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User's Guide for DVERK -

a Subroutine for Solving Non-stiff ODE's
T. E. Hull, W. H. Enright, K. R. Jackson

Summary

This document expiéins how to use DVERK, a double-
precision subroutine for solving systems of first order
ofdinary differential equations. (The subroutine is based
on Runge-Kutta formulas of orders 5 and 6 that were developed
by Verner (4).)

The main purpose of the next two sections 1is to
illustrate the use of the subroutine in a variety of different
situations. The user is expected to refer to the first parts
of the listing at the end of this report for detailed instruct-

ions on how to use the subroutine.

The first of the next two sections is devoted to the
"basic use” of the subroutine, i.e., without options. The
second illustrates the use of a variety of options. Then
there follows a short section on when not to use the subroutine,
and what alternatives should be considered instead. Finally,
there is a brief section on machine dependencies, in case the
program is to be modified for a machine other than the IBM
360/370, and a statement about how copies of the program and

test driver may be obtained.



Basic Use

As can be seen from the listing, the arguments in the
calling sequence are as follows:

N, FCN, X, Y, XEND, TOL, IND, C, NW, W
The first six items (N through TOL) are needed to describe
the problem and must of course be specified by the user. If
the user does not wish to select any of the available options,
he need then do only the following: set IND=1, declare C and
W, and specify NW.

The user specifies the initial values of X and Y, and
the purpose of the subroutine is to "update'" these values,
i.e., to replace the value of X by the value of XEND, and the
value of Y by its computed approximation to the value of Y
at XEND. To have the calculations continued to a new value
of XEND, the user need only specify the new value of XEND and
re-enter the subroutine. This is illustrated in figure 1%»2,3
where a program for printing out a table of solutions at

equally spaced values of X is presented.
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' A tape containing DVERK, the test subroutines, the

subroutines FCN1 and FCN2 that they need, and a driver
program may be obtained from the authors, as explained
near the end of the report. The driver program as well
as the subroutines FCN1 and FCNZ are also listed there.

To condense listings in this report, we deviate from ANSI
Fortran and use semi-colons as statement separators, but .
this device is not used on the tape.

he comment about checking IND is a reminder that this is
he point where the user should test for error returns and

iake provision for whatever action is appropriate.

e
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<
c INTTIALIZATION FOR THE PREDATOR-PREY PROBLEM
’ N o= 2 3 X = 0«00 3% ¥{i3 = 100 3 IND = 1
NE = 2 3 TOL = 1eD-6 3 ¥e2) = 3.D0
o
< OUTPUT HEADING AND INITIAL VALUES
CWRITE(&s13 Xs ¥YE1}s Y2}
1 FORMAT(1Hi, 17HOUTPUT FROM TEST1
+ 7 1HOs BXs 3H X o SXe SHY{1}e 11X &SHYI23
+ 7 1HCe 5Xe F3.0¢ 1P2013.86)
C
C CALCULATE AND OUTPUT THE SOLUTION AT X = 1s 25 coes 10
DO 10 K = 1. 10 .
XEND = CFULIAT(K)
CALL DVERK{Ns FCNL ¢ KXo Yo KEND e TOLse IRD Co NMe @3
c CHECK IND «EGs 3 = OTHER®ISE TAKE APEROPRIATE ACTION
WRITE(6.2) Xs Y1), Y2}
2 EORMAT(IH + 5X, F3.0. 1P2D15.8)
10 CONTINUE
o
RE TURN
END
QUTPUT FROM TESTIL
X ‘A8 R vz
O 10000000400 3. 00000C0+00
1. 7734528002 164646450400
2e B, 49T 744D=02 5, 7765380-01
3 2.9089080~01 2, 492533D~01
' {,466599D+00 1.3721860~01
Be 4,0514600¢00 104394790400
6o 1.7561810=-01 2.2585950+00
7e 6.5311172-02 G, 088004D~01
8. 1.4722680~01 3.,6671800-01
S €0 505956001 1.8757480=-01
10. 3.,1443270400 3,48E20€60-01
Figure 1

SUBROUTINE TESTY

INTEGER Ny
DOUBLE PRECISION X

Nwe INDs K

KENDs Yi{2J3s TOLs C{243s WlZ:3}

EXTERNAL FCN:

A table of solutions, at equally spaced

values of X, 1s obtained for the predator - prey problem:

Y!=2Y, (1-Y
on page

7
L

5

), Yi=Y,(1-Y,), Y, (0)=1, Y,(0)=3.

(See footnotes



(A remark about NW might be appropriate at this stage.
If only one system of equations is being solved, NW normally
will have the same value as N. However, if more than one
system is being handled, and they are to use a common workspace
W, one after the other, the value of NW must be as large
as the maximum value of the individual N's.)

The user should note that the subroutine may return
to the calling program, if it runs into difficulties before
reaching XEND. 1In such cases the value of IND is made
negative, so that the calling program can test for such

circumstances and take appropriate action. There are other

situations (including re-entry with a negative value of IND)
which leave the subroutine no reasonable course of action
except to print out current information about the status of
the calculation and then to stop. Further details about
returns with negative IND, or simply stopping the calculation
altogether, are given at the end of the part of the listing
entitled USE.

We conclude this section on "basic use' with a brief
discussion of the tolerance parameter TOL. The subroutine
attempts to provide an approximate solution at XEND whose
error is proportional to TOL. In other words, it is intended
that the global error be proportional to TOL. The proportion-
ality factor depends on the differential eguations and the
range of integration. (The proportionality can also be

affected by the error control chosen by the user, if the user




should decide to choose an option other than the default
provided by the subroutine.)

The proportionality between global error and tolerance
is illustrated in figure 2, where approximate solutlons to
a particular problem with a sequence of different values of
TOL are presented. The norm of the error, and the proportion-
ality factor have also been computed for each value of TOL
to show how the proportionality can be quite steady. (As omne
might expect, the proportionality tends to be constant for
the smaller values of TOL.)

We can think of TOL as being the "accuracy parameter'.

Making TOL smaller improves the accuracy. And the global

error is kept, as closely as possible, proportional to TOL.
Thus, more than one run, with different values of TOL, can

be used in an attempt to estimate the global error.

The Use of Options

The part of the listing entitled OPTIONS explains in
detail what is available to the user. Here we will only
consider a number of examples.

I1f the user wishes to select some particular options
at the beginning of a calculation, he proceeds exactly as
with the "basic use'" of the subroutine except that he sets
IND=2 (rather than 1) and he must then assign values to C(1)
through C(9). (With two of the error control options he
will also have to lengthen the vector C, and assign values

to C(31), C(32), ..., C{N+30).)



SUBROUT INE TEST2

INTEGER Ns NW, IND. K
DOUBLE PRECISION X» XEND,
+ ERRs RATIO
EXTERNAL FUINI

Y{2)s YTRUE(2}s TOLe Cl24}s W(2+9)>

jod
< CALCULATE AN ACCURATE SOLUTION TO THE PREDATOR-PREY PROBLEM
N = 2 3 X = G.D0 H YTRUE(L)} = 1.DC 3 TOL = 1.D=-12
NE = 2 % XEND = 10.DC 3 YTRUE(2) = 3.D00 3 IND = 1
<
CALL DVERK{N, FCNi1s Xso YTRUE: XENDs TOLs IND. Cs N¥W, W)
o CHECK IND (EQe 3 = OTHERWISE TAKE APPROPRIATE ACTION
C
< OQUTPUT HEADING
WRITEL{S .1}
1 FORMAT{IH1, 17HOUTPUT FROM TEST2
+ / 1HDs 7Xe 3HTOL, 7X, 4MY({1}. 14X, 4HY{2}, 12X
+ B8HNORM ERRe 44X, SHRATIO / 3}
.
o CALCULATE AND DUTPUT THE SOLUTION, THE MAX NORM OF THE ERROR,
c AND THE RATIO OF THIS.NORM TO TOL FOR SEVERAL VALUES OF TOL
DO 10K = 1, 9 .
X = 0.00 3 Y{i} = 1,00 3 TOL = 10.D0%2{~K}
IND = i 3 ¥{2) = 3.00 ‘
CALL DVERK{N, FCN1s Xs Y, XENDs, TOL s INDs Cs NW, W}
c CHECK IND .EQs 3 = OTHERWISE TAKE APPROPRIATE ACTION
ERR = DMAXI{DABS(YTRUE(1} - Y{1}}s DABS(YTRUEL2) ~ Y{2}})
RATIO = ERR / TOL
¥RITE(6,23 TOL., Y{1}s Y{(2}s ERRs RATIO
2 FORMATIIH ¢+ SXs 1PD7.1: 1P2318.9¢ 1PDI2:.3: OPFBL1)
10 CONTINUE
<
RETURNMN
END
QUTPUT FrROM TEST2
TOL v{i} vi{z2) NORM ERR RATIO
1 GD=-01 B3, F72217C430¢ U0 1. 5074585648D4+CC 11590+ C0O 11.6
1s0D=02 3.402005791D+00 5,3965779830~01 2.57T7T0-01 25. 8
120D~-03 3,0842908670+00 3,3810319550~01 &.0050~02 60«0
I .,0D~-08 2.1452294850+00 3,4922559200~01 Bs9270~04 8.9
100-0% 3.1441003840+00 3.4881039770~-01 2+364D-048 236
10D~06 3.,144305B8035+00 3.488140901D-01 3.0990~05 31.0
1 0D=07 2.1643333740+00 3,4881854060-01 32,4160~ 06 34,2
1:0D-08 2.14433648B00+00C 3.,488191083D0~01 3.106D~07 311
i,00=-0% 3,1443367680+00 3,4RE191596D~-01 221870-08 21 .9
Figure 2 First, the '"true" solution, YTRUE, to the

predator-prey problem is computed by using DVERK with
TOL=10"'%. Then the approximate solutions with TOL=10"1,
1072, ..., 107° are computed and output along with the max
norm of the error vector and the ratio of this norm to TOL.
This ratio, which is the proportionality factor between the
giobal error and TOL, is roughly constant (especially for
the smaller values of TOL).




