
Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

A SITUATION CALCULUS APPROACH TO
MODELING AND PROGRAMMING AGENTS

1 INTRODUCTION

The notion of computational agents has become very fashionable lately [24, 32].
Building such agents seems to be a good way of congenially providing services
to users in networked computer systems. Typical applications are information re-
trieval over the internet, automation of common user activities, smart user inter-
faces, integration of heterogenous software tools, intelligent robotics, business and
industrial process modeling, etc. The term “agent” is used in many different ways,
so let us try to clarify what we mean by it. We take an agent to be any active entity
whose behavior is usefully described through mental notions such as knowledge,
goals, abilities, commitments, etc. (This is pretty much the standard usage in arti-
ficial intelligence, in contrast to the common view of agents as scripts that can ex-
ecute on remote machines). Moreover, we will focus on the approach to building
applications that involves designing a system as a collection of interacting agents.

Agent programming [30] can be viewed as a generalization of object-oriented
programming. But the notion of an agent is much more complex than that of an
object. Because of this, it is crucial that tools for modeling and designing agents
be based on solid theoretical foundations. For some time now, we have been work-
ing on a logical theory of agency and on programming tools based on it. The the-
oretical framework includes a formalization of action that incorporates a solution
to the frame problem, thus relieving the designer from having to specify what as-
pects of the world don’t change when an action is performed. The framework also
includes a model of what agents know and how they can acquire information by
doing knowledge-producing actions, such as sensing the environment with vision
or sonar, or interacting with users or other agents. And finally, we have an account
of complex actions and processes that inherits the solution to the frame problem for
simple actions. The framework also has attractive computational properties.

The set of complex action expressions defined can be viewed as a programming
language for agents. It can be used to model the behavior of a set of agents and/or to
actually implement them. Given a declarative specification of the agents’ primitive
actions, the designer/modeler can specify complex behaviors for the agents proce-
durally in the programming language. The behavior specification can be in terms

2 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

of very high-level actions and can refer to conditions in effect in the environment
— the interpreter automatically maintains a world model based on the specifica-
tions. The approach focuses on high-level programming rather than planning. But
the programs can be nondeterministic and search for appropriate actions. When an
implementation of the primitive actions is provided, the programs can be executed
in a real environment; otherwise, a simulated execution is still possible.

Most of our work so far on the theory and implementation of agents has been
concerned with single agents. Here, we extend our framework to deal with multi-
agent systems. The treatment proposed is somewhat preliminary and we identify
various problems that need to be solved before we have a completely satisfactory
theoretical account and implementation.

The approach will be presented with the help of an example — a multi-agent
system that helps users schedule meetings. Each user has a “schedule manager”
agent that knows something about his schedule. When someone wants to organize
a meeting, he creates a new “meeting organizer” agent who contacts the partici-
pants’ schedule managers and tries to set up the meeting. The example is a very
simplified version of such a system. To be truly useful, a schedule manager agent
should know the user’s preferences about meeting times, when and how it should
interact with the user in response to requests from meeting organizer agents, per-
haps the hierarchical structure of the office, etc. Meeting organizer agents should
have robust scheduling and negotiating strategies. Our formalization of the appli-
cation includes a simple generic agent communication module that can be used for
other applications. Each agent has a set of messages waiting for it and abstract com-
munication acts are defined (e.g., INFORM, REQUEST, QUERYWHETHER , etc.).

In the next section, we outline our theory of simple actions. Then, we discuss
how knowledge and knowledge-producingactions can be modeled. Next, we present
our account of complex actions, and explain how it can be viewed as an agent pro-
gramming language. Section 6 develops a set of simple tools for agent communi-
cation and section 7 completes our specification of the meeting scheduling applica-
tion. In the following section, we discuss various architectural issues that arise in
implementing our framework, describe the status of the implementation, and sketch
what experimental applications have been implemented. We conclude by summa-
rizing the main features of our approach and discussing the problems that remain.

2 THE SITUATION CALCULUS AND THE FRAME PROBLEM

The situation calculus [17] is a first-order language (with some second-order fea-
tures) for representing dynamically changing worlds. All changes to the world are
the result of named actions. A possible world history, which is simply a sequence
of actions, is represented by a first order term called a situation. The constant

���

is used to denote the initial situation, namely that situation in which no actions
have yet occurred. There is a distinguished binary function symbol do and the term

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 3

do ��������� denotes the situation resulting from action � being performed in situation
� . Actions may be parameterized. For example, PUT ��	�
���������� might stand for the
action of agent 	�
� puttingobject � on object � , in which case do � PUT ��	�
�����������������
denotes that situation resulting from 	�
�� placing � on � when the world is in situ-
ation � . Notice that in the situation calculus, actions are denoted by function sym-
bols, and situations (world histories) are also first order terms. For example,

do � PUTDOWN � AGT � A ��� do � WALK � AGT � P ��� do � PICKUP � AGT � A ��� � � �����

is a situation denoting the world history consisting of the sequence of actions

�
PICKUP � AGT � A ��� WALK � AGT � P ��� PUTDOWN � AGT � A �����

Notice that the sequence of actions in a history, in the order in which they occur, is
obtained from a situation term by reading off its action instances from right to left.

Relations whose truth values vary from situation to situation, called relational
fluents, are denoted by predicate symbols taking a situation term as their last argu-
ment. For example, HOLDING ��	�
����������� might mean that 	�
�� is holdingobject � in
situation � . Functions whose denotations vary from situation to situation are called
functional fluents. They are denoted by function symbols with an extra argument
taking a situation term, as in POS ��	�
������� , i.e., the position of 	�
� in situation � .

An action is specified by first stating the conditions under which it can be per-
formed by means of a precondition axiom of the following form:

Poss ����������������! #"%$&����������

Here, "%$'����(����� is a formula specifying the preconditions for action ������)� . For ex-
ample, the precondition axiom for the action ADDTOSCHED might be:

(1)

Poss � ADDTOSCHED ��	�
�����*���+�,���-%+�,�.�/�0%��	21���.�3�.4���)��/�,�
5	26(.�7�+�,��������8
	�
���9 SCHEDULEMANAGER ��*���+�,��':;=< 	21���.�3�.4����>���/�,�
)	?6(.�7�+�,�>

SCHEDULE ��*���+�,���-%+�,�.�/�0%��	21���.�3�.4����>���/�,�
5	26(.�7+�,�>@�����
This says that it is possible for agent 	�
� to add an activity to *%��+�, ’s schedule in sit-
uation � iff 	�
�� is *%��+�, ’s schedule manager and there is nothing on *%��+�, ’s schedule
for that period in � .

Secondly, one must specify how the action affects the state of the world with
effect axioms. For example,

Poss � ADDTOSCHED ��	�
����*%��+�,���-�+�,�.�/�0%��	21���.�3.A���B��/�,�
)	26(.�7+�,���������C
SCHEDULE ��*%��+�,���-�+�,�.�/�0%��	21���.�3.A���B��/�,�
)	26(.�7+�,��

do � ADDTOSCHED ��	�
�����*���+�,���-%+�,�.�/�0%��	21���.�3�.4���)��/�,�
5	26(.�7�+�,����������
Effect axioms provide the “causal laws” for the domain of application.

4 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

The above axioms are not sufficient if one wants to reason about change. It is
usually necessary to add frame axioms that specify when fluents remain unchanged
by actions; for example,

Poss � RAISESALARY ��1�/�� -�	26(�B��*%��+�,�����	�� /�*%6B���������(:
SCHEDULE ��*%��+�,����-%+�,���	21���.�3)��/�,�
 �����!C
SCHEDULE ��*%��+�,����-%+�,���	21���.�3)��/�,�
 �

do � RAISESALARY ��1�/�� -�	26(�)��*���+�,���	�� /�*�6B�����������
The frame problem arises because the number of these frame axioms is very large,
in general, of the order of

�	��
���
, where

is the number of actions and

the number of fluents.

