equivalent(σ1, σ2, s)
def
=

∀s∗.OnPath(σ1, s, s
∗) ⊃ σ1(s

∗) = σ2(s
∗)

Secondly, a program may induce no strategy at all, as is
the case with the unexecutable program (a|b); (FALSE)?.
Finally, a program may induce unexecutable strategies, that
is, strategies that the agent cannot follow. That is the case
with the program δ = if q then a else b in a situation where
the agent does not know the truth value of proposition q.

Next, we incorporate programs of the form ∆rat(δ : φ1 >

... > φn) into the language, where ∆rat is the new rational
search operator. We omit the details on how to do this, but
we quickly point out that the task is achieved by extending
the encoding of programs in [2] in two ways. First, a special

prioritized-goal sort and terms are added by using the binary
function >: (i) every formula φ is a prioritized-goal; (ii) if
φ is a formula and G is a prioritized-goal, then G > φ is a
prioritized goal; and (iii) nothing else is a prioritized goal.
We assume that T contains the axioms encoding this sort.
We also assume there are infinitely many variables xG, yG, ...

for this new sort. Second, a new program construct ∆rat is
added so that ∆rat(δ : G) is a legal program whenever δ is
a program not mentioning ∆rat and G is a prioritized-goal.
Roughly speaking, an execution of program ∆rat(δ : G) is a
legal execution of program δ that is rational w.r.t. goals G.

With this in hand, we are able to embed our account of
rationality given in Section 3 into IndiGolog by adding a for-
mula (corresponding to a goal of the agent) as an argument
to previously defined predicates. First, we redefine our no-
tion of dominance at a level as dominance w.r.t. a formula:
σ1 �s

φ σ2 means that strategy σ1 is as least as good as σ2 in
s w.r.t. the single goal φ.

σ1 �s
φ σ2

def
= ∀s′.K(s′, s) ∧ φ(σ2, s

′) ⊃ φ(σ1, s
′)

Next, we define relation AsGood(σ1, σ2, xG, s) with the in-
tended meaning that ASF σ1 is as good as σ2 in situation
s for the sequence of goals xG. Note that we use axioms
instead of a definition here, since we define this relation re-
cursively.

AsGood(σ1, σ2, φ, s) ≡ σ2 �s
φ σ1 ⊃ σ1 �s

φ σ2

AsGood(σ1, σ2, xG > φ, s) ≡ AsGood(σ1, σ2, xG, s) ∧
(¬σ2 �s

φ σ1 ∨ σ1 �s
φ σ2 ∨ ¬AsGood(σ2, σ1, xG, s))

We will refer with R to the set containing these three ax-
ioms. It is possible to prove that AsGood(σ1, σ2, φ, s) coin-
cides exactly with AsGood(σ1, σ2, s):

Theorem 4. Let r > 0, and let H2 be a set of axioms of
the form ∀σ, s.H(σ, i, s) ≡ φi(σ, s), for i = 1 . . . r, together
with the extra axiom I(r) from (2). Then:

R∪H2 ∪ T ∪ {(3)} |=
AsGood(σ1, σ2, s) ≡ AsGood(σ1, σ2, φ1 > ... > φr, s)

We now have everything in place to give our definition of
rationality in the new framework. For later convenience and
flexibility we shall use a given program to restrict the set of
ASFs to which the strategy in question will be compared.

RationalPrio(σ, δ, xG, s)
def
=

Know(CanFollow(σ, now), s) ∧
[∀σ′.Know(Induced(δ, σ′, now) ∧

CanFollow(σ′, now), s) ⊃ AsGood(σ, σ′, xG, s)]

In other words, RationalPrio(σ, δ, xG, s) means that, from
the agent’s perspective in situation s, σ is as good w.r.t.
prioritized goals xG as any strategy that can obtained from
program δ. The following is a corollary of Theorem 4 and it
shows that the embedding of the framework given in Section
3 is correct if we take δ to be the ‘universal’ program.

