Specifying Communicative Multi-Agent Systems with ConGolog

Steven Shapiro
Department of Computer Science
University of Toronto
Toronto, ON, Canada M5S 3G4

steven@ai.toronto.edu

Abstract

In this paper, we describe a framework for specifying
communicative multi-agent systems, using a theory of
action based in the situation calculus to describe the
effects of actions on the world and on the mental states
of agents; and the concurrent, logic programming lan-
guage ConGolog to specify the actions performed by
each agent. Since ConGolog has a well-defined seman-
tics in the situation calculus, the specifications can be
used to reason about the behavior of individual agents
and the system as a whole. We extend the work pre-
sented in (Lespérance ef al. 1996) to allow the specifi-
cations to mention agents’ goals explicitly. The frame-
work presented here allows the behavior of different
agents to be specified at different levels of abstraction,
using a rich set of programming language constructs.
As an example, we specify a meeting scheduler multi-
agent system.

1 Introduction

Many agent theories (some examples are (Cohen &
Levesque 1990a; 1990b; Rao & Georgeff 1991; Singh
1994)) follow a similar methodology. They present a
framework for representing the mental states of agents
and the physical states of the world and axiomatize the
relationships between the various components (beliefs,
goals, intentions, etc.) of the agents’ mental states.
They then postulate that if the agent has a certain form
of commitment to its intentions or goals, it is able to
achieve them, and it is adhering to some principles of
rationality, then it will act in service of these intentions
and eventually achieve them. While this methodology
can lead to some interesting theories, the facts that one
can conclude from them are quite weak. One may be
able to surmise that the agent will eventually achieve
its intentions, but not when or by what means. It is
not at all clear that these theories can be used to rep-
resent and reason about the actual behavior of agents
in a detailed way, especially in the context of complex
multi-agent systems with communicating agents.

On the other hand, there are formalisms for repre-
senting and reasoning about communicating, concur-
rent processes (Fisher 1995; Hoare 1985). However,
the representations of these formalisms are typically

Yves Lespérance
Department of Computer Science
Glendon College, York University
Toronto, ON, Canada M4N 3M6

lesperan@yorku.ca

Hector J. Levesque
Department of Computer Science
University of Toronto
Toronto, ON, Canada M5S 3G4

hector@ai.toronto.edu

at a low level. They do not allow the specification of
agents in terms of their mental states, nor do they ex-
plicitly represent actions in terms of their effects on
the world.

In this paper, we explore a middle ground. We use
the situation calculus (McCarthy & Hayes 1979) with
Reiter’s solution to the frame problem (Reiter 1991)—
enhanced with predicates to describe agents’ knowl-
edge (Scherl & Levesque 1993) and goals—to formally,
perspicuously, and systematically describe the effects
of actions on the world and the mental states of agents.
We add INFORM and REQUEST actions as primitive sit-
uation calculus actions to model inter-agent commu-
nication. We then use the notation of the concurrent,
logic programming language ConGolog (De Giacomo,
Lespérance, & Levesque 1997) to specify the behavior
of agents. Since ConGolog has a well-defined seman-
tics in the situation calculus, the specifications can be
used to reason about the behavior of individual agents
and the system as a whole. Since ConGolog is based in
the situation calculus, it is easy to add the capacity to
specify the behavior of agents in terms of their mental
states. In addition, ConGolog offers a wide variety of
programming-language constructs (e.g., nondetermin-
istic choice of actions and iteration, waiting for arbi-
trary first-order formulae to hold, concurrent execution
with different priorities, and interrupts), which make it
easy to specify a wide range of complex behaviors. One
advantage of this approach is that different agents can
be specified at different levels of abstraction. In the
example system presented in section 6, we model the
behavior of one agent only in terms of its knowledge
and another in terms of its knowledge and goals.

This paper extends the work presented in
(Lespérance et al. 1996). In that paper, the
agents’ mental states consisted only of knowledge. We
have added the capacity to specify the behavior of
agents in terms of their goals. This addition allows us
to dispense with the explicit representation of message
queues for agents introduced in (Lespérance et al.
1996), yielding a cleaner account of communicative
actions. We reformulate the meeting scheduler appli-
cation described in (Lespérance et al. 1996) in this

enhanced framework.