Our approach incorporates the solution to the frame problem described in [20].
First, for each fluent � , one can collect all effects axioms involving � to produce
two general effect axioms of the following form:

Poss ��	%����� :	���� �������	������ C�� ����(� do ��	��������

Poss ��	%����� :	���� ����'��	%�����!C ; � ����(� do ��	%�������
Here ���� �������	%����� is a formula describing under what conditions doing the action 	
in situation � leads the fluent � ����%� to become true in the successor situation 02/2��	%�����
and similarly � �� �������	%����� is a formula describing the conditions under which per-
forming action 	 in situation � results in the fluent � ����)� becoming false in situation
do ��	������ . For example, the followingmight be the general effect axioms for the flu-
ent SCHEDULE:

(2)
Poss ��	%�����(: < 	�
���	 9 ADDTOSCHED ��	�
����*%��+�,���-�+�,���	21���.�3B��/�,�
)�
C SCHEDULE ��*���+�,���-%+�,���	21���.�3)��/�,�
 � do ��	%�������

(3)
Poss ��	%�����(: < 	�
���	 9 RMVFROMSCHED ��	�
�����*���+�,���-%+�,��
C ; SCHEDULE ��*���+�,���-%+�,���	21���.�3)��/�,�
 � do ��	%�������

The solution to the frame problem rests on a completeness assumption. This
assumption is that the general effect axioms characterize all the conditions under
which action 	 can lead to a fluent � ����)� ’s becoming true (respectively, false) in
the successor situation. Therefore, if action 	 is possible and � ����%� ’s truth value
changes from false to true as a result of doing 	 , then � �� ����'��	%����� must be true and
similarly for a change from true to false. Additionally, unique name axioms are
added for actions and situations. From the general effect axioms and the complete-
ness assumption, one can derive a successor state axiom of the following form for
the fluent � :

Poss ��	%�����!C � � ����(� do ��	%�������!
� �� �������	%������� ��� ����&����� : ; � �� ����'��	%������� �

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 5

By quantifying over actions, this single axiom provides a parsimonious solution to
the frame problem. Similar successor state axioms can be written for functional
fluents.1

Applying this to our example, from the general effect axioms 2 and 3 we obtain
the following successor state axiom for SCHEDULE:

(4)

Poss ��	%�����=C�
SCHEDULE ��*%��+�,���-�+�,���	21���.�3B��/�,�
(� do ��	��������! < 	�
���	 9 ADDTOSCHED ��	�
����*%��+�,���-�+�,���	?1���.�3B��/�,�
)�
� SCHEDULE ��*���+�,���-%+�,���	21���.�3)��/�,�
 �����(:;=< 	�
���	 9 RMVFROMSCHED ��	�
����*%��+�,���-�+�,����

i.e., an activity is on *%��+�, ’s schedule following the performance of action 	 in sit-
uation � iff either the action is some agent adding the activity to *���+�, ’s sched-
ule, or the activity was already on *%��+�, ’s schedule in � and the action is not some
agent removing the activity from *%��+�, ’s schedule. Now note for example that if
SCHEDULE ��*���-���.���/2� � � � , then by the unique names axioms for actions, it also fol-
lows that SCHEDULE ��*'��-'��.���/2� do � RAISESALARY ��1���*%>���0?��� � � ��� .

In multi-agent domains, it is often useful to refer to the agent of an action 	 . We
use the term agent ��	2� for this. We require that for each primitive action one provide
an axiom specifying who its agent is, for example:

agent � ADDTOSCHED ��	�
�����*���+�,���-%+�,���	21���.�3)��/�,�
5���!9 	�
��

In general, a particular domain of application will be specified by the union of
the following sets of axioms:

� Axioms describing the initial situation,
� �

.

� Action precondition axioms, one for each primitive action.

� Successor state axioms, one for each fluent.

� Unique names axioms for the primitive actions.

� Axioms specifying the agent of each primitive action.

� Some foundational, domain independent axioms.

The latter foundational axioms include unique names axioms for situations, and an
induction axiom. They also introduce the relation � over situations. � � ��> holds
iff ��> is the result of some sequence of actions being performed in � , where each
action in the sequence is possible in the situation in which it is performed; ��� ��>

1In the above, we have assumed that there were no state constraints which might contribute rami-
fications, i.e., indirect effects of actions. In [15], the approach presented is extended to deal with state
constraints by compiling their effects into the successor state axioms.

6 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

stands for � � ��> � � 9 ��> . Since the foundational axioms play no special role
in this paper, we omit them. For details, and for some of their metamathematical
properties, see Lin and Reiter [15] and Reiter [21].

For domain theories of this kind, there are very clean characterizations of various
reasoning tasks, for instance planning [7]:

Classical Planning: Given a domain theory Axioms as above, and a
goal formula �!����� with a single free-variable ��� the planning task is to
find a sequence of actions �	 such that:

Axioms � 9 � � � do ���	(� � � �(:��!� do ���	%� � � ���

where do � � 	 � ����������	��������� is an abbreviation for

do ��	 � � do ��	 � � ����������� do ��	 �������(����� �����

In other words, the task is to find a sequence of actions that is executable (each
action is executed in a context where its precondition is satisfied) and that achieves
the goal (the goal formula � holds in the final situation that results from performing
the actions in sequence). If you have a particular planning algorithm, you can show
that it is sound by proving that it only returns answers that satisfy the specification
given above.

3 KNOWLEDGE AND KNOWLEDGE PRODUCING ACTIONS

Knowledge can be represented in the situation calculus by adapting the possible
world model of modal logic (as first done by Moore [18]). The idea is to model
someone’s uncertainty (lack of knowledge) about what is true using the set of situa-
tions he/she considers possible. We introduce a fluent K, where K ��	�
������ >@����� means
that in situation � , the agent 	�
� thinks the world could be in situation ��> (in modal
logic terms, K is the knowledge accessibility relation). Then we introduce the ab-
breviation:

Know ��	�
�����!����� def9��(� > � K ��	�
������ > �����!C��!��� > �����
Thus, 	�
� knows in � that � holds iff � holds in all the situations ��> that 	�
�� con-
siders possible in � .2

With this in place, we can then consider knowledge-producing actions (as they
occur in perception or communication). Such actions affect the mental state of the

2In this, 	 stands for a situation calculus formula with all situation arguments suppressed; 	�
����� will
denote the formula obtained by restoring situation variable � � to all fluents appearing in 	 . For clarity,
we sometimes use the special constant now to represent the situation bound by the enclosing Know; so
Know
���������	�
 now ������� stands for � ���!
 K
������������"�����$#%	�
���&�'� .

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 7

agent rather than the state of the external world. For example, consider the action
of an agent sensing what messages he has with the following effect axiom:

Poss � SENSEMSGS ��	�
����������=C
KWhether ��	�
��� MSGRCVD ��	�
�������+�6(02+�,�� � ��
���0%� � ��
(� now ���

do � SENSEMSGS ��	�
�����������
This says that after performing the action SENSEMSGS, the agent 	�
�� knows ex-
actly which messages it has received and not yet processed, who sent them, and
what their message IDs are (KWhether ��	�
���� �!����� is an abbreviation for the for-
mula Know ��	�
�����!����� � Know ��	�
���� ; �!�����).