Corollary 1. Under the conditions in Theorem 4,

R∪H2 ∪ T ∪ {(3)} |=
∀σ, s.RationalPrio(σ, s) ≡

RationalPrio(σ, (πa.a)∗, φ1 > ... > φr, s)

We have already seen that the idea in agent programming
is that agents do not build plans from scratch; instead, they

obtain their detailed plans based on supplied plan sketches,
or abstract plans. Therefore, the task of the agent is to de-
liberate in order to synthesize the best plan possible from
the given sketches, relative to her declarative goals. A pro-
gram δr is considered rational w.r.t. another more abstract
program δ if δr is the best (simple) plan contained in δ,
relative to the goals xG.

DRationalSol(δ, δr, xG, s)
def
=

∃σ.Know(UInduced(δr, σ, now) ∧ Induced(δ, σ, now), s)
∧ RationalPrio(σ, δ, xG, s)

UInduced(δ, σ, s)
def
= Induced(δ, σ, s) ∧

(∀σ′.Induced(δ, σ′, s) ⊃ Equivalent(σ, σ′, s))

In words, a plan δr is a (deterministic) rational solution of
program δ in s w.r.t. goals xG iff the following hold: (i) the
agent knows of a particular strategy representing the unique
equivalence class of induced strategies of δr in s; (ii) the
agent knows that this strategy is also induced by the origi-
nal program δ; and (iii) the strategy in question is rational
among the possible strategies induced by the original pro-
gram. This definition is important as it gives us an account
of which detailed programs are seen as correct solutions of
another abstract program such that the former are not only
an executable solution of the latter, but also are rational
w.r.t. the agent’s knowledge and desires.

Notice that with rational programs, the most important
goal, though implicit, is to be able to execute the program
in question. Therefore, program executability is in fact the
top-priority goal (and a difficult one to achieve), for no pro-
gram can be rational if it cannot be executed by the agent.

We now have all the machinery needed to introduce our
rational search operator ∆rat for the IndiGolog agent pro-
gramming language. We will assume that the background
theory D is epistemically accurate, meaning that, among
other things, what is known accurately reflects what the
theory says about the dynamic system (see [3]). Here is the
single-step semantics for ∆rat:

Trans(∆rat(δ : xG), s, δ′dp, s′)≡∃δdp.T rans(δdp, s, δ
′
dp, s′)

∧ DRationalSol(δ, δdp, xG, s) ∧ ∃sf .Do(δdp, s, sf)

Final(∆rat(δ : xG), s) ≡ DRationalSol(δ, δnoOp, xG, s)

Thus, configuration (∆rat(δ : xG), s) evolves to configura-
tion (δ′dp, s′) if the latter is the remaining configuration af-
ter performing a single step over a rational and terminating
solution δdp of δ in situation s. Finally, (∆rat(δ : xG), s) is
a legal terminating configuration if not doing anything (i.e.,
doing noOp) is a rational behavior. Hence, unlike previous
lookahead constructs proposed for Golog, it is not always
rational to terminate a program whenever that is possible.

To illustrate how ∆rat works, let us take D1 and D2 to
be two versions of the safe problem. In the former, the
agent does not know the combination in S0; in the latter,
she knows that the combination is 1 right from the start. In
both cases, the agent does not know whether the paper is
legible. Consider the following three programs:

δ0

def
= pickup(paper); dial(1) ; open

δ1
def
= pickup(paper); senseLegible;

if PaperLegible then {readComb; dial(Comb); open}

else call(locksmith)

δ2

def
= pickup(paper); senseLegible;

if PaperLegible then {readComb; dial(Comb); open}

else {dial(1); open}

Suppose C1 = (∆rat(open safe : Always(¬Exploded) >

Eventually(¬Locked)), S0) and C2 = (∆rat(open safe :
Eventually(¬Locked)), S0) are two program configurations
that use procedure open safe from Section 4. We can show
the expected intuitive results. First, C1 evolves to configu-
ration (δ−1 , do(pickup(paper), S0))

9 w.r.t. D1 and D2, since,
unlike δ2 and δ0, δ1 is a rational solution of open safe in
S0 w.r.t. the goals. Second, C2 evolves to configuration
(δ−2 , do(pickup(paper), S0)) w.r.t. both theories since, unlike
δ1 and δ0, guessing (maybe wrongly) is a rational behavior
when the only goal is to get the safe open. Lastly, both C1

and C2 have legal transitions to (δ−
0 , do(pickup(paper), S0))

w.r.t. theory D2 because the agent already knows the right
combination of the safe in S0.