2 Theory of action

Our action theory is based on an extended version of
the situation calculus (Reiter 1991), a predicate cal-
culus dialect for representing dynamically changing
worlds. In this formalism, the world is taken to be
in a certain situation. That situation can only change
as a result of an agent performing an action. The term
do(a, s) represents the situation that results from the
agent’s executing action a in situation s. For exam-
ple, the formula ON(A| B, do(PUTON(A, B), s)) could
mean that A is on B in the situation resulting from the
agent’s doing PUTON(A, B) in s. Predicates and func-
tion symbols whose value may change from situation
to situation (and whose last argument is a situation)
are called fluents. There is also a special constant, Sy,
used to denote the initial situation.

An action is specified by first stating the conditions
under which i1t can be performed by means of a pre-
condition ariom. For example,’

Poss(PickUpP(z), s) &
Vz(~HOLDING(z, s) ANEXTTO(z, 5))

means that it is possible for the agent to pick up an
object 2 in situation s iff it is not holding anything and
it is standing next to z in s.

We adopt Reiter’s (Reiter 1991) solution to the
frame problem,? which shows how one can transform
axioms defining the effects of actions on fluents into a
set of successor state arioms, one for each fluent, that
1mp1y the effect axioms as Well as all the frame ax-
ioms. Successor state axioms have the following form,
for each fluent, R:

[Poss(a,s) =
[R(I do(a, s)) &

Yh(#,0,5) V (R(Z, 5) A =vg (F,a,9))]],

where v# (%, a, s) (v (%, a,s), respectively) denotes a

formula which defines the conditions under which R
will be true (false, respectively) after performing a in
s.

3 Time

For our example application, we will need to model
time: what has happened, what will happen, the ac-
tual time at a situation, and periods of time. In the
situation calculus, the situations are structured in a
tree (or a forest when there are several possible initial
situations, as is the case here). FEach situation has a
linear past and a branching future. The past of a situ-
ation is well defined. Tt is simply the (unique) sequence

'We adopt the convention that unbound variables in a
formula are universally quantified in the widest scope.

2For treatments of the ramification and qualification
problems compatible with our approach see (Lin & Reiter
1994; Mcllraith 1997).

of situations from the initial situation (the root of the
tree) to the current situation. Previously(a, s) is true
if the action a occurred in the past of s:3

Previously(a, s) def 3s'(do(a, s') < s)

To model the future of a situation, we need a way to
select one future among the many possible futures. We
do this using action selection functions (ASFs) which
are simply functions from situations to actions. Given
a starting situation, an ASF defines an infinite path
of situations. For each situation in the path, the ASF
selects the action that is to be performed next to yield
the next situation in the path. We define the predicate
OnPath to mean that situation s’ is in the situation
sequence defined by ASF ¢ and situation s:

de

2

OnPath(c,s,s’) =
s < s AVa,s*(s <do(a,s*) <s' = o(s*) = a).

We can use OnPath to define predicates that talk
about the future. For example, we could define
Eventually(y, o,s) to mean that eventually ¢ will
hold along the path defined by o starting at s:*

Eventually(¢, o, s) S
Js* (OnPath(c, s, s*) A (o, s*)).

We also introduce a functional fluent TIME(s) which
maps a situation into the current time at a situation.
We assume that all actions in the domain increment
TIME by DURATION (a), the amount of time it takes to
perform the action a.

We also model periods of time, since meetings take
place over periods of time. A period is a pair of times.
The first and second elements of the pair are denoted
by START(PERIOD) and END(PERIOD), respectively. We
use the predicate During(period,), o, s) to stipulate
that 1 holds throughout period on the path defined by
o and s:

During(period, ¥, o, s) &
3s', s (OnPath(c, s, s’) A OnPath(o, s, s'") A
TIME(s") < sTART(period) < TiME(do(o (s'),8")) A
TIME(s") < END(period) < TIME(do(o(s"),s")) A
Vs*(s' < s* < do(o(s"),s") = (o, s7))).