Scherl and Levesque [27] have shown how one can generalize the solution to
the frame problem of the previous section to deal with knowledge and knowledge-
producing actions. But they only consider domains where there is a single agent.
For multi-agents settings, their solution can used with minimal changes provided
we assume that all actions are public, i.e., that agents are aware of every action that
happens. For instance, if we make this assumption and the only knowledge produc-
ing action in the domain is SENSEMSGS , then we can use the following successor
state axiom for the knowledge fluent K:

Poss ��	%�����!C�
K ���B6(/�� +�,�����> >�� do ��	%�������! < ��>@� K ���)6(/�� +�,�����>������(: ��> >�9 do ��	%����> �': Poss ��	%����> �(:� 	 9 SENSEMSGS ���)6(/�� +�,��=C

� ��6(0?,�� ����0%� � � MSGRCVD ���)6(/�� +�,�����6(02,�� ���0�� � ����> ��
MSGRCVD ���)6(/�� +�,�����6(02,�� ���0%� � ������� � � �

Let’s look at what this says. There are two cases. If the action 	 is not a knowl-
edge producing action performed by the agent under consideration �)6(/�� +�, (i.e.,
	
	9 SENSEMSGS ���)6(/�� +�,��), then the axiom says that in the resulting situation
do ��	%����� , �)6(/�� +�, considers possible any situation � > > that is the result of 	 being
performed in a situation ��> that �)6(/�� +�, used to consider possible before the action.
Thus, �)6(/�� +�, only acquires the knowledge that the action 	 has been performed.
If on the other hand, the action 	 is a knowledge producing action performed by
�)6(/�� +�, (i.e., 	 9 SENSEMSGS ���)6(/�� +�,��), then we get that in the resulting sit-
uation do ��	%����� , �)6(/�� +�, considers possible any situation � > > that is the result of 	
being performed in a situation ��> that �)6(/�� +�, used to consider possible before the
action, and where the fluent MSGRCVD ���)6(/�� +�,�������� � holds exactly for the mes-
sages for which it holds in the “real” situation � . Thus after doing SENSEMSGS , an
agent knows that it has performed this action and knows exactly which messages
it has received and not yet processed. This can be extended to an arbitrary number
of knowledge-producing actions in a straightforward way.

However, the assumption that all actions are public is too strong for many multi-
agent domains; agents need not be aware of the actions of other agents (exogenous

8 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

actions). Another workable approach is to be very “conservative” and have agents
allow for the occurrence of an arbitrary number of exogenous actions at every step.
For our meeting scheduling application, this yields the following successor state
axiom:

Poss ���������
	�
K ���������������� � � �����������������
�� � � � K ������������ �!� � �����#"
� agent ���$�&%' ����������(ExoOnly ���������������� � ��� � � ���)"
� agent ���$� ' ����������(� �+*�� ExoOnly ������������ �!� � ���+*��)"

� � � ' ���$�������+*��,".-(�����+�������+*��,"� � ' SENSEMSGS ��������������
	/ ����$����0.1+����02� MSGRCVD ������������ ������$����031+���!02��� * �4�
MSGRCVD �������������������$� ��0.1+����05�������76������76

where ExoOnly ���+8:9;���+��� � � def' �(<=� � "/ � * / ���>�@?A���������!� * �B<A� � 	 agent ���$�&%' �+8$9C�

Let us explain how this works. When an action 	 is performed by some agent other
than the �)6(/�� +�, , the specification says that in the resulting situation, �)6(/�� +�, con-
siders possible any situation that is the result of any number of exogenous actions
occurring in a situation that used to be considered possible; this means that �)6(/�� +�,
allows for the occurrence of an arbitrary number of exogenous actions, and thus
loses any knowledge it may have had about fluents that could be affected by exoge-
nous actions. When 	 is a non-knowledge-producing action (e.g.,
ADDTOSCHED ���)6(/�� +�,���*���-���	%��/��)performed by �B6(/�� +�, , the specification states
that in the resulting situation, �B6(/�� +�, considers possible any situation that is the
result of its doing 	 preceded by any number of exogenous actions occurring in a
situation that used to be considered possible; thus, �B6(/�� +�, acquires the knowledge
that it has just performed 	 , but loses any knowledge it may have had about fluents
that could be affected by exogenous actions and are not reset by 	 . Finally, when
	 is a knowledge-producing action (i.e., SENSEMSGS) performed by �B6(/�� +�, , we
get the same as above, plus the fact that the agent acquires knowledge of the values
of the fluents associated with the sensing action, in this case what messages it has
received and not yet processed.

In general, allowing for the occurrence of an arbitrary number of exogenous ac-
tions at every step as we do here would probably leave agents with too little knowl-
edge. But our meeting scheduling domain is neatly partitioned: a user’s schedule
can only be updated by that user’s schedule manager agent. Thus, schedule man-
ager agents always know what their user’s schedule (as recorded) is. In other cir-
cumstances, it may be appropriate to assume that actions are all public, as discussed
earlier. In other cases, it seems preferable for agents to assume that no exogenous
actions occur and to revise their beliefs when an inconsistency is discovered; a for-
malization of this approach is being investigated.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 9

4 COMPLEX ACTIONS AND GOLOG

A very general and flexible approach to designing agents involves using a plan-
ner. When the agent gets a goal, the planner is invoked to generate a plan that
achieves the goal, and then the plan is executed. A problem with this approach is
that plan synthesis is often computationally infeasible in complex domains, espe-
cially when the agent does not have complete knowledge and there are exogenous
actions. An alternative approach that is showing promise is that of high-level pro-
gram execution [14]. The idea, roughly, is that instead of searching for a sequence
of actions that would take the agent from an initial state to some goal state, the task
is to find a sequence of actions that constitutes a legal execution of some high-level
non-deterministic program. As in planning, to find such a sequence it is necessary
to reason about the preconditions and effects of the actions within the body of the
program. However, if the program happens to be almost deterministic, very little
searching is required; as more and more non-determinism is included, the search
task begins to resemble traditional planning. Thus, in formulating a high-level pro-
gram, the user gets to control the search effort required. The hope is that in many
domains, what an agent needs to do can be conveniently expressed using a suitably
rich high-level programming language.3

Our proposal for such a language is Golog[14], a logic-programming language
whose primitive actions are those of a background domain theory of the form de-
scribed earlier. It includes the following constructs:

� , primitive action
� ?, wait for a condition4

������������� , sequence
����� ������� , nondeterministic choice between actions
"(�'��� , nondeterministic choice of arguments
��� , nondeterministic iteration
if � then � � else � � , conditional
while � do � , loop
proc 	=����(�
� , procedure definition5

Here’s a simple example to illustrate some of the more unusual features of the

3This is not to imply that the planning approachor belief-desire-intention models of agents are never
useful, quite the opposite. Later on, we will see for instance, that modeling goals would be quite use-
ful in dealing with communication. But the fact remains that these approaches are computationally
problematic.

4Because there are no exogenous actions or concurrent processes in Golog, waiting for 	 amounts
to testing that 	 holds in the current situation.

5For space reasons, we ignore these here.

10 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

language:

proc REMOVEABLOCK

"�� � ONTABLE ������� � PICKUP ����� � PUTAWAY ����� �
endProc �
REMOVEABLOCK � �;=< ����/�1 � ONTABLE ������/�1 �)���

Here we first define a procedure to remove a block from the table using the non-
deterministic operator " . "(� � �!���%��� means nondeterministically pick an individual
� , and for that � , perform the program �!���%� . The wait action ONTABLE ������� suc-
ceeds only if the individual chosen, � , is a block that is on the table. The main part
of the program uses the nondeterministic iteration operator; it simply says to exe-
cute REMOVEABLOCK zero or more times until the table is clear.

In its most basic form, the high-level program execution task is a special case of
the planning task discussed earlier:

Program Execution: Given a domain theory Axioms as above, and a
program � , the execution task is to find a sequence of actions �	 such
that:

Axioms � 9 Do � �(� � � � do ���	%� � � ���
where Do ���&�������> � is an abbreviation for a formula of the situation cal-
culus which says that program � when executed starting in situation �
has ��> as a legal terminating situation.

In [14], a simple inductive definition of Do was presented, containing rules such
as:

Do � � � � � � � ���������>A� def9 < ��> >@�
	 /2��� � �������> > �(: Do � � � ����> >�����> �
Do � � � � � ��������������> � def9 Do �������������> � � Do ��� ����������> �

one for each construct in the language. This kind of semantics is sometimes called
evaluation semantics [8] since it is based on the complete evaluation of the pro-
gram.