6. CONCLUSIONS
In this article, we have developed an abstract account of

rational activity for an agent with respect to a set of goals
with different priorities and coupled it with an agent pro-
gramming framework. All proofs can be found in an ex-
tended version of this paper [14]. Many issues need to be
addressed. In particular, our approach provides a strict ac-
count of prioritized goals that, although perfectly adequate
for many scenarios, may fail to address other domains where
a softer notion of priorities is required. In such domains, do-
ing well w.r.t. many lower priority goals may be preferred
to guaranteeing just one high priority goal. We think it is
possible to build a mixed framework with both hard and
soft goals; using ideas from the economic decision-theory
approach to rationality [5]. Indeed, DTGolog [1], a decision
theoretic version of Golog, is strongly related to this paper
in that it chooses a preferable execution of a program among
all legal ones, though using utility functions instead of sym-
bolic goals. We consider investigating how to combine ideas
from DTGolog (including its implementation) with our own
a promising area of future research.

Our notion of rationality differs substantially with the
usual one in decision under strict uncertainty [5]. First, we
deal with infinite set of choices (i.e., strategies); second, our
definition of rationality does not always suggest a complete
ranking (i.e., a weak-order) among strategies; and, third,
there may be circumstances where no rational strategy ex-
ists. The point is that our rationality account is intended to
be used as a conservative local deliberation process embed-
ded in the more general and flexible account of agent behav-
ior provided by the IndiGolog agent programming language.
Further work is required to relate our account with the well-
known topic of rationality under strict uncertainty in de-
cision theory and, possibly, to accommodate other existing
criteria (e.g., maximin profit, minimax regret, Laplace, etc.)

Finally, we would like to relate our approach to the work of
De Giacomo et al. [3], in which a special kind of ‘good’ pro-
grams, called epistemically feasible deterministic programs
(EFDPs), was defined semantically and an epistemic delib-
eration operator for IndiGolog was developed. We think
that, in general, the rational search operator presented here
(i.e., ∆rat) subsumes the one developed in [3] (i.e., ∆e).

9δ−i is δi with the first action, i.e., pickup(paper), removed.

7. ACKNOWLEDGMENTS
The authors would like to thank Hector Levesque, Yves

Lespérance, and Craig Boutilier for very helpful insights and
discussions on the topic of this paper.

8. REFERENCES
[1] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun.

Decision-theoretic, high-level agent programming in the
situation calculus. In Workshop on Decision-Theoretic
Planning (KR-2000), 2000.

[2] G. De Giacomo, Y. Lespérance, and H. Levesque.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence,
121(1–2):109–169, 2000.

[3] G. De Giacomo, Y. Lespérance, H. Levesque, and
S. Sardiña. On the semantics of deliberation in IndiGolog –
from theory to implementation. Annals of Mathematics and
Artificial Intelligence, 2003. To be submitted. An earlier
version appeared in Proc. of KR-2002, pages 603–614.

[4] G. De Giacomo and H. Levesque. An incremental
interpreter for high-level programs with sensing. In H. J.
Levesque and F. Pirri, editors, Logical Foundation for
Cognitive Agents: Contributions in Honor of Ray Reiter,
pages 86–102. Springer, Berlin, 1999.

[5] S. French. Decision Theory: An Introduction to the
Mathematics of Rationality. Ellis Horwood, 1986.

[6] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. C.
Meyer. Agent programming with declarative goals. In Proc.
of ATAL-00, pages 228–243, 2001.

[7] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. C. Meyer. Agent programming in 3APL. Autonomous
Agents and Multi-Agent Systems, 2:357–401, 1999.

[8] Y. Lespérance, H. Levesque, F. Lin, and R. Scherl. Ability
and knowing how in the situation calculus. Studia Logica,
66(1):165–186, 2000.

[9] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. Machine
Intelligence, 4:463–502, 1969.

[10] R. Moore. A formal theory of knowledge and action. In
J. Hobbs and R. Moore, editors, Formal Theories of the
Commonsense World, pages 319–358. Ablex, 1985.