%s < s’ means that there is a possible (as defined by the
Poss predicate extended to action sequences) sequence of
actions that can be performed starting in situation s and
which results in situation s’. s < s’ is an abbreviation for
s<s'vs=s'

*We use ¢ to denote a formula whose fluents contain
two placeholders sit and asf instead of a situation argument
and an ASF argument (respectively), e.g., NEXT(a, asf, sit).
The placeholders get replaced by a situation and an ASF
by an outer construct, in this case Eventually. (o, s) is
the formula that results from replacing sit with s and asf
with o. Where the intended meaning is clear, we suppress
the placeholders, e.g., NEXT(a).

Since actions are of extended duration, the endpoints

of a time period might fall between two adjacent sit-
uations on the path. Therefore, the definition stipu-
lates that 1 holds starting at the latest situation (s’)
whose time is earlier than or equal to the start of the
period until the earliest situation (do(o(s”), s’") whose
time is later than or equal to the end of period. Note
that in this definition and elsewhere, we overload the
< and < operators, using them to relate times as well
as situations. For other approaches to adding time
to the situation calculus, see (Pinto & Reiter 1993;
Reiter 1996).

4 Mental Attitudes
4.1 Knowledge

Moore (Moore 1985) showed how agents’ knowledge
could be modelled in the situation calculus by adapting
the possible worlds model of knowledge to the situation
calculus. We adopt his approach, using the notation
of (Scherl & Levesque 1993). K (agt,s’, s) will be used
to denote that in situation s, agt thinks that it could
be in situation s’. We call s’ a K-alternative situation
for agt in s. Know(agt,¢,s)" is then defined to be
Vs' (K (agt,s’,s) = ¢(s')), and KWhether(agt, ¢, s)
is defined as Know(agt, ¢, s) V Know(agt, —¢, s).

Scherl and Levesque (Scherl & Levesque 1993) show
how to obtain a successor state axiom for K that com-
pletely specifies how knowledge is affected by actions.
In their framework, the knowledge-producing actions
were performed by the agent itself, i.e., sensing ac-
tions. In this paper, we model communicative actions,
which are actions that affect the mental state (knowl-
edge, goals, commitments, etc.) of an agent other
than the one performing the action. However, Scherl
and Levesque’s successor state axiom for K is easily
adapted to handle communicative actions:®

Poss(a, s) :>
[K(agt,s"” (a, s))
s’ ([\(agz‘ s',s) Ns" = do(a,s") A Poss(a,s') A
Vznformer é(a = INFORM (informer, agt, ¢) A
TRruSTS(agt, informer, ¢) A

—Know(agt, —¢,s) = ¢(s')))]

First note that for any action other than an INFORM
action directed towards agt, the specification ensures
that the only change in knowledge that occurs in mov-
ing from s to do(a, s) is that it is known (by all agents)
that the action a has been successfully performed. This

5We use ¢ to denote a formula that may contain the
placeholder sit, but not asf. Again, we suppress the place-
holder where possible. ¢(s) is the formula that results from
substituting s for sit (if present) in ¢.

®Tn our example system, we have no need for sensing
actions, but they could easily be added if necessary. Also
note that here, for simplicity, TRUSTS and SERVES (defined
below) are not fluents, and that the axioms that define
them are not given.

is true because the K-alternative worlds to do(a,s)
are the situations that result from doing a in a K-
alternative situation to s where a is possible. Note
that unlike (Lesperance et al. 1996), we assume that
all actions are public, i.e., every agent is aware of the
actions performed by all other agents. For the action
INFORM (informer, agt, ¢),” the idea is that in moving
from s to do(INFORM (informer, agt, ¢), s), agt not only
knows that the action has been performed (as above),
but also if agt trusts informer with respect to ¢ and
agt does not know —¢ in s, then it knows ¢. In this
case, the K-alternative worlds to do(a,s) for agt are
the situations that result from performing a in a K-
alternative world to s where a is possible, except the
ones where ¢ is false. If agt knows —¢ in s or it does not
trust informer, then the result is that agt’s knowledge
is unchanged except for being aware that the action
has occurred.

TruUsTS would be axiomatized by the modeller of
the system to capture the idea that an agent will not
necessarily believe everything that another agent tells
it. For example, if an agent wants to cancel a meeting,
one way to do that would be to inform the organizer
of the meeting that another agent cannot attend the
meeting, even if that is not true. Thus, we might want
to say, for example, that the organizer will only be-
lieve an agent if it is reporting something about its
own mental state. This is a fairly simple-minded ac-
count of communicative interaction; we plan to refine
the account in the future.