It is difficult to extend this kind of semantics to deal with concurrent actions.
Since these are required in multi-agent domains, a more refined kind of semantics
was developed in [2]. This kind of semantics called computational semantics [8], is
based on “single steps” of computation, or transitions6. A step here is either a prim-
itive action or testing whether a condition holds in the current situation. Two spe-
cial predicates are introduced, Final and Trans, where Final � �(����� is intended to say
that program � may legally terminate in situation � , and where Trans � �(�������'>�����> � is
intended to say that program � in situation � may legally execute one step, ending
in situation ��> with program � > remaining.

6Both types of semantics belong to the family of structural operational semantics introduced in [19].

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 11

Final and Trans are characterized by a set of equivalence axioms, each depend-
ing on the structure of the first argument. These quantify over programs and so,
unlike in [14], it is necessary to encode Golog programs as first-order terms, in-
cluding introducing constants denoting variables, and so on. As shown in [4], this
is laborious but quite straightforward7. We omit all such details here and simply
use programs within formulas as if they were already first-order terms.

The equivalence axioms for Final are as follows (universally closing on �):8

Final � nil �����4� TRUE
Final ���B�����
� FALSE
Final � ��� �����
� FALSE
Final � � ���	�
��� 6C����� � Final � ��� �;� �#" Final � ��� �����
Final � � �������� 6C����� � Final � ��� �;� ��� Final � ��� �����
Final ������� � �;� �
� � ��� Final � � �����
Final � � * �����4� TRUE
Final � if � then

� �
else

� � �����
�� �>� �#" Final � � � ��������� � �>� � " Final � � � �����
Final � while

�
do
� �����
� � �>��� " Final � � ��������� � �>� �

The equivalence axioms for Trans are as follows (universally closing on ��
������>):
Trans � nil ���+������� � �4� FALSE
Trans ���B���+������� � �4� Poss ���B����� "�� ' nil ".� � ' do ���B�����
Trans � ��� �;����� ��� � � � � �>��� " � ' nil "3� � ' �
Trans � �!���	�"��� 6>���+��� �;� � �
�

Final � � � �;� ��" Trans � � � �;����� ��� � �#� � � � � � ' ��� � �
� � ��" Trans� � � ���+��� � �;� � �
Trans � �!� � $� � 6>���+��� �;� � � � Trans � � � �;����� ��� � �%� Trans � � � ���+��� �;� � �
Trans ������� � ���+������� � � � � ��� Trans � � ���+������� � �
Trans � � * ���+������� � �
� � � � � � ' ��� � �
� * � " Trans � � ���+��� � �;� � �
Trans � if � then

� �
else

� � �;����� ��� � �4�� �>��� " Trans � ��� ���+������� � �&�'� � �>��� " Trans � ��� �;����� ��� � �
Trans � while

�
do
� �;����� ��� � � �� �>��� " � � � �#� ' ��� � � while

�
do
� �#" Trans � � ���+��� � �;� � �

With Final and Trans in place, Do may be defined as:

Do ���&������ > � def9 < � � Trans � ���(����
����� > �(: Final �(� ��� > �
where Trans � is the transitive closure of Trans, defined as the (second-order) situ-
ation calculus formula:

Trans � � �(������ > ��� > � def9 ��) � ������C*) ���&���� � > ��� > ���
where the ellipsis stands for:

7Observe that Final and Trans cannot occur in tests, hence self-reference is disallowed.
8It is convenient to include a special “empty” program nil.

12 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

/ �����(� � ���+� � ����� "/ �+�
� � �;� � ��� � � ��� � � ���(� � ���+��� � ��� � � " Trans ��� � ��� � ��� � � ��� � � �A	��(� � ���+��� � � ��� � � � �

In other words, Do ���(�������> � holds iff it is possible to repeatedly single-step the pro-
gram � , obtaining a program � and a situation ��> such that � can legally terminate
in ��> . In [4], it is shown that this definition of Do is equivalent to that in [14].

On the surface, Golog looks a lot like a standard procedural programming lan-
guage. It is indeed a programming language, but one whose execution, like plan-
ning, depends on reasoning about actions. An interpreter for Golog essentially
searches for a sequence of primitive actions that can be proven to lead to a final
situation of the program. Thus, a crucial part of a Golog program is the declarative
part: the precondition axioms, the successor state axioms, and the axioms charac-
terizing the initial situation. A Golog program together with the definition of Do
and some foundational axioms about the situation calculus is a formal logical the-
ory about the possible behaviors of an agent in a given environment.

The declarative part of a Golog program is used by the Golog interpreter in two
ways. The successor state axioms and the axioms specifying the initial situation are
used to evaluate the conditions that appear in the program (wait actions and if/while
conditions) as the program is interpreted. The action preconditions axioms are used
(with the other axioms) to check whether the next primitive action is possible in the
situation reached so far. Golog programs are often nondeterministic and a failed
precondition or test action causes the interpreter to backtrack and try a different
path through the program. For example, given the program ��	 � ����� � ������1�� , the
Golog interpreter might determine that 	 is possible in the initial situation

� �
, but

upon noticing that � is false in do ��	%� � � � , backtrack and return the final situation
do ��1�� do ����� � � ��� after confirming that � is possible initially and that 1 is possible in
do ����� � � � .

Thus in a way, the Golog interpreter is automatically maintaining a model of the
world state for the programmer using the axioms. If a program is going to maintain
a model of its environment, it seems that having it done automatically from declar-
ative specifications is much more convenient and less error prone than having to
program such model updating from scratch. The Golog programmer can work at a
much higher level of abstraction.

And to reiterate the main idea, Golog aims for a middle ground between run-
time planning and explicit programming down to the last detail. It supports search
for appropriate actions through nondeterminism as well as explicit programming.
Thus for example, the program

while < � ONTABLE ����� do "���� REMOVE ����� endWhile

leaves it to the Golog interpreter to find a legal sequence of actions that clears the
table.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 13

5 CONCURRENT ACTIONS AND CONGOLOG

To implement multiple agents in a single program, we need concurrent processes.
In [2, 3], an extended version of Golog that incorporates a rich account of concur-
rency is developed. This extended language is called ConGolog. Let us now review
the syntax and semantics of ConGolog (this section is a quasi-verbatim reproduc-
tion of part of [2]). The ConGolog account of concurrency is said to be ‘rich’ be-
cause it handles:

� concurrent processes with possibly different priorities,

� high-level interrupts,

� arbitrary exogenous actions.

As is commonly done in other areas of computer science, concurrent processes are
modeled as interleavings of the primitive actions in the component processes. A
concurrent execution of two processes is one where the primitive actions in both
processes occur, interleaved in some fashion. So in fact, there is never more than
one primitive action happening at the same time. As discussed in [3, 22], to model
actions that intuitively could occur simultaneously, e.g. actions of extended dura-
tion, one can use instantaneous start and stop (i.e. clipping) actions, where once
again interleaving is appropriate.

An important concept in understanding concurrent execution is that of a process
becoming blocked. If a deterministic process � is executing, and reaches a point
where it is about to do a primitive action 	 in a situation � but where Poss ��	%�����
is false (or a wait action ��� , where �!����� is false), then the overall execution need
not fail as in Golog. In ConGolog, the current interleaving can continue success-
fully provided that a process other than � executes next. The net effect is that � is
suspended or blocked, and execution must continue elsewhere.9

The ConGolog language is exactly like Golog except with the following addi-
tional constructs:

������� � ��� , concurrent execution
������� � � ��� , concurrency with different priorities
��� � , concurrent iteration� ��� �	� , interrupt.

��� � � � � � denotes the concurrent execution of the actions � � and � � . � � � � � � � �
denotes the concurrent execution of the actions � � and � � with � � having higher
priority than � � . This restricts the possible interleavings of the two processes: � �
executes only when � � is either done or blocked. The next construct, �
� � , is like

9Just as actions in Golog are external (e.g. there is no internal variable assignment), in ConGolog,
blocking and unblocking also happen externally, via Poss and wait actions. Internal synchronization
primitives are easily added.