[11] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logica computable language. In H. J. Levesque and F. Pirri,
editors, Agents Breaking Away (LNAI), volume 1038, pages
42–55. Springer-Verlag, 1996.

[12] R. Reiter. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[13] S. Russell. Rationality and intelligence. In R. Elio, editor,
Common Sense, Reasoning, and Rationality, pages 37–59.
Oxford University Press, 2002.

[14] S. Sardiña and S. Steven. Rational action in agent
programs with prioritized goals (extended version).
www.cs.toronto.edu/∼ssardina/papers/aamas03.ps, 2003.

[15] R. Scherl and H. Levesque. The frame problem and
knowledge-producing actions. In Proc. of AAAI-93, pages
689–695, 1993.

[16] S. Shapiro, Y. Lespérance, and H. Levesque. Goals and
rational action in the situation calculus - A preliminary
report. In Working Notes of the AAAI Fall Symposium on
Rational Agency: Concepts, Theories, Models, and
Applications, pages 117–122, 1995.

[17] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60:51–92, 1993.

[18] M. Thielscher. Programming of reasoning and planning
agents with FLUX. In Proc. of KR-02, pages 435–336, 2002.

[19] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative & procedural goals in intelligent agent systems.
In Proc. of KR-02, 2002.

APPENDIX

A. PROOFS

A.1 Properties

Proof of Property 1. (i) Take a model M of (3) and σ1, σ2, m, n such that m > n (the case where m = n follows
trivially) and M |= P (σ1, σ2, n, s)∧ ¬P (σ2, σ2, n, s). Then, since m > n, we know that M |= ¬∀n′.n′ < m∧ P (σ1, σ2, n

′, s) ⊃
P (σ2, σ1, n

′, s) (just take n′ = n). Then, by (3), M |= ¬P (σ2, σ1, m, s).
(ii) Take a model M of (3) and strategies σ1, σ2 such that there exists a k for which M |= P 6≈(σ1, σ2, k, s) (that is,

M |= P (σ1, σ2, k, s) ∧ ¬P (σ2, σ1, k, s)). Hence, M |= ¬∀n.P (σ1, σ2, n, s) ⊃ P (σ2, σ1, n, s), and, by definition of AsGood,
M |= ¬AsGood(σ2, σ1, s) (*).

Also, given that M |= P (σ1, σ2, k, s), we know that M |= ∀n′.n′ < k ∧ P (σ2, σ1, n
′, s) ⊃ P (σ1, σ2, n

′, s). By the first part
of Property 1, M |= ∀m.m ≥ k ⊃ ¬P (σ2, σ1, m, s). These together imply that M |= ∀n.P (σ2, σ1, n, s) ⊃ P (σ1, σ2, n, s), and
therefore, M |= AsGood(σ1, σ2, s) (**).

Finally, from (*) and (**), we get that M |= AsGood 6≈(σ1, σ2, s).

Proof of Property 2. Take a model M of (3) and σ1, σ2, s such that there exists a k for which M |= (∀j1.j1 < k ⊃
(σ1 �s

j1
σ2 ≡ σ2 �s

j1
σ1))∧σ1 �s

k σ2. It follows by induction on n that M |= ∀n.n < k ⊃ P (σ1, σ2, n, s) ≡ P (σ2, σ1, n, s). This,
together with the fact that M |= σ1 �s

k σ2, implies that M |= P (σ1, σ2, k, s). On the other hand, because M |= ¬(σ2 �s
k σ1),

M |= ¬P (σ2, σ1, k, s) follows trivially from (3). Therefore, M |= P 6≈(σ1, σ2, k, s), and, by the second part of Property 1,
M |= AsGood 6≈(σ1, σ2, s) follows.

A.2 Theorems

Proof of Theorem 1. ⇒) Take a model M of D ∪ H such that M |= AsGood(σ1, σ2, s) for some strategies σ1 and σ2

and some situation s.
Suppose further that M |= ¬∀n.σ2 �s

n σ1 ⊃ σ1 �s
n σ2. Thus, there should exists a k ≥ 1 such that:

(a) M |= σ2 �s
k σ1 ∧ ¬(σ1 �s

k σ2), i.e., M |= σ2 �s
n σ1, and,

(b) M |= ∀i.i < k ⊃ (σ2 �s
i σ1 ⊃ σ1 �s

i σ2).