The user would normally set the values of C(1) through
C(9) to zero, which provides default values for the corres-
ponding options, and then change only those values which
correspond to the options he wants. In figures 3A and 3B we
show two examples, one in which absolute error control has
been selected, and another in which relative error control
has been selected for the same problem.

Figures 4A and 4B illustrate the use of still another
error control option. This time, different "floor values"”
are assigned to different components of the solution. (These
examples also illustrate the way in which the vector C has

to be extended to provide the individual floor values.)

The use of C(3), C(4) and C(6) to specify HMIN,
HSTART and HMAX, respectively, is relatively straight forward,
and both C(4) and C(6) do appear in later examples. We will
therefore concentrate on a discussion of C(5), which corresponds
to the optional specification of SCALE. By way of background
for explaining the use of this parameter, we point out that the
main reason for having HMAX, a bound on the magnitude of the
step-size, is to ensure the reliability of a calculation.
However, there is an objection to having the user specify HMAX
for this purpose, and that is that the appropriate choice of
HMAX depends on both the problem and the method. The user can
be expected to provide information about his problem, but it is
not so reasonable to expect him toc be familiar with the method.
The appropriate choice of HMAX for a particular problem will

in general be different for different methods.



SUBRCOUTINE TEST3A

INTEGER N+ NWs INDe K

DOUBLE PRECISION X, XERDs Y{1J}s TOLs C{28). ¥w(1,9)s RELERR

DATA C{1)s CU2)y C{3)s C{4}, CI(5)y CLBIy CL{7}s C{B)s C{(S} /3%0.DO/
EXTERNAL FCN2

CALCULATE THE SOLUTION TO THE SROBLEM Y? = Y, ¥ = 1 AT X = 0O
USING THE ABSOLUTE ERRCOR CONTROL OPTION

N =1 3 X = 0.00 3 IND = 2 H TOL = 1.,0~6

NW = 1 3 Y{1) = 1.00 3 Cl{1) = 1.DO

GO0

C OUTPUT HEADING
WRITE(6.1)
I FORMAT{1Hl, 1B8HOUTSUT FROM TEST3A
¥ / 1HO. 20Xs 22HAESCLUTE ERROR CONTROL
+ / 1HOs S5Xs 3H X s 5Xs 4HY{1} s 9X» 12HRELATIVE ERRs 5X.
+ L12HND FON EVALS / 3

CALCULATE AND DUTPUT THE SOLUTION, ITS RELATIVE ERROR AND THE
NUMBER OF FUNCTION EVALUATIONS USED AT X = S¢ 10s esey 50
LOoe
i¢ HEND = X + 5,00
CALL DVERK{N, FCNZ2, Xe¢ Ye: XENDs TOL, INDs C. N, W)
IF {IND .EGQ. 3) GO TO 20 ‘
WRITE(6+2) INDs %o Y(1)} ;
2 FORMAT{IHMOy, 23HERROR RETURN WITH IND =, I3, 7H AT X =,
+ FTe3s SHe ¥ =, 1PD13.56)
c sseseeEXIT LOOP
G0 TO 30
20 CONT INUE
RELERR = Y(1}/DEXP{X} - 1.00
WRITE(6533 Xy Y{1}s RELERR, C(24)
3 FORMATCIH s 5Xs F3.0s 1P2)15.6, OPF12.0}
IF {XEND LT+ S0.DC) GO T3 10
END LOOP
30 CONTINUE

[a el s el

8]

RETURN
END

QUTPUT FRCM TEST3A

ABSOLUTE ERROR CCNTROL

% v{1} RELATIVE ERR NO FCN EVALS
Se 14841320402 =2.457370D-08 184,
10, 220286470404 =2.4F71737D0-08 616,
1% 3.2690170+06 ~2.471816D0~08 1632,

ERROR RETURN WITH IND = =3 AT X = 16,212+ ¥ = 120984330407

Figure 3A Absolute error control is used with the
problem Y'=Y, Y(0)=1 and a tolerance of TOL=10"%°. DVERK
was unable to satisfy this error requirement after X=16.212,
and returned to the calling program with IND=-3. (The no.
of function evaluations is available to the user in C(24).)




SUBROUTINE TESTIAE

INTEGER N, NWe IND, XK

NOUBLE PRECISION X, XENDs ¥{1}s TOLs C{24)s Wiis93s RELERR

DATA Cli3e Ci2}s CU33e ClA}y CI(SYs Ci6Is CL7Hs CUBIe CLTI /5%0.D07
SXTERNAL FON2 )

c
¢ CALCULATE THE SOLUTION TO THE PROBLEM Y® = Ys ¥ = 1 AT X =0
c USING THE RELATIVE ERPOR CONTROL OPTION
N =13 X = GeD0 3 IND = 2 3 TOL = 1<D=8
NW = 1 3 Yily = 1.D0 3 C{1) = 2.D0
c
c - QUTPUT HEADING
WRITE(6 1)

1 FORMATCIHI. 1SHOUTPUT FROM TEST3B

+ 7/ 1HOs 20X, 22HRELATIVE ERROR CONTROL

+ 7 1HOs SX, 3H X o 5Xe 4HY{1}s 9Xe I2HRELATIVE ERIs S5Xs

+ 12HNO FCN EVALS /7 '
c
c CALCULATE AND OUTPUT THE SOLUTIONs ITS RELATIVE ERROR AND THE
c NUMBER OF FUNCTION EVALUATIONS USED AT X = 5 10s eess S50

DO 310 K = Sy 50 5
XEND = DFLOATIK}
CALL DVERK{N, FCNZ2s Xs Yo XENDs TOLs INDs Cs NW, W)
c CHECK IND o+£G. 3 — COTHERWISE TAKE APPROPRIATE ACTION

RELERR = Y{1)/DEXP{X)} = 1.D0 :
WRITE(S6.,2) X» Yi13}s RELERR. C{24}

2 FORMAT(1H » S5Xe F3.0s 1P2D15.6s OPFiI2.07

10 CONTINUE

RETURN
END

QUTPUT FROM TEST3B

RELATIVE ERROR CONTROL

X Y{1) RELATIVE ERR NO FCN EVALS
5. 104841310402 =9.052112D0~08 128,
10. 2.2026467+04 =-1.863G18D=-07 256,
1S 2,2690160+06 ~2.818623D-07 384,
20. 4 .851650D+08 =~3,7742E50=-07 512
25, 7.200487D+10 =~4,7298870-07 640
30. 1.0686473¢13 =~5,685518D~07 768,
35. 1.5860120+15 ~6.641149D-07 896,
40 2.ISIBELD+ 17 ~7,5967800-07 1024,
45, 2,493425D+19 ~8,8524120~07 1182,
S0 5.1847010+21 =9.5080430-07 1280,

Figure 3B Relative error control is used with the
same problem that was considered in figure 3A. This time
DVERK is able to complete the integration to X=50. As one
would expect, fewer function evaluations are needed than
over the corresponding intervals in figure 3A; in fact, with
relative error control for this particular problem, the same
number are needed for each interval of equal size.



SUBRJIUT INE TEST4A

INTEGER Ns NWs IND, K

DOUBLE PRECISION Xs XENDs Y{2 )¢ YTRUE(Z2)s TOLs C{(32)s W{2:9),
+ ERR{2)

DATA C{13s C(23s CLT3s CL4Yy C(S)s C{(6BIs C(7)s ClB)y C(9) /9%0.D0O/
EXTERNAL FCN1

o4
[ CALCULATE AN ACCURATE SOLUTION TO THE PREDATOR-PREY PROBLEM
c USING THE RELATIVE ERRCOR CONTROL OPTION
N =2 3 X = 0.00 H YTRUE(1) = 1.D0
N¥ = 2 3 XEND = 20,00 H YTRUE(2) = 7.00
IND = 2 3 TOL = 1.,D-12 3 c{1) = 2.D0
€
CALL ODVERKIN, FONls Xs YTRUE; XENDs TOLs INDs Co NW, W)
C CHECK IND «EGe 3 =~ OTHERWISE TAKE APPROPRIATE ACTION
C
o CALCULATE AN ARPPROXIMATE SOLUTION TO THE PREDATOR-PREY PROBLEM
c USING ThE DEFAULT ERRCOR CONTROL GPTION
X = 000 H ¥Y{1i} = 1.D00 3 IND = 1
TOL = 1.D=3 3 Y{2} = 7.D00
C
CALL DVERK{N. FCNile+ Xs Yo XEND, TOL, INDs Co NW. W)
C CHECK IND +EQs 3 =« OTHERWISE TAKE APPROPRIATE ACTION
<
o CALCULATE THE ERRQORS AND ORINT THE RESULTS
ERR(1) = YTRUE(1) - Y(1)
ERR{2} = YTRUE(2) - Y(2)
WRITE(6+13 Y{1)» ERR{1)s Y(2}s ERRI{2)
1 FORMAT(1H1, IBHOUTPUT FROM TESTAA
+ 7 1HOs 77Xy 4HY{ 13}, 11Xs 64ERR(1}) ¢ 8X. AHY{(2) s 11Xs EHERRIZ2)
+ /7 IHO. 2(1PD17.6s 1PD12.3) )
C
RETURN
END

QUTPUY FRCM TESTSA
Y1} ERRC 13 Y23 ERR(2)

9s078123p-03 -8.909D-03 5.582552D+00 ~3.786D+00

Figure 4A The predator-prey problem is solved once
more, but with different initial conditions: Y, (0)=1,
Y,(0)=7. The value of Y, is very small over significant
intervals of the integration. A ”true”_§§1ution, YTRUE, to
this problem is calculated using TOL=10 and relative error
control. An approximate solution is then calculated using
TOL=10"° and the default error control. As can be seen
from the errors printed, the solution is quite inaccurate.