14 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

nondeterministic iteration, but where the instances of � are executed concurrently
rather than in sequence. Finally, � � � �	� is an interrupt. It has two parts: a trig-
ger condition � and a body, � . The idea is that the body � will execute some number
of times. If � never becomes true, � will not execute at all. If the interrupt gets con-
trol from higher priority processes when � is true, then � will execute. Once it has
completed its execution, the interrupt is ready to be triggered again. This means
that a high priority interrupt can take complete control of the execution. For exam-
ple, � TRUE � ringBell � at the highest priority would ring a bell and do nothing
else. With interrupts, one can easily write agent programs that can stop whatever
task they are doing to handle various concerns as they arise. They are, dare we say,
more reactive.

Let us now explain how Final and Trans are extended to handle these constructs.
(Interrupts are handled separately below.) For Final, the extension is straightfor-
ward:

Final � �!����� ��� 6>����� � Final � ��� ����� " Final � ��� �����
Final � �!����� � � � 6C�;� � � Final � ��� �����)" Final � ��� �;� �
Final � ��� � �����4� TRUE

Observe that the last clause says that it is legal to execute the � in � � � zero times.
For Trans, we have the following:

Trans � � � � � � � 6C�;����� ��� � �4�� � � � � ' ��� � � � � ��" Trans� � � �;����� � ��� � ��� � ' � � � � � � ��" Trans � � � ���+��� � ��� � �
Trans � � � � � � � � 6>���+������� � � �� � � � � ' ��� � � � � � �)" Trans � � � ���+��� � ��� � �&�

� ' � � � � � � � � " Trans� � � ���+��� � �;� � ��" � � � � � ��� � � � Trans � � � ���+��� � � �;� � � �
Trans � � � � ���+������� � �
� � � � � � ' ��� � � � � � � " Trans � � ���+��� � ��� � �

In other words, you single step ��� � � ����� by single stepping either � � or � � and
leaving the other process unchanged. The ��� ��� � � ��� construct is identical, except
that you are only allowed to single step � � if there is no legal step for � � .10 This
ensures that � � will execute as long as it is possible for it to do so. Finally, you
single step � � � by single stepping � , and what is left is the remainder of � as well
as � � � itself. This allows an unbounded number of instances of � to be running.

Exogenous actions are primitive actions that may occur without being part of a
user-specified program. It is assumed that in the background theory, the user de-
clares using a predicate Exo which actions can occur exogenously. A special pro-
gram is defined for exogenous events:

���
	�� def9 ��" 	��� �%/2��	2��� ��	2� �
10It is true, though not immediately obvious, that Trans * remains properly defined even with these

axioms containing negative occurrences of Trans. See [4] for details.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 15

Executing this program involves performing zero, one, or more nondeterministi-
cally chosen exogenous events. Then, the user’s program is made to run concur-
rently with � � 	 � :

� � 	 � � �
This allows exogenous actions whose preconditions are satisfied to occur during
the execution of the user’s program.

Finally, regarding interrupts, it turns out that these can be explained using other
constructs of ConGolog:

� ��� �	� def9 while ��6B��+�,�,�*�-5��� ,�*�6(6(.�6B
 do
if � then � else FALSE �

To see how this works, first assume that the special fluent �6B��+�,�,�*-2��� ,�*%6(6(.�6B

is always true. When an interrupt � � � �	� gets control, it repeatedly executes
� until � becomes false, at which point it blocks, releasing control to anyone else
able to execute. Note that according to the above definition of Trans, no transition
occurs between the test condition in a while-loop or an if-then-else and the body.
In effect, if � becomes false, the process blocks right at the beginning of the loop,
until some other action makes � true and resumes the loop. To actually terminate
the loop, one uses a special primitive action ����/�- .�6B��+�,�,�*-2��� , whose only effect
is to make ��6B��+�,�,�*�-5��� ,�*�6(6(.�6B
 false. Thus, to execute a program � containing
interrupts, one would actually execute the program

� � ��	?,�� .�6B��+�,�,�*�-5��� �'� � � �=� ��/�- .�6B��+�,�,�*�-5�������
which has the effect of stopping all blocked interrupt loops in � at the lowest pri-
ority, i.e. when there are no more actions in � that can be executed.

6 COMMUNICATION IN CONGOLOG

Multi-agent applications usually require some kind of inter-agent communication
facility. A popular choice is the KQML communication language [5] and its asso-
ciated tools. However according to Cohen and Levesque [1], the KQML definition
has many deficiencies, in particular the lack of a formal semantics. One of our ob-
jectives is to show that ConGolog is suitable for various implementation tasks, so
here we define our own simple communication toolkit. The specification can be
viewed as a generic package that can be included into specific applications. We
first specify a set of basic message passing actions; later, some abstract communi-
cation actions are defined in terms of the primitives. In a given situation, each agent
is taken to have a set of messages it has received and not yet processed; this is mod-
eled using the predicate fluent MSGRCVD ��	�
������+�6(02+�,�� � �
 ��0%� � �
 ����� , meaning
that in situation � , 	�
�� has received a message � ��
 with message ID � ��
���0 from
��+�6(02+�, (which it has yet to process). Note that this is more general than a simple

16 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

queue; the agent need not process the messages in the order in which they arrive.
We assume that message IDs are generated using a global message counter repre-
sented by the functional fluent MSGCTR ����� (it is straightforward to generalize this
to use agent-relative IDs). There are three primitive action types that operate on
these fluents:

� SENDMSG ��	�
�����,�+�1�. -�.�+�6B��� � ��
)� : 	�
�� sends message � ��
 to ,�+�1�. -%.�+�6B� ; the
current value of the message counter is used as message ID and the message
is added to the set of messages ,�+�1�. -�.�+�6B� has received and not yet processed;
the value of the message counter is also incremented;

� SENSEMSGS ��	�
��� : 	�
� senses what messages he has received and not yet
processed; and

� RMVMSG ��	�
��� � ��
���02� : 	�
� removes the message with ID � �
 ��0 from his
set of messages received and not yet processed.

The preconditions of these actions are as follows: RMVMSG ��	�
��� � ��
���02� is pos-
sible in � iff 	�
�� has received a message with the given ID and not yet processed it
in � : �

/����� RMVMSG ��	�
��� � ��
���02�������= < ��+�6(02+�,�� � �
 MSGRCVD ��	�
������+�6(02+�,�� � �
 ��0%� � �
 �������
SENDMSG ��	�
�����,�1@-5��� � ��
)� and SENSEMSG ��	�
��� are always possible (we leave
out the formal statements).

The effects of these actions are as described above, which yields the following
successor state axioms for the MSGRCVD and MSGCTR fluents:

Poss ��	%�����!C�
MSGRCVD ��	�
������6(02,�� ����0%� � ��02/2��	%�������& < � ��	 9 SENDMSG ����6(02,���	�
���� � �(: MSGCTR �����=9����0
� MSGRCVD ��	�
�������6(02,�� ���0%� � �����(: 	 	9 RMVMSG ��	�
��� ����02�����

Poss ��	%�����=C�
MSGCTR ��02/2��	��������!9 6 < 	�
����	�
���>@� � ��	 9 SENDMSG ��	�
�����	�
���>�� � �': MSGCTR �����=9 6����
� MSGCTR �����89 6 : ;=< 	�
�����	�
���>�� � 	 9 SENDMSG ��	�
�����	�
��>�� � � ���

Given these primitives, we can now define some useful abstract communication
actions:

proc INFORM ��	�
�����	�
�� > ���(�
Know ��	�
���� �(��� � SENDMSG ��	�
�����	�
��>��

�
INFORM �'�(�����

end

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 17

proc INFORMWHETHER ��	�
����	�
���>����(�
INFORM ��	�
����	�
��>�� �(� � INFORM ��	�
�����	�
��>�� ; �(�
� INFORM ��	�
�����	�
���> � ; KWhether ��	�
���� �(���

end

proc REQUEST ��	�
����	�
��>@� �(�
SENDMSG ��	�
����	�
���>��

�
REQUEST ���(� � �

end

proc QUERYWHETHER ��	�
�����	�
��> � �(�
REQUEST ��	�
����	�
� > � INFORMWHETHER ��	�
�� > ��	�
���� �(���

end

Note that the above definitions use quotation.
We can show that the INFORM abstract communication act behaves as one would

expect. Let us take SINCERE ����+�6(02+�,���,�1@-2������� as meaning that up to situation � ,
every INFORM message sent to ,�1@-2� by ��+�6(02+�, was truthfully sent:

SINCERE ����+�6(02+�,���,�1@-5������� def9
�(��> � do � SENDMSG ����+�6(02+�,���,�1 -2���

�
INFORM �'�(� � ������>A� � � C

Know ����+�6(02+�,����!��� > � ���

Then, we can show that after an agent sends an INFORM ���(� message to someone
and the recipient senses his messages, the recipient will know that at some prior
time the sender knew that � , provided that the recipient knows that he had no mes-
sages initially and that the sender has been sincere with him over that period:

Proposition

Know ��,�1 -2��� ;=< ��6(0?,�� ����0%� � MSGRCVD ��,�1@-2������6(02,�� ���0%� � � now��� � � ��:
Know ��,�1 -2��� SINCERE ����6(02,���,�1@-2��� now���

do � SENSEMSGS ��,�1@-2����� do � SENDMSG ����6(02,���,�1@-2���
�

INFORM �'�(������� � � �����=C
Know ��,�1 -2��� < � > � � > � now : Know ����6(02,�� �!��� > � ���

do � SENSEMSGS ��,�1@-2����� do � SENDMSG ����6(02,���,�1@-2���
�

INFORM �'�(������� � � �����
It is not possible to prove useful general results about REQUEST, because we

have not provided a formalization of goals and intentions. Such a formalization is
developed in [28, 29]. In the next section, we show that the simple communication
tools specified above are sufficient for developing interesting applications. We are
in the process of refining the specification and extending it to handle other types of
communicative acts. Eventually, we would like to have a comprehensive commu-
nication package that handles most applications.

18 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

proc ORGANIZEMEETING���+8$9;������8��$ ��� ������-(�$� 9 ����� � �$ 9;� � ��� � �+�$�
for

��� -(�$��9 ����� � �$,9�� � � do
REQUEST ���+8:9;� SCHEDULEMANAGER � � � � ADDTOSCHEDULE �

SCHEDULEMANAGER � � � � � � � ��� � ����� MEETING ����� 8��$ ��� ������� �
QUERYWHETHER ���+8$9�� SCHEDULEMANAGER � � � �

AGREEDTOMEET � � ���+8:9;� � ��� � �+������� 8��$ ��� �+�����
endFor;
while � KWhether ���+8$9�� /	� � -(�$��9 ����� � �$,9�� � �B	

AGREEDTOMEET � � ���+8:9;� � ��� � �+������� 8��$ ��� �����76�� do
SENSEMSG ���+8:9C� �
for 031+� �$� ��)��0 MSGRCVD ���+8$9�����)��0.1+����0.� do RMVMSG ���+8:9;��031+�$� endFor

endWhile;
INFORMWHETHER ���+8:9;����� 8��$ ��� ��� �/	� � -(�$��9 ���
� � �$ 9;� � � 	 AGREEDTOMEET � � ���+8:9;� � ��� � �+������� 8��$ ��� �+���76 � �
if � /�� � -(�$��9 ����� � �$ 9;� � �B	 AGREEDTOMEET � � ���+8:9;� � ��� � �+��������8��$ ��� �����76 then

% release participants from commitment
for

��� -(�$��9 ���
� � �$ 9;� � � do
REQUEST ���+8$9;� SCHEDULEMANAGER � � � �

RMVFROMSCHED � SCHEDULEMANAGER � � � � � � � �+� � �+�$���
endFor

endIf
endProc

Figure 1. Procedure run by the “meeting organizer” agents.

7 MEETING SCHEDULING AGENTS IN CONGOLOG

To define our simple meeting scheduling system, we first have to complete our
specification of the primitive actions that manipulate users’ schedule databases. The
precondition axiom for ADDTOSCHED was given earlier (1).

For RMVFROMSCHED, we take it to be possible for an agent to remove the ac-
tivity scheduled for a user at a period iff the agent is the user’s schedule manager
and there is currently something on the user’s schedule for that period:

Poss � RMVFROMSCHED ��	�
�����*%��+�,���-�+�,�.�/�02�������'
	�
� 9 SCHEDULEMANAGER ��*%��+�,��':< 	?1���.�3B��/�,�
 SCHEDULE ��*%��+�,���-�+�,�.�/�0���	21���.�3)��/�,�
 �����

The effects of these actions on the SCHEDULE fluent are captured in the successor
state axiom given earlier (4).

We are now ready to use ConGolog to define the behavior of our agents. We
start with the “meeting organizer” agents. These will be running the procedure in
figure 1. The procedure uses two abbreviations. First, it uses an iteration construct
for �� �!���%� do �)����� endFor that performs �)���%� for all � ’s such that �!���%� holds (at

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 19

the beginning of the loop).11 Secondly, it uses the abbreviation:

AGREEDTOMEET � � �$��9 ����� � �$ 9���������������97��� � � �+� � �+���!��� 8��$ ��� ��� ����� def' � � � �
do � ADDTOSCHEDULE � SMP � � �$� 9 ����� � �$ 9;� � ��� � �+��� MEETING ����� 8��$ ��� �+��� ��� � �4<=�
" Know � SMP �� 0.1+� MSGRCVD � SMP ��������������97������031+���

�
REQUEST � SMP �

ADDTOSCHEDULE � SMP � � �$� 9 ����� � �$ 9;� � ��� � �+��� MEETING �!��� 8��$ ��� ��� ���
�
�

now � �
� � ��� �

where SMP
def' SCHEDULEMANAGER� � �$��9 ����� � �$ 9>� �

Thus, we take the participant to have agreed to a meeting request iff at some prior
situation, the participant’s schedule manager added the meeting to his/her schedule
while knowing that it had received the request.12

Meanwhile, users’ “schedule manager” agents run the procedure in figure 213.
Because these agents are “event-driven”, we program them as a set of interrupts
runningconcurrently. Interruptshandling“more urgent” events are assigned a higher
priority. For instance in the example, requests to remove an activity from the sched-
ule are handled at the highest priority in order to minimize the chance of scheduling
conflicts. Note that the procedure given does not handle cases where a user wants
to be released from a commitment.

To run a meeting scheduling system, one could, for example, give the following
program to the ConGolog interpreter:

MANAGESCHEDULE � SM ��� USER ��� �
MANAGESCHEDULE � SM �� USER ��� �
MANAGESCHEDULE � SM �2� USER ��� �
ORGANIZEMEETING � MO � � USER � � � USER � � USER � �2� NOON � �
ORGANIZEMEETING � MO � � USER � � � USER � � USER � �2� NOON ���

Here, the meeting organizers will both try to obtain USER � ’s agreement for a meet-
ing at noon; there will thus be two types of execution sequences, depending on who
obtains this agreement.

11for �
	�	�
�� � do �
� � endFor is defined as:
�
proc �
� � /* where � is a new predicate variable */

if �����
���� then ��� ��� � �
������ ����
��
� �����
� ��� �"!# ����$�%&�
����'%(�
�� ��) endIf
endProc %
�*� � �+�
��
����,�%	�
����'��$�%��
� �-).)

12This is quite a simplistic way of modeling agreement to a request. We should for instance, talk
about the most recent instance of the request.