Now, we know that M |= ∀n.P (σ2, σ1, n, s) ⊃ P (σ1, σ2, n, s) holds because M |= AsGood(σ1, σ2, s). Due to (a) we know
that M |= ¬P (σ1, σ2, k, s) and, hence, it should be the case that M |= ¬P (σ2, σ1, n, s). But, given that it is in fact the case
that σ2 �s

k σ1, it has to be the case that M |= ¬∀n′.n′ < k ∧ P (σ1, σ2, n
′, s) ⊃ P (σ2, σ1, n

′, s). This implies that there exists
some n′ < k such that M |= P (σ1, σ2, n

′, s), but M |= ¬P (σ2, σ1, n
′, s). Ultimately, by the definition of P , this is to say that

there exists an n′ < k such that M |= σ1 �s
k σ2, but M |= ¬(σ2 �s

n′ σ1), i.e., M |= σ1 �s
n′ σ2. This, together with (b) above,

and the fact that n′ < k, implies the “only-if” direction of the theorem.

⇐) Take a model M of D ∪ H. It is trivial to see, by the definition of P , that M |= AsGood(σ1, σ2, s) whenever
M |= ∀n.σ2 �s

n σ1 ⊃ σ2 �s
n σ1.

Suppose then that there exists a k ≥ 1, two strategies σ1 and σ2 and a situation s such that:

(a) M |= σ1 �s
k σ2 ∧ ¬(σ2 �s

k σ1), i.e., M |= σ1 �s
n σ2, and,

(b) M |= ∀i.i < k ⊃ (σ2 �s
i σ1 ⊃ σ1 �s

i σ2).

Because of (b), M |= ∀n.n < k ⊃ P (σ2, σ1, n, s) ⊃ P (σ1, σ2, n, s) holds. However, because of (a), M |= P (σ1, σ2, k, s)
but M |= ¬P (σ2, σ1, n, s), i.e., M |= P 6≈(σ1, σ2, k, s). Finally, by applying the first part of Property 1, we know that
M |= ∀n.n ≥ k ⊃ ¬P (σ2, σ1, n, s).

From all this, we conclude that M |= ∀n.P (σ2, σ1, n, s) ⊃ P (σ1, σ2, n, s) and M |= AsGood(σ1, σ2, s) follows.

Proof of Theorem 2. Shapiro et al. [16] restricted their attention to a particular set of strategies by assuming a special
axiom in the background theory. The axiom states that only strategies which the agent can always follow (i.e., can follow
starting in any initial situation) are taken into account. Let us recall the Rational(σ, s) definition from [16]:

Rational(σ, s)
def
= ∀σ′.σ′ �R

s σ ⊃ σ �R
s σ′,

where

σ �R
s σ′ def

= ∀s′.K(s′, s) ∧ H(σ2, s
′) ⊃ H(σ1, s

′).

As noted in Section 2, predicate H(σ, s) is used to denote whether the path defined by σ starting at situation s satisfies the
agent’s (flat) goals. It is not hard to see that:

H |= ∀σ1, σ2, s.σ1 �s
1 σ2 ≡ σ1 �R

s σ2. (4)

It is also not hard to see that the definition of H simplifies Theorem 1 as follows:

H |= ∀σ1, σ2, s.AsGood(σ1, σ2, s) ≡ (σ2 �s
1 σ1 ⊃ σ1 �s

1 σ2),

which together with (4) implies:

H |= ∀σ1, σ2, s.AsGood(σ1, σ2, s) ≡ (σ2 �R
s σ1 ⊃ σ1 �R

s σ2). (5)

Let M |= H ∪ {(3), ∀σ, s.CanFollow(σ, s)}. Then, M |= ∀σ, s.Know(CanFollow(σ, now), s), and the theorem follows from
(5).