SUBROUT INE TESTSS

INTEGER Ns NWe INDs K

DOUBLE PRECISION Xeo XENDs Y{(23}s YTRUE(Z2)s TOLes C{323s W{2+9%,
¥+ ERR(2}

DATA C{13s C(23s C(33s Cl&Ys CUS)s CL6HIs CU73a CiBIe CL9} /9%0.00/
EXTERNAL FCNI

C
C CALCULATE AN ACCURATE SOLUTION TO THE PREDATOR=-PREY PRUBLEH
C USING THE RELAYTIVE ERRCR CONTROL OPTION
N = 2 3 X = 0.D0 H YTRUE(L) = 1.D00
NW = 2 3 XEND = 20.D0 3 YTRUE(2: = 7.00
IND = 2 3 TOL = 1.D=-12 3 Céll = 2.00
C
CALL OVERK{N, FCNIs Xo» YTRUE, XENDe TOLs INDs Ts NWe 81}
c CHECK IND +EQe 3 ~ OTHERWISE TAKE APPROPRIATE ACTION
c
C CALCULATE AN APPROXIMATE SOLUTION TO THE PREDATOR-PREY PRUBLEM
S USING ERROR CONTROL OPTION 4 ®WITH FLOOR VALUES 1.0-4 AND 1.00
X = 0.D0 b Y{1} = 1.D0 % IND = 2 H Ci31) = 1.0=4
TOL = 1.D=-2 ¢ ¥{2) = 7.00 3 Cl{1} = 4.D0 3 C€32y = 1.00
C
CALL DVERK{N,: FUNI» Xe¢e Yo XENDe¢ TOL s INDs Co Nos W)
[ CHECK IND +EQ. 3 ~ OTHERWISE TAKE APPROPRIATE ACTION
C
ot CALCULATE THE ERRORS AND PRINT THE RESULTS
ERR{1) = YYRUE(L)} - ¥(1)
ERR{(2} = YTRUEI(2} - Y2}
WRITE(S6s1) Y(1}s ERR{(1)s Y{(2}, ERR{2}
1 FORMAT(1H1, i13HOUTPUT FROM TEST4B
¢+ / 1HOe TXs 4HY(1)s 11Xe SHEPR{LIJe BXe 4HY{2}e¢ 11Xe SHERRI{2}
+ / 1HOs 2(1PD17:6s 1PD1IZ2.,3) 1}
C
RETURN
END

QUTPUT FRCM TESTSB

vii} ERR{1L? ¥Yi{z} ERR{Z}

1.693960D~04 =5.,4670=07 1.8831630+00 =S5.6450-02

Figure 4B This example is the same as the one in
Figure 4A except that the approximate soclution is calculated
using error control option 4 with the floor values C(31)=10""
and C(32)=1. As can be seen from the errors printed, the
solution is much more accurate in this example. In many
similar problems, controlling the error in a component with
a small value may be necessary. However, if one of the
components of the solution passes through zero, using relative
error control may lead to a division by zero (or a very small
number). Using error control option 3 or 4 with appropriately

chosen floor values may be the most suitable way to solve such
problems.
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It would be desirable to have a measure of the '"scale"
of a problem, from which each method can calculate an HMAX
that is appropriate to itself, and the SCALE parameter, C(5),
i1s an attempt to provide just such a measure. (Besides using
C(5) to determine HMAX, DVERK also uses it to modify the
acceptance criterion.)

DVERK's use of SCALE is based on a theoretical study
of the application of DVERK's formulas to homogeneous linear
equations with constant coefficients, where the appropriate
value of SCALE is exactly the Lipschitz constant (using a
max norm). The default value of SCALE is 1, from which the
subroutine computes a default value of 2 for HMAX. The user
can think of SCALE as a '"'reliability parameter'" in much the
same way that he can think of TOL as being an "accuracy
parameter'. Larger values of SCALE make the results more
reliable (HMAX is proportional to the reciprocal of SCALE),
just as smaller values of TOL make the results more accurate.

An example that illustrates the importance of using
SCALE is given in figure 5.

The use of C(7) to impose a limit on the number of
function evaluations to be allowed is straightforward. We
illustrate by modifying the example of figure 1 to impose
such a 1imit. As can be seen from the example in figure 6,
the 1imit we chose was exceeded when X reached the value
2.70282, and the subroutine returns to the calling progranm

with IND=-1.




SURBROUT INE TESTS
INTEGER Ns Nwe INDs 14 K

DOUBLE PRECISION X, XENDs Y(1}o TOLI3)s C{283+ W{1.9}s RELERR{3) s
+ SCALE(&Ys YTRUE
DATA SCALE / +125DCs +25D0s o500s 1.D0s 2.D0s 400 / »
+ ToL /7 1.0=5, L e0=7s 10=9 / o
* Cli3s C(2)s C(33s C{&}, CIB)s ClHBIs C{Ts C{B2s LU /9%0.D0/
EXTERNAL FCNZ
c
C CALCULATE THE SOLUTICN TO THE PROBLEM Y* = ¥ ¥ = 1 AT X = C
C USING SEVERAL VALUES OF SCALE AND TOL
Noo= 1 3 XEND = 10.00 M C{a} = 2.800
NE = 1 3 YTRUE = DEXP{XEND}
c
C QUTPUT HEACING .
WRITE(6,1) (TOL{I3s I = 1. 3}
1 FORMAT{1Hi, 70HOUTPUY FROM TESTS -~ RELATIVE ERROR FOR SEVERAL VALU
+ES OF TOL AND SCALE
+ / 1M0s 5Xs SHSCALEs 3{5Xs SHTOL =, 1PD8.13 / }
C
C FOR EACH VALUE OF SCALE AND TOL CALCULATE THE SOLUTION YO THE
c PROBLEM AND OUTPUT IYS RELATIVE ERROR
DN 20 K = 1, &
Ci{sy) = SCALE(K]}
DO 10 I = 1. 3
X = 04D0 3 YE1) = 130 3 IND = 2 )
CALL DVERKIN, FCN2s Xs Ys XENDs TOL{I}s; INDo Cs Nu, W}
c CHECK IND +EQe 3 =~ OTHERWISE TAKE APPROPRIATE ACTION
RELERR(IY = {(¥Y{1) - YTRUE} / YTRUE
i0 CONT INUE
WRITE(6,2) C{5)s (RELERR{I}. I = 1, 3)
2 FORMATU{LIH s F10 34+ 1P3D1B.6)
20 CONTINUE
C
RETURN
END

QUTPUT FrOM TESTS - RelLATIVE ERRCR FOR SEVERAL VALUES OF TOL AND sCALE

SCALE TOL = 1.0D-03 TOL = 10D=07 YOL = 1.0p=0C9%
0.125 -4,922¢95D-03 -4 ,909518D~03 -%,3094040-03
0250 ~4,915586D0=-03 -4, 9034590~-03 -44 S0 294 040-03
04500 -4,912483D0~03 -4 ,909431D~03 —-b&e 0404003
1000 ~2.160714D0-06 -1sB362730-08 -1e6755720~10
2.000 -1,0161840-06 -§,002836D0~09 -8,237650D~11
4,000 -5,1907140~07 ~-4,451122D-09 ~8, 11 7786D-11

Figure 5 The problem Y'=Y, Y(0)=1 is integrated from

0 to 10 with several values of SCALE and TOL, and the relative

error in the integration is printed.
should be greater than or equal to 1.
than 1, the error control is extremely unreliable.

For this problem, SCALE
When SCALE is less
When SCALE

is greater than 1, a modest improvement in the accuracy 1is

obtained.
with a poor choice of SCALE.
that such behavior is possible.

(Such dramatic unreliability is not likely to occur
However, this example demonstrates
It happened here because we

deliberately chose a '""bad"” value for HSTART.)



SUBROUTINE TES7Y6
INTEGER Neo NwWe IND, K
DOUBLE PRECISION X, XENDs Y(2})s TOLs C{24)s W(2+9)

DATA Clids CL2)s C{2)s Cl&3s CTUS)s C(HE)s C(T73s CL(8)s C(9) /9%0.DO/

EXTERNAL FCNI1

GO0

THE NUMBER OF FUNCTIUON EVALUATIONS TO 100
N 2 3 X Q.00 XEND 10.D0
NW 2 3% Y{i} 1.00 TOL 1+D=6
IND 2 3 ¥{2} FeDO cLr) 100.00

ouou
LI

PY
L]

CALL DVERK(Ns FCNis Xs Ys XEND, TOLs INDs Cs NW, W)

[ QUTPUT HEADING AND RESULTS
WRITE(SH13 INDs Xo Y{1)s Y23, C(24)
i FORMAT{IH1, 17HOUTPUT FROM TEST6

FH AT X =, F8.5
/ IH s SX, 10HAND Y{1) =+ 1PD12.5s 8H Y(2) =, 1PD12.5

t o b h e

OPF5.,0)

(a2l

RE=-CALL DVERK TO CAUSE AN ABORT
CALL DVERK{Ns FCNls Xs Ys XEND, TOLs INDs Cos NWs W)

RETURN
END

QUTPUT FROM TESTS

THE INTEGRATION TESMINATED WITE INp = -1 AT X = 2.70282
AND Y{1) = 1.B9519D0~01 VY{2} = 3.1279%D0-01

TNE NUMBER OF FUNCTION EVALUATIONS USED wAS 103.

COMPUTATION STOPPED IN DVERK €ITH THE FOLLOWING VALUES -

IND = ~% TOL = 1.000000D-06 X =
N = 2 HMIN = 9.,79587%D-10 XEND = 1.0000000000000000+01
KW = 2 HMAX = 2.0000000+00 PREV XEND = 0.0

NO OF SUCCESSFUL STEPS = 12.

NG OF SUCCESSIVE FAILURES = Oe

NG OF FUNCTION EVALS = 103.