4.2 Goals

We extend the framework described in (Lespérance et
al. 1996) by modelling the goals of agents. The be-
havior of agents will be specified, in part, in terms of
their own goals and what they know about the goals
of other agents. Following (Cohen & Levesque 1990a),
we characterize the goals of an agent by specifying the
paths in which all its goals (both maintenance goals
and achievement goals) are achieved. Our approach
differs slightly from Cohen and Levesque’s in that our
accessibility relation, H(agt,o,s’,s), is used to state
that in situation s, the path defined by o and s’ is con-
sistent with what agt wants. We think of these paths as
defining what the agent wants independently of what
the agent knows. Cohen and Levesque restricted the
G-accessible worlds (their version of H) to be a subset
of the B-accessible worlds (their version of K). The
end result is the same, however, as we define the goals
of the agent to be the formulae true in the H-accessible
paths that begin in a K-accessible situation:

Goal(agt P, s) S
Vo,s' (K (agt,s’,s) A H(agt,o,s',s) = ¢(o,5"))
"Since our language contains functions (e.g., INFORM)
and predicates that take a formula as an argument, we
assume that we have an axiomatization of formulae as terms
of the language, such as the one given in (Moore 1985).

We provide a successor state axiom for H similar to
the one for K:

Poss(a, s) =
[H (agt,o,s", do(a, s)) &
3s'(H (agt,0,s",s) As"” = do(o(s'),s") A
Vrequester, i(a = REQUEST (requester, agt,) A
SERVES (agt, requester, 1) A
-Goal(agt, 1, s) = ¥(o,s'))]

Thus, the goals® of an agent are changed by REQUEST
actions. The SERVES predicate is analogous to the
TrusTs predicate and is used to characterize which
requesters and requests the agent will serve. As with
knowledge, goals are only added if they are consis-
tent with the agent’s previous goals, and once an agent
adopts a goal, it maintains the goal indefinitely. There-
fore, the agents have a fanatical commitment to their
goals. Even the agent that made the request in the first
place cannot cause the requested agent to drop the goal
that resulted from the request. In future work, we plan
to devise a method for goal revision in order to be able
to relax this constraint.

4.3 Constraints

Scherl and Levesque (Scherl & Levesque 1993) showed
that one could place constraints on the K-relation in
the initial situation®, and the constraints would con-
tinue to hold after any (possible) sequence of actions
because the successor state axiom for K preserves these
constraints. Since we are modelling knowledge (i.e.,
true beliefs), we constrain K to be reflexive, and we
also want it to be transitive and symmetric so the
agents will have positive and negative introspection.
The only constraint on H in isolation is that it be ini-
tially non-empty, i.e., the agent’s wishes are initially
consistent.

We also need to consider the constraints that hold
between H and K. In our example, we want the agents
to have positive and negative introspection of goals,
ie.

Goal(agt, v, s) = Know(agt, Goal(agt, ¥), s)

-Goal(agt, v, s) = Know(agt, ~Goal(agt, 1), s)

We have identified a constraint on K and H in the
initial situation that yields these properties. See the
full paper for details.

5 ConGolog

We have just presented a framework in which one can
systematically and perspicuously describe the effects
of actions on the world and on the mental states of
multiple, communicating agents. In order to describe a

8We use the term ‘goal’ loosely here to refer to the for-
mulae true in all H-related worlds.

In particular, they show that K can be constrained to
be reflexive, symmetric, transitive, and/or Euclidean.

multi-agent system, we must also specify what actions
the agents perform.