Proof of Theorem 3. Take a model M of (3), and suppose that for some formula φ, situation s, number n ≥ 1, and
strategies σφ and σ, the following holds:

M |= OGoal(Eventually(φ), n, s) ∧ Achieve(φ, σφ, s) ∧ RationalPrio(σ, s) ∧ ¬Know(Eventually(φ, σ, now), s)

Suppose, however, that the following is true:

M |= ∀n
′
.n

′
< n ∧ P (σ, σφ, n′, s) ⊃ P (σφ, σ, n′, s) (6)

Intuitively, this means that strategy σ is not strictly better than strategy σφ as far as the agent knows.
Given that M |= Achieve(φ, σφ, s), we know that M |= ∀s′.K(s′, s) ⊃ Eventually(φ, σφ, s′); that is, in every accessible

situation from s, φ is achieved by executing σφ. Therefore, σφ dominates any other strategy w.r.t. level n alone, i.e.,
M |= ∀σ′.σφ �s

n σ′, and, in particular, M |= σφ �s
n σ. This, together with (6), implies that M |= P (σφ, σ, n, s).

On the other hand, given that M |= ¬Know(Eventually(φ, σ, now), s), it is the case that M |= ¬(σ �s
n σφ). For, there is

one accessible world in which σφ achieves φ, but σ does not. Thus, M |= ¬P (σ, σφ, n, s) holds.
Putting it all together, M |= P (σφ, σ, n, s) ∧ ¬P (σ, σφ, n, s), and therefore M |= ¬AsGood(σ, σφ, s). Moreover, because

M |= Achieve(φ, σφ, s), M |= Know(CanFollow(σφ, now), s) holds. Thus, it follows that M |= ¬RationalPrio(σ, s) which
contradicts the initial assumption. Thus, there has to be an n′ < n such that M |= P (σ, σφ, n′, s) ∧ ¬P (σφ, σ, n′, s) (i.e.,
M |= P 6≈(σ, σφ, n′, s)). Intuitively, this means that although, as far as the agent knows, σ may fail to achieve the level n goal
φ, σ is still preferred to strategy σφ due to some more important objective. Otherwise, the agent would have chosen σφ as
she knows it actually guarantees the achievement of goal φ.

Proof of Theorem 4. Take any model M of R∪H2 ∪ T {(3)}. Let σ1 and σ2 be two strategies and let s be a situation
in the domain.

For convenience we will use P (σ, σ′,≤ t, s) as a shorthand for ∀n.n ≤ t ⊃ (P (σ′, σ, n, s) ⊃ P (σ, σ′, n, s)).
We shall prove, by induction on 1 ≤ k ≤ r, that M |= P (σ1, σ2,≤ k, s) iff M |= AsGood(σ1, σ2, φ1 > ... > φk, s).
If k = 1, then M |= P (σ1, σ2,≤ 1, s) iff M |= P (σ2, σ1, 1, s) ⊃ P (σ1, σ2, 1, s). By definition of P , M |= P (σ1, σ2,≤ 1, s) iff

M |= σ2 �s
1 σ1 ⊃ σ1 �s

1 σ2. Since H2 |= ∀σ, σ′.σ �s
1 σ′ ≡ σ �s

φ1
σ′, M |= P (σ1, σ2,≤ 1, s) iff M |= σ2 �s

φ1
σ1 ⊃ σ2 �s

φ1
σ1. It

follows from R that M |= P (σ1, σ2,≤ 1, s) iff M |= AsGood(σ1, σ2, φ1, s).
Assume next that the claim holds for 1 ≤ k < r. Now, it is not hard to see the following: M |= P (σ1, σ2,≤ k + 1, s) iff

M |= P (σ1, σ2,≤ k, s) and M |= P (σ2, σ1, k + 1, s) ⊃ P (σ1, σ2, k + 1, s).
First, by the induction hypothesis, M |= P (σ1, σ2,≤ k, s) iff M |= AsGood(σ1, σ2, φ1 > ... > φk, s).
Second, M |= P (σ2, σ1, k + 1, s) ⊃ P (σ1, σ2, k + 1, s) iff either (i) M |= ¬P (σ2, σ1, k + 1, s); or (ii) M |= P (σ1, σ2, k + 1, s).