THE COMPONENTS OF v ARE

1.8951871850235560~01 3,1279867150403330-01

CALCULATE THE SOLUTION TO THE PREDATOR-PREY PROBLEM BUT LIMIT

/ 1HOs S5Xe 37HTHE INTEGRATION TERMINATED WITH IND =. I3,

/7 1HOs SX. 43HTNE NUMBER JF FUNCTION EVALUATIONS USED WAS,

2.702B16859719279D+00

, Figure 6 The predator-prey problem is integrated
with the number of function evaluations limited to 100.
The integration terminates the step after this number is

exceeded. Then the subroutine is re-entered without

changing IND (IND=-1) to force it to abort and print its

eYYoT message.



To illustrate what happens when the subroutine
decides to "abort" the calculation, it is re-entered with
this negative value of IND. As mentioned earlier, the
subroutine has no reasonable course of action when entered
with such a value of IND, except to output current information
that might be of interest (and that might also help locate
the source of trouble), and then to stop. The second part
of the output with figure 6 shows what can be expected under
such circumstances.

We turn finally to the interrupt options. For these
it is helpful to have in mind an "overview' of the subroutine,
like the one presented on page 15. (A more detailed overview

is contained in the listing.)

Notice that the first interrupt, which is associated
with C(8), takes place just after the calculations have been
made in preparation for taking a trial step, including in
particular the calculation of the preliminary magnitude, HMAG,
of the trial step-size. However, the final value of HMAG
must still be determined; it could differ from the preliminary
value only if the calculations have reached a point close to
XEND. (If the subroutine cannot reach XEND exactly, with a

step-size whose magnitude is less than or equal to HMAG, it

will not attempt to go more than half-way to XEND. The
corresponding value of HTRIAL may also differ from HMAG

in sign.)



Initialization of options, counters, etc., and

the handling of re-entries after interrupts ==

Loop over the following, once for each trial step

SRE———

Do preparatory calculations, including HMIN,

e e

SCALE, HMAX and preliminary HMAG !

S

Interrupt no. 1 if requested --- re-entry €&—

Determine HMAG, XTRIAL, HTRIAL

Calculate YTRIAL

Calculate EST

P ——

Set IND=5 if acceptable, else =06

Interrupt no. 2 if requested --- re-entry e

Accept or reject, update if necessary,
perhaps return to calling program, etc.

End loop

OVERVIEW "Overview" of subroutine to help understand
how to make use of the interrupt options.

The second interrupt, the one associated with C(9),
takes place immediately after the subroutine has decided
whether or not it would accept the most recent trial
calculation, and has set IND accordingly, but before it has
taken any action. This means that the user has all possible
information at his disposal (including the previous value
of Y, the new trial value of Y, and the error estimate), and
is also in a position to change the decision of the subroutine
{by forcing it to accept what it had planned to reject, or

vice versa).



An example illustrating the second interrupt is
presented in figure 7, where DVERK is used to determine the
value of X at which Y reaches a prescribed value.

One more remark about the use of options should be
made before concluding this section. It should be pointed
out that any option can be either initiated, or altered from
a previous selection, prior to any re-entry to the subroutine.
The other values of C(1) through C(9) do not need to be
initialized, or re-initialized, and the value of IND need not
be changed. For example, on a normal re-entry with IND=3,

a new error control option could be selected. Or,.on re-entry
after an interrupt with IND=4, 5 or 6, a new value of HMAX or HMIN
could be selected; the new value would not take effect instantly,

of course, but only when the new internal value is determined

in preparation for the next trial step. (E.g., a new HMAX

was used in figure 7.)

When Not to Use

On the basis of both theoretical and experimental
comparisons, we believe that the formulas on which this
subroutine is based are the best of their kind that are
currently available. They appear to be as efficient and
reliable as the corresponding better-known formulas of the
same order that were developed earlier by Fehlberg (which

are reported on elsewhere (1)), but they do not have the



SUBROUT INE TEST?
INTEGER Ns NWse INDe K :
DOUBLE PRECISION Xs XENDe Y{1)s TOL, C(28}, W{1+9)s XLOWs XHIGH,
+ EPS, ROOT
DATA C{1}s C{2})s CU3)s C{&)s C(Shs ClE}s CiTHs C(8)s CU(G} /9%0.D0/
EXTERNAL FCON2

ol
N =1 3 X = 0.D0 3 TOL = 1.D-6 3 EPS = 5,D=4%
NW =1 3 XEND = 1.02 3 C{1)} = 2.D0
IND = 2 Y1} = 1.D0 3 C(9) = 1.D0
[
c LDOP UNTIL AN ACCEPTABLE VALUE OF YTRIAL IS GREATER-EQUAL 100
10 CALL DVERK(N, FCN2, Xs Ys XENDy TOL+ INDs, Cy NW,. W)
IF {{INDeEQG«S) oAND. (W(1:9).GE.100.D0)} GO TO 20
GO TO 10
28 CONTINUE
XLO¥ = X 3 XHIGH = C(17) 3 IND = 6
C
¢ LOOP USING THE BISECTION METHOD UNTIL (XHIGH — XLOW) oLE. EPs
30 iF ({XHIGH -~ XLOW} J.LE. EPS) GO TO 60
c SET HMAX = {XHIGH ~ XLOW) / 2
C(6) = {XHIGH - XLOW} / 2.00
CTALL OVERK{N, FCNZ2,2 X» Ys; XENDs TOL+ INDs Co NWs )
IF (CINDuNZLS) oDRe (W(1+2)aLT.100.D0)) GO TO 40
c YTRIAL ACCEPTABLE AND GE 100 - RESET XHIGH AND REJECT STEP
XHIGH = C{17}
IND = 6
40 CONT INUE )
IF ({IND.NELS) ORe (W{149).GE.100.D03) GO TO 50
c YTRIAL ACCEPTASLE AND LT 100 - RESET XLOW AND ACCEPT STEP
XLOW = C(17}
50 CONT INUE
60 1O 3¢
60 CONTINUE
c
c OUTPUT THE APPROXIMATE SOLUTION TO THE EQUATICN EXP(X} = 100

ROCT = (XHIGH + XLOW: / 2.D0

WRITE{6.,1) ROOT
1 FORMAT(1IHI. 17HOUTPUT FROM TEST?
+ S IHG, SX, ABHTHE SOLUTION OF EXP(X} = 100 IS APPROXIMATELY.
+ F6.3 } )

(3}

RETURN
END

QUTPUTY FROM TEST?

THE SCLUTION OF EXPiX) = 100 IS APPROXIMATELY 4,605

Figure 7 This example demonstrates the use of
interrupt number 2. The problem Y'=Y, Y(0)=1 is integrated
until YTRIAL,W(1,9), is greater than or equal to 100. Then
the bisection method is used to approximate the solution to
the equation exp(x)=100. This example also demonstrates the
use of the HMAX specification option.
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weakness with respect to differential equations of the
simple form y'=f(x), which is common to all Fehlberg methods
of order greater than 4. They also seem to have some other
advantages as well (3). Some less extensive testing suggests
that this subroutine is also able to cope with problems
involving discontinuities.

However, there are three kinds of problems for which
this subroutine would not be as efficient as currently
available alternatives:

(a) Stiff systems It is well-known that éxplicit Runge-Kutta

methods cannot compete with specially designed stiff methods
on any but very mildly stiff systems. For further information
about stiff methods see (2), or try DVOGER from the IMSL
library, or GEAR or EPISODE, which are available from the
Argonne Code Centre.

(b} Interpolation If output is required at very

finely spaced values of X, as for example in graphical output,
the user should consider using a variable-order-Adams program,
such as DVOGER from IMSL or DE/STEP from Argonne. (Gear

and EPISODE have options to provide such Adams methods as
well. Programs of this type have also been developed by Krogh
at JPL, and Sedgwick at the University of Toronto.) These
programs provide the information needed for interpolation
between step points.

(¢) Expensive functions If the function evaluations

are expensive, so that most of the computer time is spent
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in such evaluations, and the overhead of variable-order-Adams
methods is not too important, an advantage in efficiency of

perhaps 2 or 3 to 1 can be obtained with Adams methods.

Machine Dependencies

DVERK has been written to run in double precision on
an IBM 360/370. A single precision version, SVERK, is also
being developed. |

In any event, the only 360/370 dependent part of the
code of which we are aware appears in the machine constant
RREB. RREB is the relative roundoff error bound. It is
computed following statement 35, and assigned to C(10). As
can be seen, the value for the 360/370 in double precision
is 16%%(-13). (In single precision on the same machine it
would be 16%%(-5).)

DWARF is a very small machine number. It is computed

immediately after RREB and assigned to C{11). We have somewhat

arbitrarily chosen the value to be 10%x(-50). (We originally
chose the smallest positive machine number for the 360/370,
namely 16=##(-65), but its computation overflowed; even
16#%%(-63) gave trouble with one of our compilers.)

The coefficients in the integration formulas have
been given in the form of integers, with the lowest common
denominator factored out. Our purpose in doing it this way

was to help make the program more portable, and at the same
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time to avoid possible inefficiencies that would exist if the
coefficients were left as fractions. On the other hand, the
number of digiss is too great for single precision on some
machines (for example, the 360/370}, and the program would
have to be modified accordingly.

Two changes in the declarations are needed in the
subroutine if it is to be run under a WATFIV compiler. It
is necessary to declare the dimension of C to be large enocugh,
namely 24 (unless C(l) is to be set equal to 4 or 5, in which
case the dimension would have to be at least N+30). Also,
it is necessary to declare DABS, DMAX1l, DMIN1, and DSIGN to

be DOUBLE PRECISION.