We specify the behavior of agents with the notation
of the logic programming language ConGolog (De Gi-
acomo, Lespérance, & Levesque 1997), the concurrent
version of Golog (Levesque et al. 1997). While versions
of both Golog and ConGolog have been implemented,
we are mainly interested here in the potential for us-
ing ConGolog as a specification language. A ConGolog
program!?is composed of a sequence of procedure dec-
larations, followed by a complex action. The complex
actions are composed of various constructs:

a, primitive action
o7, wait for a condition
(015 62), sequence
(01 | 2), nondeterministic choice between actions
d*, nondeterministic iteration
if ¢ then J; else Js, conditional
for » € ¥ do 4, for loop
while ¢ do o, while loop
(01 || 62), concurrent execution
(61) d2), concurrency with different priorities
(Z:¢9—28), interrupt
B(p), procedure call.

a denotes a situation calculus action, as described
above. The ConGolog specification can be for a single
agent or multiple agents, depending on whether the
primitive actions contain an argument for the agent of
the action. ¢ denotes a situation calculus formula with
the situation argument of its fluents suppressed. §, d1,
and J; stand for complex actions, ¥ is a set, B is a
procedure name, and p’ are the actual parameters to
the procedure.

These constructs are mostly self-explanatory. Intu-
itively, the interrupts work as follows. Whenever 37.¢
becomes true then § is executed with the bindings of
¥ that satisfied ¢.

Procedures are defined with the following syntax:
proc 3(¥) §, where is the procedure name, & are the
formal parameters to the procedure, and § is a com-
plex action. ConGolog programs are formally defined
using the Do predicate (see (De Giacomo, Lespérance,
& Levesque 1997) for details). Informally, Do(p, s, s)
holds if situation s’ is a legal terminating situation of
program p, starting in situation s.

6 Specification of a Meeting Scheduler
Multi-Agent System

In our example system, we will have meeting orga-
nizer agents, which are trying to schedule meetings,
and personal agents, which manage the schedules of
their (human) owners. To simplify the system, we as-
sume that the personal agents have the authority to
schedule meetings on behalf of their owners without

'"We retain the term ‘program’ even though it is not our
intention to execute the programs directly.

consulting them. They simply inform their owners of
a pending meeting fifteen minutes before it starts. The
meeting organizer agents have the built-in behavior to
schedule a single meeting and then inform the (human)
chair of the meeting whether the meeting was success-
fully scheduled. A meeting is successfully scheduled if
all the personal agents agree to have their owners at-
tend the meeting, otherwise the meeting is cancelled.

A significant feature of our approach is that differ-
ent agents can be modelled at different levels of gen-
erality. The personal agents are specified in terms of
their knowledge and their goals, whereas the behavior
of the meeting organizer agents depends only on their
knowledge. In other contexts, we might find it useful
to model some agents without referring to their mental
state at all.

In order to specify our multi-agent system, we must
first define the actions and fluents of our domain. The
actions are INFORM and REQUEST which were previ-
ously described, and

¢ GOTOMEETING (user, chair): (the human) user goes
to a meeting chaired by (the human) chair,

e LEAVEMEETING (user, chair): user leaves the meet-
ing chaired by chair, and
e TICK: the time increases by one minute.

The fluents are K, H, and TIME, which were
previously described, and ATMEETING (user, chair, s),
which means that user is at a meeting chaired by chair
in s. In addition, we have two non-fluent functions:
PAG (user), whose value is the personal agent of user,
and DURATION(a), which maps an action to its dura-
tion.

Here are the axioms defining the actions and fluents
(other than the successor state axioms for K and H
which were stated previously):

Precondition axioms:

Poss(INFORM (informer, agt, ¢), s) <
Know (informer, ¢, s)

Poss(REQUEST (requester, agt,), s) <
Goal(requester, 1, s)

Poss(GOTOMEETING (user, chair), s) <
—Jchair’ (ATMEETING (user, chair’, s))

Poss(LEAVEMEETING (user, chair), s) <
ATMEETING (user, chair, s)

Poss(TICK, s)

Successor state axioms:'!

Poss(a, s) =
[ATMEETING (user, chair, do(a, s5)) <
a = GOTOMEETING(user, chair) V
(ATMEETING (user, chair,s) A
a # LEAVEMEETING (user, chair))]

Poss(a, s) =
[TIME(do(a, s)) =t <
TIME(s) = t' At =t' + DURATION(a)]

"UFor simplicity, we omit the axioms that define
DURATION(a) for each action a.