13Here we use the abbreviation /10�2	�	43�5 6 def# /��70� 	43���0��8 � 	�$�%(59):6;8

20 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

proc MANAGESCHEDULE ���+8:9;� ���������� � ����������97������0.� 8$1+��� � �+� � �+� �

Know ���+8$9�� MSGRCVD ���+8$9���������������97������03� 8$1+����
REQUEST � RMVFROMSCHEDULE ���+8$9�� ��� ����� � ��� � �+�$���

�
����� �

if �+8:9 ' SCHEDULEMANAGER � �����+��� "� � � 9 ��� SCHEDULE � ������� � � ��� � ������� � 9 ��� � OWNER �>�������$�+��9��+�����
then RMVFROMSCHEDULE ���+8:9;� ������� � � ��� � ���$� endIf

�
RMVMSG ���+8$9���03� 8$1+�$�76 �� �

� � ����������97������0.� 8$1+��� � �+� � �+���!� � 9 ��� ������8��$ ��� ��� �

Know ���+8$9�� MSGRCVD ���+8$9���������������97������03� 8$1+���
�

REQUEST �
ADDTOSCHEDULE ���+8$9�� �����+��� � �+� � �+���!� � 9 ��� ������8��$ ��� �������

�
����� �

if PERMITTEDTOADDTOSCHED ���+8:9;����� 8��$ ��� �+���
"
Poss � ADDTOSCHEDULE ���+8$9�� ��� ����� � ��� � �+����� � 9 ��� ����� 8��$ ��� �������
then ADDTOSCHEDULE ���+8$9�� ������� � � ��� � �+����� � 9 ��� ����� 8��$ ��� ����� endIf

�
RMVMSG ���+8$9���03� 8$1+�$�76 ��

� ���$�+�	�+������0.� 8$1+��� � �

Know ���+8$9�� MSGRCVD ���+8$9��'�������
�+������0.��8:1+���
�

QUERYWHETHER � � �
�
����� �

INFORMWHETHER ���+8$9�� �������	�+��� � � � �
RMVMSG ���+8$9���03� 8$1 8:�76 ��

� � � �������0 ������03� 8$1+��� �
Know ���+8$9�� MSGRCVD ���+8$9�� � ����� 0 ��� ��0.� 8$1+���

�
INFORM � � �

�
����� �

% if message is INFORM � � � , nothing to do
RMVMSG ���+8$9���03� 8$1+�$�76 �� �

�
True � �

% if no new messages
SENSEMSGS���+8$9C�76 �

endProc

Figure 2. Procedure run by the “schedule manager” agents.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 21

8 IMPLEMENTATION AND EXPERIMENTATION

Prototype interpreters have been implemented in Prolog for both Golog [14] and
ConGolog [3]. The implementations require that the program’s precondition ax-
ioms, successor state axioms, and axioms about the initial situation be expressible
as Prolog clauses. This is a limitation of the implementations, not the theory.

For programs that are embedded in real environments and run for long periods or
perform sensing, it is often advantageous to interleave the interpretation of the pro-
gram with its execution. In the current implementation, whenever the interpreter
reaches a sensing action, it commits to the primitive actions generated so far and
executes them, performs the sensing action, and generates exogenous actions to ap-
propriately update the values of the sensed fluent. One can also add directives to
programs to force the interpreter to commit when it gets to that point in the program.
As well, whenever the interpreter commits and executes part of the program, it rolls
its database forward to reflect the execution of the actions, and the situation reached
behaves like a new initial situation [16].14

Note however, that committing to a sequence of action as soon as a sensing ac-
tion is reached could lead to problems when the program to be executed is nondeter-
ministic. Perhaps we are on a branch that does not lead to a final situation. To avoid
this, we need to lookahead over sensing actions and generate a kind of conditional
plan that is guaranteed to lead to a final situation no matter how the sensing turns
out. A prototype interpreter that does this kind of lookahead has been implemented.
The account of planning in the presence of sensing developed in [13] clarifies these
issues. A general account of when an agent knows how to execute a program (i.e.,
of the knowledge preconditions of actions) has also been developed [10]. There
are still some discrepancies between the Golog implementation and our theory of
agency in the way knowledge, sensing, exogenous events, and the relation between
planning and execution are treated. We are working to bridge this gap.

Experiments in the use of Golog and ConGolog to develop various applications
have been conducted. Our longest running application project is in the area of ro-
botics. High-level controllers have been programmed in Golog and ConGolog to
get a robot to perform mail delivery in an office environment [9, 12]. These have
been used to drive RWI-B21 robots at the University of Toronto and the University
of Bonn and RWI-B12 and Nomad200 robots at York University.

Our first multi-agent application involved a personal banking assistant system
[11, 26]. Users can perform transactions (in a simulated financial environment) us-
ing the system and have it monitor their financial situation for particular conditions
and take action when they arise, either by notifying them or by performing transac-
tions on their behalf. The system was implemented as a collection of Golog agents

14To evaluate whether a condition holds in a given situation, Golog regresses the condition to the
initial situation and then uses the axioms about the initial situation to evaluate the regressed condition.
This becomes less efficient as the number of action grows. After a while it becomes necessary to roll
the database forward.

22 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

that communicate using TCP/IP.
A version of the meeting scheduling application described in this paper has also

been implemented. The agents are realized as a set of processes in a single Con-
Golog program. Associated Tcl/Tk processes are used to implement the agents’
user interfaces. The behavior of the implemented meeting organizer agent is more
sophisticated than that of the simple meeting organizer in the previous section. When
a meeting request is rejected by one of the participants’ agent, the meeting organizer
agent will collect information about the schedule of all users involved in the con-
flict and plan a set of rescheduling actions that would resolve it; if a plan is found,
the meeting organizer will then request the agents involved to actually perform the
rescheduling actions.

Another project under way involves developing ConGolog-based tools for mod-
eling business and organizational processes [33]. In contrast to the operational view
of conventional modeling tools, ConGolog takes a logical view of processes. This
should prove advantageous when it comes to modeling system behavior under in-
completely known conditions and proving properties about the system. So far we
have used ConGolog to model a simple mail order business, as well as a section
of a nuclear power plant; in the latter we model potential faults that can occur and
how the operators deal with them.

9 DISCUSSION

One project that is closely related to ours is work on the AGENT-0 programming
language [30]. But it is hard to do a systematic comparison between ConGolog and
AGENT-0 as there are numerous differences. The latter includes a model of com-
mitments and capabilities, and has simple communication acts built-in; its agents
all have a generic rule-based architecture; there is also a global clock and all beliefs
are about time-stamped propositions. However, there is no automatic maintenance
of the agents’ beliefs based on a specification of primitive actions as in ConGolog
and only a few types of complex actions are handled; there also seems to be less
emphasis on having a complete formal specification of the system.

Another agent language based on a logic is Concurrent MetateM [6]. Here, each
agent’s behavior is specified in a subset of temporal logic. The specifications are
executed using iterative model generation techniques. A limitationof the approach
is that neither the interactions between agents nor their mental states are modeled
within the logic. In [31], Wooldridge proposes a richer logical language where an
agent’s knowledge and choices could be specified; he also sketches how model gen-
eration techniques could be used to synthesize automata satisfying the specifica-
tions. This follows the situated automata view of Rosenschein and Kaelbling [25],
which allows knowledge to be attributed to agents without any commitment to a
symbolic architecture.

We believe that much of the brittleness of current AI systems derives from a

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 23

failure to provide an adequate theoretical account of the task to be accomplished.
Accordingly, we are trying to develop agent design tools that are based on a solid
theoretical foundation. We think the framework we have developed so far repre-
sent a significant step towards this objective. But clearly, more work is required on
both implementation issues and the underlying theory. As mentioned earlier, we
are examining various ways of supporting deliberation in the presence of sensing
and exogenous actions, as well as the interleaving of deliberation with execution.
We are also looking at mechanisms to facilitate the use of Golog nondeterminism
for planning. Also under investigation are issues such as handling uncertainty and
belief revision, as well as agent-relative (indexical) representations for robotics. A
version of Golog that supports temporal constraints has also been developed [23].