Availability of Program

The subroutine DVERK, along with the subroutines
TEST1, TEST2, ..., TEST7 given in this report, the subroutines
FCN1 and FCN2 that they use, and a driver program, are available
on cards or tape. The driver program, FCN1 and FCN2 afe as

follows:

CALL TESTI
CALL TYESTZ
CALL TEST34
CALL TEST3E
CALL TEST44
CALL TEST4B
CALL TESTS
CALL TESTY
CALL TESTS

SToE
END



SUBROUT INE FCNLIENs Xe Ys ¥YP}
INTEGER W
DOUBLE PRECISICN Xs YIN}, YP{N}

YPULY = 2.00 % ¥Y{i} % (1.D0 = Y(2})
YP{2) = ¥{2} = {¥Y{1) = 1.D0}

RETURN

END

SUBROUTINE FCON2INs Xs Yo YB)
INTEGER N

DOUBLE PRECISION Xe YIN}s YO{N)
YLl = Y1} )
RETURN

END

(TEST6 is called last because it causes DVERK to stop execution

The assignment statements in TESTl, etc., that are separated
by semi-colons in this report appear on separate lines in
what will be sent, so that the driver and tests are in
standard Fortran; the semi-colons were used in the figures

of this report only to save space.)

To cover handling and mailing, the cost for a card

A

deck is $35.00 and for a tape $25.00. To obtain a copy on

tape, 1t is necessary to send a tape (a mini tape is

sufficient). The DVERK tape is a 9 track, 800 BPI source
tape consisting of 2 files (the first contains the driver
program, FCN1, FCN2Z, TEST1, TESTZ, ..., TEST7 and the second

contains DVERK}. The data set attributes are DCB=(LRECL=80,

BLKSIZE=800, RECFM=FB, DEN=2). The tape has no labels.

e

e



Requests for DVERK should be mailed to
DEPARTMENT OF COMPUTER SCIENCE
McLENNAN PHYSICAL LABORATORIES
UNIVERSITY OF TORONTO
TORONTO, ONTARIO, CANADA

ATTENTION: T. E. HULL

Cheques should be made payable to the University

of Toronto.
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DVERK Listing:

SUBROUT INE DVERK{Ne FCNs X¢ Yo XENDs TOL s INDe Co NWs W)
INTEGER Ne INDs N¥W,s K
DOUBLE PRECISION X, Y{ON)s XENDs TOLs C{1Js W{NW,0)s TEMP

Cheddardd Rk wkdk wk ki &k dok kool & o ok ok ko ko ok o Kok dook ok o ok o o ook ek o ook SOk skob 90K ek koo sk koK

PURPOSE - THIS IS A RUNGE-KUTTA SUBROUTINE BASED ON VERNER?S
FIFTH AND SIXTH ORDER PAIR OF FORMULAS FOR FINDING APPROXIMATIONS TO
THE SOLUTION OF A SYSTEM 0OF FIRST ORDER ORDINARY DIFFERENTIAL
EQUATICNS WITH INITIAL CONDITIONS. IT ATTEMPTS TO KEEP THE GLOBAL
ERROR PROPORTICNAL YO A& TOLERANCE SPECIFIED BY THE USER, {THE
PROPORTIONALITY DEPENDES  ON THE KIND OF ERROR CONTROL THAT IS USED,
AS WELL AS THE DIFFERENTIAL EQUATION AND THE RANGE DOF INTEGRAT IONG}

VAR JCUS CPTIONS ARE AVAILABLE TO THE USER, INCLUD ING DIFFERENT
KINDS OF ERROR CONTROL, RESTRICTIONS ON STEP SIZES, AND INTERRUPTS
FHICH PERMIT TrE USER TO EXAMINE THE STATE OF THE CALCULATION (AND
PERHAPS MAKE MODIFICATIONS! DURING INTERMEDIATE STAGES .

THE PROGRAM IS EFFICIENT FOR NON=~STIFF SYSTEMS. HOWEVER, A GOUD
VARIABLE~-ORDER-ADAMS METHOD WILL PROBABLY BE MORE EFFICIENT 17 THE
FUNCTION EVALUATIONS ARE VERY COSTLY. SUCH A METHCOD WOULD ALSD BE
MORE SUITABLE IF ONE WANTED TO USTAIN A LARGE NUMBER OF INTERMEDIATE
SOLUTION VALUES 8Y INTERPOLATION., AS MIGHT 8E THE CASE FOR EXAMPLE
WITH GRAPHICAL OUTPUT.

HULL=ENRIGHT-JACKSON 1/710/786
T L T HREERERRREERREF AR AR R KA R %
USE -~ THE USER MUST SPECIFY EACH OF THE FOLLOWING.
N NUMBER OF EQUATIONS

FON NAME (OF SUBROUTINE FOR EVALUATING FUNCTIONS - THE SUBROUTINE

ITSELF MUST ALSO BE PROVIDED 8Y THRE USER - IT SHOULD BE OF
THE FOLLOWING FORM

SUBROUTINE FIN(N, X, Y YPRIME}

INTEGER N

DOUBLE PRECISIUN X, YIN}, YPRIME(N}

%% ETC *%=%

AND 17 SHOULD EVALUATE YPRIME., GIVEN N. X AND ¥

X INDEPENDENT VARIABLE - INITIAL VALUE SUPPLIED BY USER

Y DEPENDENTY VARTARBLE - INITIAL VALUES 0OF COMPONENTS YUi1ls YIi(Z23.
swsr TIN} SUPPLIED B8Y USER

XEND VALUE OF X TO wHICH INTEGRATION IS TO BE CARRIED QUT - IT MAY
BE LESS THAN THE INITIAL VALUE OF X

TOL TYOLERANCE ~ THE SUBROUTINE ATTEMRYTS 7O CONTROL A NORM OF  THE
LOCAL ERRDOR IN SUCH A WAY THAT THE GLOBAL ERROR IS
PROPORTIONAL TO TOL. IN SOMFE PROBLEMS THERE wiL. BE ENOUGH
DAMPING OF ERRDORS, AS WELL AS SOME CANCELLATION, SO THAT
THE GLOBAL ERROR WILL BE LESS THAN TOL. ALTERNATIVELY. THE
CONTROL CAN 8E VIEWID AS ATTEMPTING TO PRCOVIDE A
CALCULATED YALUE OF Y AT XEND ¥HICH IS THE EXACT SOLUTION

OO0 OO0 00000000 0Aa000
LR L S S S A R B A A A A I A A I A A N E E R E R E R E T T % #
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TO THE PROBLEM Y* = FIX,¥Y)] + E{X} WHERE THE NORM OF EIX}
1S PROPORTIONEL 7O TOle { THE NORM 1S A MAX NORM  WITH
KEIGHFTS THAT DEPEND ON THE ERROR CONTROL STRATEGY CHOSEN
BY THE JSER. THE DEFAULT WE IGHT FOR THE K-TH COMPUNENT IS
1 /MAX{ 1, ABS{Y{K} ) WHICH THEREFCRE PROVIDES A MIXTURE OF
ABSOLUTE AND RELATIVE ERROR CONTROLe}

iWD INDICATOR - ON INITIAL ENTRY IND MUST BE SET EQUAL TO EITHER

1 0OR 2. IF THE USER BOSS NOT ®ISH TO USE ANY GPYIONS, HE
SHOULD SET IND 7O i = ALL THAT REMAINS FOR THE USER T3 00O
THEN 1S TO DECLARE C AND W AND TO SPECIFY NW. THE USER
“AY ALSO SELECT VARIOUS OPTIONS ON  INITIAL ENTRY BY
SETTING IND = 2 AND INITIALIZING THE FIRSY § CIUPONENTS OF
C AS DESCRIBED IN THE NEXT SECTION. HE MAY ALSO RE-ENTER
THE SUBROUTINE WITH IND = 3 AS MENT IONED AGAIN BELOW. IN
ANY EVENT, THE SUBROUTINE SETURNS WITH IND EQUAL TO

3 AFTER A NORMAL RETURN

4¢ S5¢ OR 6 AFTER AN INTERRUPT (SEE OPT IDNS ci{B3e CL9}I

-3y =2s OR =3 AFTER AN ERROR CONDITION (SEE BELOW )

C COMMUNICATICNS VECTOR - THE DIMENS ION MUST BE GREATER THaN OR
EQUAL TO 24s UNLESS OPTION ¢(1y = & OR S IS USED. IN wHICH
CASE THE DIMENSION MUST BE GREATER THAN OR EQUAL 7O =

NW FIRST DIMENSION OF @ORKSPACE ¥ ~ MUSY BE GREATER THAN OR
EQUAL TO N )

W WORKSPACE MATRIX =~ FIRST DIMENSION MUST BE NW AND SECOND MUSY
8 GREATER THAN OR EQUAL 7O G

THE SUBROUTINE WiItbL NORMALLY RETURN WiITH IND = 3 HAV ING
REPLACED THE INITIAL VALUES OF X AND Y ¥ITHo. RESPECTIVELYs TYHE VALUE
OF XEND AND AN APPROXIMATION TO ¥ AT XEND. THE SUBRDUTINE CanN  BE
CALLED REPEATEDLY 9ITH NEW VALUES OF XEND wITHOUT HAYING TO CHANGE
ANY . OTHER ARGUMENT. HOWEVER, CHANGES IN TOL. OR ANY OF THE OPTIONS
DESCRIBED BELOWs MAY ALSCO BE MADE ON SUCH A RE-ENTRY IF DESIRED.