Initial state axioms:
Know(agt, TIME = 9:00 A
—ATMEETING (user, chair), Sp)

We are now ready to use ConGolog to define the
behavior of the agents. We start with the meeting or-
ganizer agents. Their task i1s to organize a meeting
for a given period and set of participants on behalf
of the chair of the meeting. They do this by asking
the personal agent of each participant to be prepared
to have their owner meet (see below for a discussion)
during the given period. The participants’ agents will
then reply whether they have adopted the goal to have
their owners meet at the appointed time. In our ex-
ample, the personal agents adopt the goal to meet iff
they do not have a scheduling conflict. The meeting
organizer waits until it knows whether one of the par-
ticipants’ agent declined the meeting. This will happen
when either someone has declined the meeting or ev-
eryone has agreed to it. Once the organizer knows the
answer, it informs all the participants’ agents and the
chair whether someone has declined.

When a meeting organizer requests a meeting from a
personal agent, we would like the request to be simply
that the personal agent’s owner attend the meeting
at the appropriate time. However, we were not able
to model the system this way, since we are lacking a
method to handle goal revision. If the organizer agent
were to simply request a meeting, then any personal
agent involved in the meeting that did not have prior
plans for its owner during the period of the meeting
would adopt the goal that its owner go to the meeting.
If, later, the meeting is cancelled, there would be no
way to get the agent to drop the goal, so the agent
would continue to refuse requests for other meetings
at that time.

To get around the need for goal revision, the orga-
nizing agent requests the participants’ personal agents
to adopt a disjunctive goal (which is formalized in fig-
ure 1 as PREPARED TOMEET): that the participant at-
tend the meeting, or that some participant’s personal
agent declines the meeting. Suppose a personal agent
adopts this goal. If no one declines to meet, then the
organizing agent informs the personal agent that no
one declined to meet. Once the personal agent knows
this, then the second disjunct of the goal is falsified
in the personal agent’s K-accessible worlds, therefore
the agent ends up having the goal that its owner at-
tend the meeting. This implies that the personal agent
has the goal that its owner does not attend any other
meeting that happens at the same time. Therefore,
the personal agent will decline any such meeting. If
the organizing agent informs the personal agent that
someone declined, then the agent does not end up with
the goal that its owner attend the meeting.

The procedure that defines the behavior of the or-
ganizer agent is given in figure 1. We assume that
definition of PREVIOUSLY from section 3 has been ex-
panded to take complex actions as arguments as well

as primitive actions. The arguments to the procedure
are the organizing agent, the chair of the meeting, the
set of participants with whom the chair wants to meet,
and the time period of the meeting.

The procedure that specifies the behavior of the per-
sonal agents is given in figure 2. Its arguments are the
personal agent and its owner. The procedure is de-
fined with two interrupts, the first running at higher
priority than the second. The first interrupt fires when
the agent has the goal that its owner be at a meeting
that starts in less than fifteen minutes, and the agent
knows that it has not previously informed the user to
go to the meeting. The action taken by the agent is
to inform the agent that it “wants” the user to go the
meeting.

The second interrupt handles meeting requests; 1t
fires when the agent has the goal to be prepared to
have its owner attend a meeting, and it knows that it
has not previously informed the organizer of the meet-
ing that it has this goal. The action taken is to inform
the organizer whether it has the goal that its owner
not attend the meeting, i.e., whether it already has the
goal that its owner attend another meeting at the same
time. This interrupt works as required because if the
agent has committed to a meeting and a request arrives
for another meeting at the same time, the agent still
adopts the disjunctive goal PREPARED TOMEET(...).
The first disjunct of the new goal conflicts with the
agent’s previous goals, but the second digjunct does
not because the agent will not yet know whether some-
one declined the meeting. In this case, the agent will
inform the organizer that it declines the meeting.