Then, by splitting case (i), M |= P (σ2, σ1, k + 1, s) ⊃ P (σk+1, σ2, k + 1, s) iff either (i) M |= ¬(σ2 �s
k+1 σ1); or (ii) there

exists an m ≤ k such that M |= P (σ1, σ2, m, s) ∧ ¬P (σ2, σ1, m, s); or (iii) M |= σ1 �s
k+1 σ2 ∧ P (σ1, σ2,≤ k, s).

Notice that, due to the induction hypothesis, M |= ¬P (σ2, σ1,≤ m, s) for some m ≤ k iff M |= ¬AsGood(σ2, σ1, φ1 > ... >

φm, s).
Putting it all together, M |= P (σ1, σ2,≤ k + 1, s) iff M |= AsGood(σ1, σ2, φ1 > ... > φk, s) and one of the following holds:

(a) M |= ¬(σ2 �s
k+1 σ1);

(b) M |= ¬AsGood(σ2, σ1, φ1 > ... > φm, s), for some m ≤ k;

(c) M |= σ1 �s
k+1 σ2.

Next, it follows from R that M |= ¬AsGood(σ2, σ1, φ1 > ... > φm, s) ⊃ ¬AsGood(σ2, σ1, φ1 > ... > φk, s). Moreover, if M |=
AsGood(σ1, σ2, φ1 > ... > φk, s) we know, by induction, that M |= P (σ1, σ2,≤ k, s). Similarly, if M |= ¬AsGood(σ2, σ1, φ1 >

... > φk, s), we know that M |= ¬P (σ2, σ1,≤ k, s), which means that there exists an m ≤ k such that M |= P (σ1, σ2, m, s) ∧
¬P (σ2, σ1, m, s) (i.e., M |= P 6≈(σ1, σ2, m, s)). By Property 1, M |= ¬P (σ2, σ1, k + 1, s). Putting it all together, if M |=
AsGood(σ1, σ2, φ1 > ... > φk, s) and M |= ¬AsGood(σ2, σ1, φ1 > ... > φk, s), then M |= P (σ1, σ2,≤ k + 1, s). As a result, we
can replace point (b) above and obtain that M |= P (σ1, σ2,≤ k + 1, s) iff M |= AsGood(σ1, σ2, φ1 > ... > φk, s) and one of
the following holds:

(a) M |= ¬(σ2 �s
k+1 σ1);

(b) M |= ¬AsGood(σ2, σ1, φ1 > ... > φk, s);

(c) M |= σ1 �s
k+1 σ2.

This is to say, by the second axiom in R, the following is true:

M |= P (σ1, σ2,≤ k + 1, s) iff M |= AsGood(σ1, σ2, φ1 > ... > φk+1, s)

We have just proven, by induction, M |= P (σ1, σ2,≤ k, s) iff M |= AsGood(σ1, σ2, φ1 > ... > φk, s), for all 1 ≤ k ≤ r. The
theorem follows from the fact that M |= P (σ1, σ2,≤ r, s) ≡ AsGood(σ1, σ2, s).

Lemma 1. Every strategy is induced by the universal program (πa.a)∗. Formally,

D ∪ T |= ∀σ, s.Induced((πa.a)∗, σ, s)

Proof. Take a model M of D ∪ T , and σ, s, s∗ such that M |= OnPath(σ, s, s∗).
If s∗ = s, then M |= Trans∗((πa.a)∗; δnoOp, s, (πa.a)∗; δnoOp, s) follows by reflexivity of Trans∗. Otherwise, if s∗ =

do([a1, ..., an], s) for some actions a1, ..., an (n ≥ 1), then we know that each action ai is possible, i.e., M |= Poss(ai, do([a1, .., ai−1], s)),
for all i = 1..n. This is due to the fact that s∗ > s implies that all actions between s and s∗ are executable (i.e., legal w.r.t. the
precondition axioms). Hence, from the semantics of Trans for non-deterministic choice of action, non-deterministic iteration,
and sequence, it follows that M |= Trans∗((πa.a)∗; δnoOp, s, ((nil; (πa.a)∗); δnoOp), s

∗).

Proof of Corollary 1. It follows trivially from Theorem 4, and the fact every strategy is induced by the universal
program (see Lemma 1).