THREE EFROR RETURNS ARE ALSO POSSIBLE, IN WHICH CASE X AND Y
WILL BE THS MOST RECENTLY ACCEPTED VALUES -

wITH IND = =3 THE SUBROUTINE WAS UNABLE 1O SATISFY THE ERROR
REQUIREMENT WITH A PART ICUL AR STEP=SIZE THAT IS LESS THANM DR
EQUAL TO HMIN, WHICH MAY MEAN THAT TOL IS TOO SMALL

WITH IND = =2 THE VALUE CF HM TN 1S GREATER THAN HMAXS WHICH
PROBAELY MEANS THAT THE REQUESTED TOL (wWHICH IS USED IN THE
CALCULATION OF HMIN} IS TGO SMALL ’

WITH IND = =1 THE ALLOW¥WED MAX TMUM NUMBER OF FCN EVALUATIONS HAS
BEEN EXCEEDED, BUT THIS CAN ONLY CCCUR IF OPTION Ci{73: AS
BESCRIBED IN THE NEXY SECTION, HAS BEEN USED

THERE ARE SEVERAL CIRCUMSTANCES THAT wWitt CAUSE THE CALCULATIONS
TOo B8F TERMINATED. ALONG WITH OUTPUT OF INFORMATION THAT ®wILL HELP
THE USER DETEPMINE THE CAUSE OF THE TROUBLE. THESE CIICUMSTANCES
INVOLVE ENTRY WITH {LLEGAL OR INCONSISTENT VALUES OF THE ARGUMENTS.
SUCH AS ATTEMPTING A NORMAL RE~ENTRY W®WITHOUT FIRST CHANGING THE
VALUS OF XEAD. OR ATTEMPTING TO RE-ENTER WITH IND LESS THAN ZERJI.
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OPTIoNS -« IF THE SUBROUTINE 1S ENTERED WITH IND = 1, THE FIRSY g
COMPONENTS OF THE COMMUNICATIONS VECTOR ARE INITIALIZED TD ZEROs AND
THE SUBROUY INE USES ONLY DEFAULTY VALUES FDOR EACH OPTION. IF  THE
SUBROUT INE IS ENTERED WITH IND = 2, THE USER MUST SPECIFY FACH OF
THESE 9 COMPONENTS = NORMALLY HE WOULD FIRST SEYT THEM ALL TO ZERO,
AND THEN MAKE NON-ZERD THOSE THAY CORRESPOND TO THE PARTICULAR
OPTIONS HE WISHES TO SELeEdCT. IN ANY EVENT., OPTIONS MAY RE CHANGED ON
RE=-ENTRY TO THE SUBROUTINE = B8UT IF THE USER CHANGES ANY CF THE
OPTIONSs OR TOL, IN THE COURSE 0OF A CALCULATION HE SHOULD BF CAREFUL
ABOUT HOW SUCH CHANGES AFFECT THE SUBROUTINE - IT MAY Bf BFTTER TO
RESTART WiTH IND = 1 OR 2. (COMPONENTS 10 TO 24 OF C ARE USED BY THE
PROGRAM - THE INFORMATION IS AVAILARLE TO THE USER, BUT SHOULD NOT
NORMALLY BE CHANGED BY HIM.) :

C{id ERROR CONTROL INDICATOR -~ THE NORM OF THE LDOCAL ERROR IS THE
HMaxXx NORM 0OF THE WEIGHTED ERRDOR ESTIMATE VECTOR. THE
WEIGHTS BEING DETERMINED ACCORDING TO THE VALUE OF C(1) -

IF C{13=1 THE ¥EIGHTS ARE 1 (ABSOLUTE ERRCR CONTROL)

IF C{1)=2 THE WEIGHTS ARE 1/ABS{Y(K}) (RELATIVE ERROR
CONTROL )

IF C{13¥=3 THE ®WEIGHTS ARE 1/7MAX{ABS{C{2}}),ABS{YI(K)}))
{RELATIVE ERROR CONTROL. UNLESS ABS({YI(K}} IS LESS
THAN THE FLOOR VALUE, ABS{C{2}} )

IF C{1j=4 THE WEIGHTS ARE 1/MAX{ABS{C{K+30)}3+ABS(Y{K}})
(HERE INDIVIDUAL FLOOR VALUES ARFE USED)

IF C{13=5 THE WEIGHTS ARE 1/ABS{CI{K+30)}

FOR ALL OTHER VALUES OF C(1})., INCLUDING C(1) = 0, THE
DEFAULY VALUES OF THE WEIGHTS AFE TAKEN TO BE
I7MAXLL s ABS({Y{KY) }s AS MENT IONED FARLIER

{IN THE TWO CASES C{1} = 4 OR S THE USER MUST UECLARE THE
DIMENSION OF € 7O BE AT LEAST N+30 AND MUST INITIALIZE THE
COMPONENTS C{313s C{32%0 sses CIN#30).1}

C{2) FLOOR VALUE - USED WHEN THE INDICATOR C(1} HAS THE VALUE 3

C{3} HMIN SPECIFICATION - [F NOT ZERO., THE SUBROUTINE CHODSES HMIN
TO BE ABS{C{3)} - OTHERWISE IT USFS THE DEFAULT VALUE
10 MAX{DWARF ,RREB*¥MAX{WE IGHTED NORM Y/ TOLABS(XJ) )3,

WHERE DWARF IS A VFRY SMALL POSITIVE MACHINE  NUMBER AND

RREB IS THE RELATIVE ROUNDOFF ERROR BOUND

Ci4}) HSTART SPECIFICATION - IF NOT ZERO, THE SUBROUTINE WwWILL USE
AN INITIAL HMAG EQUAL YO ABS(C{4}}. EXCEPTY OF COURSE FOR
THE RESTRICTIONS IMPUOSID BY HMIN AND HMAX < OTHERWISE IT
USES THE DEFAULY VALUE OF HMAXER({TCLI*%{1/6}

SCALE SPECIFICATION - THIS IS INTENDED TO BE A MEASURE OF THE
SCALE CF THE PROBLEM -~ LARGER VALUES UOF SCALFE TEND TO MAKE
THE METHOD MORE RELIABLE., FIRSYT B8Y POSSIBLY RESTRICTING
HMAX {AS DESCRIBED BELOW) AND SECONDs BY TIGHTENING THE
ACCEPTANCE REQUIREMENT = IF C{S$}) IS ZERU. A DEFAULT WYALUE
OF 1 IS WUSED. FOR LINEAR HOMDGENEOUS PROBLEMS WITH
CONSTANY COEFFICIENTS, AN APCROPRIATE VALUE FOR SCALE IS A
NORM OF THE ASSOCIATED MATRIXe. FOR OTHER PRUBLEMS, AN
APPROXIMATION TO AN  AVERAGE VALUE OF A NOIM OF THE
SJACOBIAN ALONG THE TRAJECTORY MAY EBE APPROPRIATE

8}
o
¢
et

Ci63 HMAY SPECIFICATION -~ FOUR CASES ARE POSSIBLE
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IF C{81eNE<0 AND C{S3:NE:0. HMAX IS TAKEN 70O BE

INTERRUPT THE CALCULATIONS AFTER 1T HAS

RE-ENTERED WITH IND = 4

DECIDED WHETHER (R NOT TO ACCEPT THE RESULT OF

IND = 6 IF I7T PLANS TUO REJECY = VY(*} IS THE

SUMMARY OF THE COMPONENTS OF THE COMMUNICATYIONS VECTOR

GF THE USER

C(23 FLOCR VALUE €123 WEIGHTED NORM Y
Ci{3) HMIN SPECIFICATION CL13) HMIN

Cil4ay HSTART SPECIFICATION {143 HMAG

C{5) SCALE SPECIFICATION €{153 SCALE

Cl{6) HMAX SPECIFICATION CL16) HMAX

C{7} MAX KC OF FON EVALS CL17F XTRIAL

Ci83 INTERRUPT NO 1§ €{183 HTRIAL

C{9}) INTERRUPT NO 2 c{193 EST

{2035 PREVIOUS XEND
C{21) FLAC FOR XEND

C{243 NO OF FCON EVALS

ﬁnnnnnnnnnnnnmnnnnnnnﬁnnnnnnnnnnnnnnnnnnnnnnnnnnnnmr\hnﬂnnn

MIN(ABS{C(6) ) <2/7ABS{C{5}}
IF C{63NE.D AND C{53.EQels HMAX IS TAKEN TO BE ABSI{C{8}}
IF C{63sE0e0 AND C{S8} NE.0s HMAX IS TAKEN YO BE
‘ Z/ABS{C{(5})
IF Cl{B3.ENG.0 AND C{5}EQ.0s HMAX IS GIVEN A DEFAULT VALUE

oF 2

C{7)} MAXIMUM NUMBER 0OF FUNCTION EVALUATIONS =~ IF NOT ZEROs AN
ERROR RETURN WITH IND = -1 WILL BE CAUSED WHEN THE NUMBER
OF FUNCTION EVALUATIONS EXCEEDS ABS{CH(7))

C{8) INTERRUPT NUMBER 1 = IF NOT ZEROs THE SUBROUTINE WILL
‘ CHOSEN ITS
PRELIMINARY VALUE OF HMAGs AND JUST BEFORE CHOOSING HTRIAL
AND XTRIAL IN PREPARATICN FOR TAKING A STEP (HTRIAL MAY
DIFFER FROM HMAG IN SIGN, AND MAY REQUIRE ADJUSTMENT IF
XEND IS NEAR) - THE SUBROUTINE RETURNS WITH IND
WILL RESUME CALCULATION AT THE POINYT OF INTERRUPTION IF

= & AND

C{9} INTERRUPYT NUMBER 2 = IF NOT ZERO. THE SUBROUTINE witil
INTERRUPT THE CALCULAT IONS IMMEDIATELY AFTER

IT HAS
THE  MOST

RECENT TRIAL STEP. WITH IND = S IF IT PLANS TO ACCEPT, OR
PREVIDUSLY
ACCEPTED RESULT, WHILE W(%,9) IS THE NEWLY COMPUTED TRIAL
VALUEs AND W({*,2}) IS THE UNWE IGHTED ERRKRCR ESTIMATE VEUTUOR.
THE SUBROUTINE WILlL RESUME CALCULATIONS AT THE POINY OF
INTERRUPTION ON RE-ENTRY wiITH IND = 5 CR 6. {(THE USER HAY
CHANGE IND IN THIS CASE IF HE WISHES. FOR EXAMPLE YO FORCE
ACCEPTANCE OF A STEP THAT WOULD OTHERWISE BE REJECTED, OR
VICE VERSA. HE CAN ALSO RESTARTY WITH IND = 1 OR 2.3}

REEKERFFR B RREERRB IR AR A AR R SRR ISR AR R R R R AR E ARG ARG RK R AR RE LT Rk ke k®
PRE SCRIBED AT THE OPTICN DETERMINED 8Y THE PROGRAM