A complete meeting scheduler system is modelled
by composing instances of the two agent procedures
in parallel, thereby modelling the behavior of several
agents acting independently.'> We also need to com-
pose the nondeterministic iteration of the tick action in
parallel with the calls to the agent procedures to allow
time to pass when the agents are not acting. For ex-
ample, let the program p consist of the three procedure
definitions given in figures 1 and 2, followed by:

[MANAGESCHEDULE (PA1, USER1) ||

MANAGESCHEDULE (PAg, USER3) ||

MANAGESCHEDULE (PA3, USER3) ||

SCHEDULEMEETING (OA 1, USER1, {USER1, USER3},
12:00-2:00) ||

SCHEDULEMEETING (OA 2, USER2, {USER2, USER3},
1:30-2:45)]

% TICK*

A sequence of actions @ that satisfies
Azioms |= Do(p, So, do(d, Sp))

'2The model is only approximate, since the Do relation
defines interleaved executions of parallel actions, whereas
one would expect that in practice different agents will
be running on different processors allowing them to act
simultaneously.

will represent a possible evolution of the system.

In this example, the meeting schedulers will both try
to obtain USER3’s agreement for meetings that overlap;
there will thus be two types of execution sequences,
depending on who obtains this agreement. In the full
paper, we give examples of sequences of actions that
satisfy this specification, and we prove properties of
the agents whose behavior satisfies the specification.

7 Discussion and Future Work

We have stressed that we are using ConGolog programs
as specifications of agent behavior that can be used
to prove properties of multi-agent systems rather than
as implementations of agents. However, since Con-
Golog is a programming language, we could simulate
the behavior of a system by running its program. A
ConGolog interpreter has been implemented. Unfortu-
nately, the interpreter does not handle queries about
goals or knowledge. However, if the interpreter had
access to a first-order logic theorem prover (since our
definitions of Know and Goal are first-order), the pro-
gram defined in section 6 could be run (though not very
efficiently).

If we did run the program, we would have a sim-
ulation of the multi-agent system. What we really
want, however, is a method of transforming the pro-
gram into a set of programs, one for each agent, that
could be executed on different processors to yield a
true multi-agent system that implements the original
specification. Since the program is composed of sepa-
rate procedures for each agent, this should not be too
hard to accomplish. However, once again, we would
have to find a way of dealing with queries about the
mental states of agents, or try to find a transformation
that could produce single-agent programs that do not
refer to mental states. It would be interesting to iden-
tify a large class of multi-agent ConGolog programs
that could be decomposed into single-agent ConGolog
programs, and show that properties that were proven
about the multi-agent program ought still to hold for
a system composed of the agents running the single-
agent programs on separate processors.

The multi-agent meeting scheduler application de-
scribed above is very simplistic. We would like to ex-
pand it by modelling more complex communicative in-
teractions between the agents, and between the agents
and their owners. In order to accomplish this, we
would have to develop a more sophisticated theory of
communicative interaction than the one presented in
section 4. Also, we want to develop a method for han-
dling goal (and belief) revision in our framework.

References
Cohen, P. R., and Levesque, H. J. 1990a. Inten-

tion is choice with commitment. Artificial Intelligence
42:213-261.

Cohen, P. R., and Levesque, H. J. 1990b. Rational
interaction as the basis for communication. In Cohen,

proc ORGANIZEMEETING (oa, chair, Participants, period)

for p € Participants do

REQUEST (oa, PAG(p), PREPARED TOMEET(p, period, chair, Participants));
KWhether(oa, SOMEONEDECLINED (period, chair, Participants))?;

for p € Participants do

INFORM WHETHER (0a, PAG (p), SOMEONEDECLINED (period, chair, Participants));
INFORM WHETHER (0a, chair, SOMEONEDECLINED (period, chair, Participants));

endProc,

where:

SOMEONEDECLINED (period, chair, Participants)

Ip € Participants(Goal(PAG(p), During(period, ~ATMEETING(p, chair))))

PREPARED TOMERET (p, period, chair, Participants)

def

During(period, ATMEETING(p, chair)) V SOMEONEDECLINED (period, chair, Participants).

proc INFORMWHETHER (agt, agt’, ¢)
Know(agt, ¢)?; INFORM(agt, agt’, ¢) |

Know(agt, —¢)?; INFORM(agt, agt’, =¢) |

—~KWhether(agt, ¢)?; INFORM(agt, agt’, ~-KWhether(agt, ¢))

endProc

Figure 1: Procedure run by the meeting organizer agents.

P. R.; Morgan, J.; and Pollack, M. E., eds., Intentions
i Communication. Cambridge, MA: MIT Press. 221-
255.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. J.
1997. Reasoning about concurrent execution, priori-
tized interrupts, and exogenous actions in the situa-
tion calculus. To appear in Proceedings of IJCAI-97.