In terms of its support for multi-agent interaction, the current framework is rather
limited. When agents interact with others without having complete knowledge of
the situation, it is advantageous for them to view other agents as having goals, in-
tentions, commitments, and abilities, and as making rational choices. This allows
them to anticipate and influence the behavior of other agents, and cooperate with
them. It also supports an abstract view of communication acts as actions that affect
other agents’ mental states as opposed to mere message passing. We have started
extending our framework to model goals, intentions, ability, and rational choice
[28, 29, 10], and considering possible implementation mechanisms. Communica-
tion raises numerous issues: How far should agent design tools go in handling intri-
cacies that arise in human communication (e.g., deception, irony)? What’s a good
set of communication primitives and how do we implement them? With respect to
coordination, what sort of infrastructure should we provide? Can we come up with
a set of general purpose coordination policies? We hope to examine all these ques-
tions. Of course in the end, the usefulness of our approach will have to be evaluated
empirically.

10 ACKNOWLEDGMENTS

This paper is a much revised version of “Foundations of a Logical Approach to
Agent Programming” which appeared in Intelligent Agents Volume II — Proceed-
ings of the 1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-
95). The work described involved contributions by many people over a number of
years, in particular, Giuseppe De Giacomo, Fangzhen Lin, Daniel Marcu, Richard
Scherl, and David Tremaine. This research received financial support from the In-
formation Technology Research Center (Ontario, Canada), the Institute for Robotics
and Intelligent Systems (Canada), and the Natural Science and Engineering Re-
search Council (Canada). Many of our team’s papers are available at:

http://www.cs.toronto.edu/ � cogrobo/.

24 Y. LESPÉRANCE, H. J. LEVESQUE, AND R. REITER

REFERENCES

[1] Philip R. Cohen and Hector J. Levesque. Communicative actions for artificial agents. In Victor
Lesser and Les Gasser, editors, Proceedings of the First International Conference on Multiagent
Systems, San Francisco, CA, June 1995. AAAI Press/MIT Press.

[2] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Reasoning about concurrent exe-
cution, prioritized interrupts, and exogenous actions in the situation calculus. In Proceedings of the
Fifteenth International Joint Conferenceon Artificial Intelligence, pp. 1221–1226,Nagoya, August,
1997.

[3] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a Concurrent Pro-
gramming Language based on the Situation Calculus: Language and Implementation. Submitted,
1998.

[4] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a Concurrent Pro-
gramming Language based on the Situation Calculus: Foundations. Submitted, 1998.

[5] ARPA Knowledge Sharing Initiative External Interfaces Working Group. Specification of the
KQML agent-communication language. Working Paper, June 1993.

[6] M. Fisher. A survey of Concurrent METATEM — the languageand its applications. In D. M. Gabbay
and H. J. Ohlbach, editors, Temporal Logic — Proceedings of the First International Conference
(LNAI Volume 827), pages 480–505. Springer-Verlag, July 1994.

[7] C.C. Green. Theorem provingby resolution as a basis for question-answeringsystems. In B. Meltzer
and D. Michie, editors, Machine Intelligence, volume 4, pages 183–205. American Elsevier, New
York, 1969.

[8] M. Hennessy. The Semantics of Programming Languages. John Wiley & Sons, 1990.
[9] Yves Lespérance, Hector J. Levesque, Fangzhen Lin, Daniel Marcu, Raymond Reiter, and

Richard B. Scherl. A logical approach to high-level robot programming – a progress report. In Ben-
jamin Kuipers, editor, Control of the Physical World by Intelligent Agents, Papers from the 1994
AAAI Fall Symposium, pages 109–119, New Orleans, LA, November 1994.

[10] Yves Lespérance, Hector J. Levesque, Fangzhen Lin, and Richard B. Scherl. Ability and knowing
how in the situation calculus. Unpublished manuscript, 1997.

[11] Yves Lespérance, Hector J. Levesque, and Shane J. Ruman. An experiment in using Golog to build
a personal banking assistant. In Lawrence Cavedon, Anand Rao, and Wayne Wobcke, editors, Intel-
ligent Agent Systems: Theoretical and Practical Issues (Based on a Workshop Held at PRICAI ’96
Cairns, Australia, August 1996), volume 1209 of LNAI, pages 27–43. Springer-Verlag, 1997.

[12] Yves Lespérance, Kenneth Tam, and Michael Jenkin. Reactivity in a Logic-Based Robot Program-
ming Framework. In Cognitive Robotics — Papers from the 1998AAAI Fall Symposium, pp. 98–105,
Orlando, FL, October, 1998, Technical Report FS-98-02, AAAI Press.

[13] Hector J. Levesque. What is planning in the presence of sensing? In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 1139–1146, Portland, OR, August 1996.

[14] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming,
31, 59–84, 1997.

[15] Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of Logic and Computation,
4(5):655–678, 1994.

[16] FangzhenLin and RaymondReiter. How to progress a database. Artificial Intelligence, 92, 131–167,
1997.

[17] John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4, pages 463–502.
Edinburgh University Press, Edinburgh, UK, 1979.

[18] Robert C. Moore. A formal theory of knowledge and action. In J. R. Hobbs and Robert C. Moore,
editors, Formal Theories of the Common Sense World, pages 319–358.Ablex Publishing, Norwood,
NJ, 1985.

[19] G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19, Com-
puter Science Dept. Aarhus Univ. Denmark, 1981.

[20] Raymond Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and
a completeness result for goal regression. In Vladimir Lifschitz, editor, Artificial Intelligence and

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 25

Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages 359–380. Aca-
demic Press, San Diego, CA, 1991.

[21] Raymond Reiter. Proving properties of states in the situation calculus. Artificial Intelligence, pages
337–351, December 1993.

[22] RaymondReiter. Natural actions, concurrencyand continuoustime in the situation calculus. In Proc.
of the 5th Int. Conf. on Principles of Knowledge Representationand Reasoning(KR’96), pages 2–13,
1996.

[23] Raymond Reiter. Sequential, temporal GOLOG. In A.G. Cohn and L.K. Schubert, editors, Princi-
ples of Knowledge Representation and Reasoning: Proceedings of the Sixth International Confer-
ence (KR’98), pages 547–556, Trento, Italy, Morgan Kaufmann, 1998.

[24] D. Riecken (editor). Communications of the ACM 37 (7), special issue on intelligent agents, July
1994.

[25] Stanley J. Rosenschein and Leslie P. Kaelbling. A situated view of representation and control. Ar-
tificial Intelligence, 73:149–173, 1995.

[26] Shane J. Ruman. GOLOG as an agent-programming language: Experiments in developing banking
applications. Master’s thesis, Department of Computer Science, University of Toronto, 1996.

[27] Richard B. Scherl and Hector J. Levesque. The frame problem and knowledge-producingactions. In
Proceedings of the Eleventh National Conference on Artificial Intelligence, pages 689–695, Wash-
ington, DC, July 1993. AAAI Press/The MIT Press.

[28] Steven Shapiro, Yves Lespérance, and Hector J. Levesque. Goals and rational action in the situation
calculus — a preliminary report. In Working Notes of the AAAI Fall Symposium on Rational Agency:
Concepts, Theories, Models, and Applications, pages 117–122, Cambridge, MA, November 1995.

[29] Steven Shapiro, Yves Lespérance, and Hector J. Levesque. Specifying Communicative Multi-Agent
Systems with ConGolog. In Working Notes of the AAAI Fall 1997 Symposium on Communicative
Action in Humans and Machines, Cambridge, MA, November, 1997, AAAI Press.

[30] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.
[31] Michael J. Wooldridge. Time, knowledge, and choice. In M. Wooldridge, J. P. Müller, and

M. Tambe, editors, Intelligent Agents Volume II — Proceedingsof the 1995 Workshopon Agent The-
ories, Architectures, and Languages (ATAL-95), Lecture Notes in Artificial Intelligence. Springer-
Verlag, 1996.

[32] Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice. Knowl-
edge Engineering Review, 10(2), 1995.

[33] Eric K.S. Yu, John Mylopoulos, andYves Lespérance. AI models for business process reengineering.
IEEE Expert, 11:16–23, August 1996.