€103 RREBIREL ROUNDOFF ERR BNDI}
C{i} ERRCR CONTROL INDICATOR C{11} DWARF (VERY SMALL MACH NO}

C{22) NO OF SUCCESSFUL STEPS
{233 NO OF SUCCESSIVE FAILURES

IF C{1} = & OR 5, C{31)s C{32}¢ soe CI(N¢3I0} ARE FLOOR VALUES
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AN OVERVIEW OF THE PROGRAM

BEGIN INITIALIZATION, PARAMETER CHECKING.: INTERRUPT RE~ENTRIES
eessss ABORT IF IND DUT COF RANGE 1 T0O &
s CASES = INITIAL ENTRY., NORMAL RE-ENTRYs INTERRUPT RE«-ENTRIES
® CASE 1 = INITIAL ENTRY (IND E0. 1 OR 2}
VessaoossABORT IF N.GT«NW OR TOLLESO
IF INITIAL ENTRY WITHOUT OPTIONS (IND +EQ. 1)
SET C{1} TO C{9} EQUAL TO ZERQ
ELSE INITIAL ENTRY WITH OPTIONS {(IND +EQe 2)
MAKE C{1} TO C{9) NON-NEGATIVE
HMAKE FLOOR VALUES NON=NEGATIVE IF THEY ARE TO BE USED
END IF
INITIALIZE RREBs DWARF, PREVY XEND, FLAG, COUNTS
CASE 2 = NORMAL RE-ENTRY (IND oEQ. 3)
cescese ses ABORT IF XEND REACHED, AND EITHER X CHANGED OR XEND NOT
RE=- INITIALIZE FULAG .
CASE 3 - RE~-ENTRY FOLLOWING AN INTERRUPT (IND .EQ. 4 TG 6)

¢ & ® © & & @

©

L]

&
v TRANSFER CONTRUOL TO THE APPRUPRIATE RE~ENTRY POINTeosssee
. END CASES . B
% END INITIALIZATION: ETC, -
@ A4
» LOOP THROUGH THE FOLLOWING 4 STAGEFS.: ONCE FOR EACH TRIAL STEP .
° STAGE 1 - PREPARE e
Ak hkak xR 4EFROR RETURN {(WITH IND==1) IF NO OF FCN EVALS TOO GREAT .
® CALC SLOPE {(ADDING 1 TO NO OF FCN EVALS)Y IF IND JNE. &6 -
° CALC HMIN. SCSLE. HMAX °
Rk Exd Rk ekEIRROR RETURN {(WITH IND==2} IF HMIN GT. HMAX .
® CALL PREL IMINARY HMAG »
REEEARERERELINTERRUPT NO 1 (®ITH IND=4} IF REQUESTEDs eeeeeeRE~ENTRY .V
« CALC HMMAG: XTRIAL AND HTRIAL .
s END STAGE 1 -
¥ STAGE 2 = CALC YTRIAL {ADDING 7 TO NO COF FCN EVALS)
o STAGE 3 -~ CALC THE ERRDR ESTIMATE e
® STAGE 4 -~ MAWKE DECISIONS .
& SET IND=5 IF STEP ACCEPTABLE. ELSE SET IND=6 -

kb dh e ke I NTERRURPRT NO 2 IF REQUESTEDecowccossocrcossssosseRE~ENTRYV
IF STYEP ACCEPTED {(IND .EQ. 5}
UPDATE X, ¥ FRUOM XTRIAL. YTRIAL

®
@ ADD 1 TO N COF SUCCESSFUL STEPS
e SEY NQO OF SUCCESSIVE FAILURES TC ZERCD
ke g E bRk SRR ERETURN{WITH IND=3, XEND SAVED., FLAG SET} IF X .EQe XEND
® ELSF STEP NOT ACCEPTED (IND E0C. 61}
® ADD 1 TO NO OF SUCCESSIVE FAILURES
kR ERFHEER BRERXRERRMIR RETURN {(WITH IND==3) IF HMAG «LE. HMIN
» END IF
s END STAGE 4

s END LOOP
&
HBEGIN ABORTY ACYTION
OUTPUT APPROPRIATE MESSAGE ABOUT STOPPING THE CALCULATIONS,
ALONG WITH VALUES OF INDs Ns N¥e TOLs HMINe HMAX, Xe XEND
PREVIOUS XEND., NI OF SUCCESSFUL  STEPS, NGO OF  SUCCESSIVE
FAILURES, NGO OF FCN EVALS. AND THE COMPONENTS OF Y
sYopP
END ABQRY ACTION
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* BEGIN INITIALIZATION, PARAMETER CHECKING, INTERRUPT RE-ENTRIES %
AER KR KRR AR R AR AR AR R R AR AL E AR RN ER R AR KRR KR A G ek SR TR RE AT SR

[eNsNeNaNs RS

sseees ABORT IF IND OUT OF RANGE I YO 6
IF {IND.LTsl oORoe INDsGTe5} GO 7O S00

aon

CASES - INITIAL ENTRY: NORMAL PRE-ENTRYs INTERRUPY RE-ENTRIES
GO TO (Ss S5 45, 1111 2222, 22223 IND
c CASE 1 = INITIAL ENTRY {IND .EG. 1 OR 2}
[of sesanasssas ABORT IF N.GT.Nw OR TOL LED
s IF (N GT«NW +0ORs TIL.LE.C«DO) GO TO 500
IF { INDJ.EG. 2} GO TO 15.
c INITIAL ENTRY ®WITHOUT OPTIONS (IND «ECe 1}
o : SEY C{1} TO C{%} EQUAL YO ©
PO 10 K = 1s B
C{K} = 0.,D0C
10 CONTINUE
GO TO 35
is CONT INUE
o INITIAL ENTRY WITH OPTIONS {IND EGs 2)
c MAKE C{1) TO C{9} NON-NEGATIVE
DO 20 K = 1s 9
Ci{K) = DABS(C{K})
20 CONTINUE
c MAKE FLOOR VALUES NON-MNEGATIVE IFf THEY ARE TIJ BE USED
IF {(C(1)eNE.4D0 ANDe CE1)NE,5.D0) GO TO 30
DO 25 K = is N :
. C{K#=20) = DABS(C{K+30}1}
25 CONTINUE
30 CONT INUE
3s CONTINUE
C INITIALIZE RREB, DWARF, PREV XENDs FLAGs COUNTS
Cli0) = 16.00%%x{=-13}
Clit) = 1.,D=50
c SET PREVIOUS XEND INITIALLY TO INITIAL VALUE OF X
C{20y = X :
DO &40 K = 21s 24
ClK) = 000
40 CONT INUE
GO TO S0
CASE 2 = NORMAL RE-ENTRY {IND .EG. 3¥
csvces ses ABORT IF XEND REACHED, AND EITHER X CHANGED OR XEND NOT
45 IF (C{21) «NELQ.DD «AND.
+ {XNEC{20) «DR. XEND.EG.C{20}}3 G0 TO 500
o RE~-INITIALIZE FULAG
C{Z21) = 0.00
GO TO S0
CASE 3 - RE~-ENTRY FCOLLOWING AN INTERRUPTY (IND 2EQe. 4 TUO 61}
TRANSFER CONTROL TO THE APPROPRIATE RE-ENTRY POINTescecsssee
THIS HAS ALREADY BEEN HANDLED BY THE COMPUTED GO YO .
END CASES 1%
50 CONT INUE .

[N o]

GO0 n

(o]

END INITIALIZATIONs ETL,

(8 2a 1
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C * LOOP THROUGH THE FOLLOWING 4 STAGES., ONCE FOR EACH TRIAL STEP =
C F UNTIL THE OCCURRENCE OF ONZ OF THE FCLLOWING *®
C * (A} THE NORMAL RETURN {(WITH IND .EQ. 3} ON REACHING XEND IN *
c * STAGE 4 *
c = {B) AN ERROR RETURN (WITH IND .LT. 0) IN STAGE 1 OR STAGE &4 =
c * (C) AN INTERRUPT RETURN (WITH IND .EQe 4, 5 OR 6, IF =
C * REQUESTEDs IN STAGE 1 OR STAGE 4 *
z BEERRERRFRIRRE KA AR AR FOR ok R A KR R K R R oK Rk ok R Rk ok ok ok K Ok
c

$I999 CONTINUE

<

c R R e R R L L
< # STAGE 1 ~ PREPARE - DO CALCULATIONS OF HMIN, HMAX, ETC.. =
< ® AND SOME PARAMETER CHECKINGs AND END UP WwITH SUITABLE #
- # VALUES OF HMAG, XTRIAL AND HTYRIAL IN PREPARATION FOR TAKING *
c # AN INTEGRATION STER. A«
< RELABHELE SRR RS RAEKGERE PR AR TR R REE KR F R R KRR R R HOR R AR+ F R ok ook o ok
<

CHE2X XS AXXEPROR RETURN (WITH IND==1) IF NO OF FCN EVALS TOO GREAT

IF {(CU71.ECe0eDO +0Rs C{24}.,LT.C(T}} GO TO 100
IND = -1
RETURN
100 CORTINUE

o CALCULATE SLOPE (ADDING 1 TO NO OF FCN EVALS) IT IND oNE. &
) IF (IND .EQ. 63 GO TO 105
CALL FONI{Ns X, ¥, W{1,13)
, €28} = C{(24} ¢+ 1.D0
108 CONTINUE '