Fisher, M. 1995. Towards a semantics for Concurrent
METATEM. In Fisher, M., and Owens, R., eds., Fz-
ecutable Modal and Temporal Logics (LNAI Volume
896). Springer-Verlag.

Hoare, C. 1985. Communicating Sequential Processes.
Prentice Hall Int.

Lespérance, Y.; Levesque, H. J.; Lin, F.; Marcu,
D.; Reiter, R.; and Scherl, R. B. 1996. Founda-
tions of a logical approach to agent programming.
In Wooldridge, M.; Miller, J. P.; and Tambe, M.,
eds., Intelligent Agents Volume II — Proceedings of
the 1995 Workshop on Agent Theories, Architectures,
and Languages (ATAL-95), Lecture Notes in Artificial
Intelligence. Springer-Verlag. 331-346.

Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.;
and Scherl, R. B. 1997. GOLOG: A logic program-
ming language for dynamic domains. Journal of Logic
Programming 31:59-84.

Lin, F., and Reiter, R. 1994. State constraints revis-
ited. Journal of Logic and Computation 4(5):655-678.

McCarthy, J., and Hayes, P. 1979. Some philosophical
problems from the standpoint of artificial intelligence.

In Meltzer, B., and Michie, D., eds., Machine Intelli-

gence, volume 4. Edinburgh, UK: Edinburgh Univer-
sity Press. 463-502.

Mcllraith, S. A. 1997. Towards a Formal Account of
Diagnostic Problem Solving. Ph.D. Dissertation, De-
partment of Computer Science, University of Toronto,
Toronto, ON.

Moore, R. C. 1985. A formal theory of knowledge and
action. In Hobbs, J. R., and Moore, R. C., eds., For-
mal Theories of the Common Sense World. Norwood,

NJ: Ablex Publishing. 319-358.

Pinto, J., and Reiter, R. 1993. Adding a time line to
the situation calculus. In The Second Symposium on
Logical Formalizations of Commonsense Reasoning,

172-177.
Rao, A. S., and Georgeff, M. P. 1991. Modeling

rational agents within a BDI-architecture. In Fikes,
R., and Sandewall, E.| eds., Proceedings of Knowledge
Representation and Reasoning (KRE&R-91), 473-484.
Morgan Kaufmann Publishers: San Mateo, CA.

Reiter, R. 1991. The frame problem in the situation
calculus: A simple solution (sometimes) and a com-
pleteness result for goal regression. In Lifschitz, V.,
ed., Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy.
San Diego, CA: Academic Press. 359-380.

Reiter, R. 1996. Natural actions, concurrency and
continuous time in the situation calculus. In Proc. of
the 5th Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR’96), 2-13.

proc MANAGESCHEDULE (pa, user)
(period, chair :
Goal(pa, During(period, ATMEETING (user, chair))) A
Know[pa, -“Previously(INrORM (pa, user, Goal(pa, During(period, ArMEETING (user, chair))))) A
START(period) — :15 < TIME < START(period)] —
INFORM (pa, user, Goal(pa, During(period, ATMEETING (user, chair)))))

(oa, period, Participants, chair :
Goal(pa, PREPARED TOMEET (user, period, chair, Participants)) A
Know|[pa, Previously(REQUEST (oa, pa, PREPARED TOMEET (user, period, chair, Participants))) A
—Previously(INFORMWHETHER (pa, oa,
Goal(pa, During(period, “ArMEETING(user, chair)))))] —

INFORMWHETHER (pa, oa, Goal(pa, During(period, ~ATMEETING(user, chair)))))
endProc

Figure 2: Procedure run by the personal agents.

Scherl, R. B., and Levesque, H. J. 1993. The frame
problem and knowledge-producing actions. In Pro-
ceedings of the Eleventh National Conference on Ar-
tificial Intelligence, 689-695. Washington, DC: AAAI
Press/The MIT Press.

Singh, M. P. 1994. Multiagent Systems: A Theoreti-
cal Framework for Intentions, Know-How, and Com-
munications (LNAI Volume 799). Springer-Verlag:
Heidelberg, Germany.