CALCULATE HMIN - USE DEFAULT UNLESS VALUE PRESCRIBED
CL133 = CU33
IF {C{3) NE. 0.D0} GO T3 165
CALCULATE DEFAULT VALUE OF HMIN
FIRST CALCULATE WEIGHTED NORM Y = C(12) - AS SPECIFIED
BY THE ERROR CONTROL INDICATOR C(1}
TEMP = 0.D0
IF {Cl1}) oNE. 1.,00} GO TO 115
ABSOLUTE ERROR CONTROL - WEIGHTS ARE 1
DO 110 K = 1, N
TEMP = DMAX1(TEMP, DABS(Y(K}})
110 : CONT INUE
Ci123 = TEMP
G0 IO 160
IF {C{1} .NE. 2,003 GO TO 120
© RELATIVE ERROR CONTROL « WEIGHTS ARE 1/DABS{Y{K}} SO
o WEIGHTED NORM ¥ 1S5
CLEi2) = 1.00
GO TO 180
120 IF {C{1} NE. 3.D0) S0 TO 130
¢ WEIGHTS ARE L/MAX(C(Z2},ABSI{VIK})).
’ DO 125 K = 1, N
TEMP = DMAXI{TEMP, DABSIY{KII/C{(2}}
125 CONT INUE '
CL12) = DMINLITEMP, .00}

% 0y

5y Y
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GO TGO 1640
130 IF (C{1) oNE. 4.,D0)} GO TO 140
C WEIGHTS ARE [ /MAX{CIK+30) . ABS{YINY}}}
DO 135 K = 1e¢ N
TEMP = DMAX1{TEMP. DABS(Y{K}I/CIK+30}}

1358 CONY INUE
C{12y = DMINI{TEMP, 1.D0}
GO YO 16¢C
140 IF (Cl{iy «NE, 5,003 GO YO 15¢C
C WE IGHTS ARE $/CIK+30}

DO 145 K = 1¢ N
TEMP = DMAX1{TEMP, DABS{Y{K})/CIK+30}}

145 CONT INUE
C{i2} = TEMP
GO TO 160
150 CONTINUE
c DEFAULT CASE =~ WE IGHTS ARE 1/MAX{1+,ABSI{Y{K}}}

DO 158 K = iy N
TEMP = DMAXI{TEMP, DABSI{VY(KI} ¥

155 . CONT INUE
C{12) = DWINI(YEMP, 1.D0}
160 CONT INUE :

C(13) = 10.D0*DMAXI{(C(11}.CCI0I#DMAXI{CI12}/TCL,DABSIX}}]
165 CONTINUE

C
C CALCULATE SCALE ~ USE DEFAULT UNLESS VALUE PRESCRIBED
C{15) = C{S}
IF (C{S5} +EQs. 0D0} CL15}) = 1.00
C
c CALCULATE HMAX = CONSIDER 4 CASES
c CASE § BOTH HMAX AND SCALE PRESCRIBED
IF (C{B 3} oNE L0 D0 2ANDs C{53.NE.0.DO}
+ : C{16) = DMINI(C(E}, Z2.D0/CI{5})
C CASE 2 - HMAX PRESCRIBED, BUT SCALE NOT
IF {C(B7aNE,0DO +ANDs C(S5)EQe0.D0) C{16} = C{B}
C CASE 3 -~ HMAX NCT PRESCRIBSEDs BUT SCALE IS
IF (C{6)eEQs0 +D0 <AND. C{5)«NE.0C.D0} C{16}) = 2.D0/CI5}
C CASE 4 - NEITHER HMAX NOR SCALE IS PROVIDED
IF (CU63.EQ.0.D0 AND: C{5}:EG.0.D0} C{16} = 2.D0
C
Ckkkakkk ¥ xkERROR RETURN {WITH IND=-2) IF HMIN oGT. HMAX
IF {C{13) +LE« C{1633 GO YO 170
IND = =2
RE TURN
170 CONT INUE
c
C CALCULATE PRELIMINARY HMAG -~ CONSIDER 3 CASES
CIF {IND .GT. 23 GO TO 175
C CASE § ~ INITIAL ENTRY = USE PRESCRIBED VALUE OF HSTART. IF
C ANY . ELSE DEFAULT
ciia) = Cl4a}
IF (Cl4) «EQo 000} CL{143 = C{1635TOLRE{(1:/641}
GO YO 185
175 IF {C{233 +GT. 1.D00} GO TO 180
C CASE 2 = AFTER A SUCCESSFUL STER., OR AT MOST ONE FAILUIE,
< USE MIN(Z, «9%{TOL/ESTI*%{1/6})%KHMAG, BUY AVDID FPOSSISBLE
C OVERFLOW . THEN AVOID REDUCTION BY MORE THAN HALF.

TEMP = 2,00%C{(147
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C

i8¢

188

IF {(TOL JLT, (2+D07.9003%%62{19))
TEMP = «9DO0%{ TOL/C{ 18 )**{(1./6.3%C(14)
Cli4a) = DMAXIITEMP, ,3D0%C{141}}
GO YO 1885
CONTINUE
CASE 3 - AFTER T¥WD OR MOUORE SUCCESSIVE FAILURES
Ci{i14) = .500%C{i4}
CONT INUE

CHECK AGAINST HMAX
C8ig) = DMINI{(C{14}), CL161})

CHECK AGAINST HMIN
Ci14F = DMAXI{C{14}+ CL13))

Chesehed® ¥ INTERRUPT NO 1 (WITH IND=4) IF REQUESTED

8]

kY

YOO OO0 [a 3N

Eal

11i1

190

185

260

265

IF {C{8} +EQ. 0.D0O} GO T3 111§

IND = & :

RETURN A
RESUME HERE 0N RE-ENTRY WITH IND 4ECQe 4  swssesoeoRE~ENTRY..
CONTINUE

CALCULATE HMAG., XTRIAL - ODEPENDING ON PRELIMINARY HMAG, XEND
IF {(C{14F .GEs DABSIXEND - X}} 60 TO 190 :

DO NOY STEP MORE THAN HALF WAY TO XEND

CL14) = DMINI{CTI4)s -SDO%®DABSIXEND - X} 3

Ci17;} X + DSIGNICI14) s XEND = X}
GO T3 198
CONTINUE

HIT XEND EXACTLY
Ciiay = DapsS{XEND - X}
T{173F = XEND

CONT INUE

CALCULATE HYRIAL
€18 = CL17}) = X

END STAGE I

EHEERRE R R AR R ARG ARk Rk AL Rk SRR K kSR kR Rk Rk ok ks ki ke ke Rk kR k¥
2 STAGE 2 - CALCULATE YTRIAL {(ADDING 7 T2 NO OF FCN EVALS). *
# W{%e2)s nee W{(EL8) HOLD INTERMEDIATE RESULTS NEEDED IN *
# STAGE 3., Wil%,9) IS TEMPORARY STORAGE UNTIL FINALLY IT HOLDS =

* YTRIAL . *
R o B o ol ol ook e o &k b o b o ool i ol o RO o ok ke o o R ol e o R A K i RO e o R o ok o 0ROk R ROk R Ok

TEME = CI18}/7136816%9080000,.D0

DO 200 K = 1 N

B{K:9} = YI{K} ¢+ TEMP*W{K,1})*233028180000,00C
CONT InUs
CALL FCONIN, X & CLi8)/6.00s w({leBle W{1le2}}

DO 208 K = 1. M
FiKe3F = YI(X} ¢ TEMPR{ Wi{Ke 1 274563017600.,00
+ HiK,23%298276070400.00 ]
CONT INUE
CALL FCNIN: X ¢ C{1B8}%(8,00/15.D0})¢ W{1:9}s ¥W(1,3})



O

00 210 K = %+ N
WK%} = YIKY ¢ TEMP%{ WiKe«13%1165140900000.00
+ - WiKs23%372845088B0000.00

+ . + W{K:33%3495422700000.D0 }
210 CONT INUE
CALL FCN{N, X + C{I1B}¥{2.D0/3.D03%s W{1:9}s W{lo63}
DO 21S K = 1s N
W{Ks3) = YEK} + TEMPR{ - W{K,1323604654659375,00
+ + W{K,2)%1281€6545300000.D0
+ - W{Ks3)%9284716546875.D0
+ ¢ W{Ks4)%1237962206250.D0 1}
21% CONT INUE
" CALL FCN{Ns X + C{18)%{5.D0/6.D0}, W{1+9)s ¥{1:5})
DO 220 K = 1, N
Wi{K:9) = Y{K) & TEMP®{ W{K.1}23IISS605792000.D0
+ - W(K,2)%1118535264C0000.D0
+ + W{K+3)1%91 72628850000.D0
+ - B{K+4}%427218330000.D0C
+ + WiKesS5)*482505408000.D0 3
220 CONT INUE
CALL FCNINg X + C{18)s W(1:9)s W{L:6}}
DO 225 K = 1, N
WK 93 = Y{(K} + TENMP*{ - W({K,1)}%770204740536.0D0
I ¢ W{Ks2)%2311639545600.D¢
+ - ¥{K,3)%1322092233000.D0
+ - W{K+4)%453006781920.D0
.+ 4+ W{K,5)%326875481 856.00
22% CONTINUE
CALL FCN{N, X + C(183/15.D0Cs W{E+9}s W{l,7}}
DO 230 K = 1, N }
W{K,9) = Y(K} + TEMP*{  w{K,1)%2845924389000.D0
+ - WI{K:2}%9754668000000.D0
¥ + W{K:331%7897110375000.D0
+ - W{K:43%192082660000,D0
+ + W{K,S5}%400298976000.00
+ 4+ Wi{K,73%201586000000.00 3}
230 CONTINUE
CALL FCNI{Ny X & C{18}¢ W{1+93s W{l1e8)}
CALCULATE YTRIAL .+ THE SEXTRAPOLATED APPROKIMATION AND STORE
IN WlesG}
DO 235 K = 1. N
WK 9} = Y{K} ¢ TEMP=%{ WiK+13%104862681000.D0
+ + Wi{Ks31%545186250000.00
+ + W{Ks 43I %4466373450000D0
% + WiK.53*1B8B0646400C.D0
+ + W{K.73}%15078875000.00
+ + W{KoBI%®TGTSIG465000.00 ¥
238 CONTINUE .

ADD 7 YO THE NO CF FULN EVALS
Ci24) = C{24F & 7.00

END STAGE 2
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STAGE 3 - CALCULATE THE ERROR ESTIMATE ESTe FIRST CALCULATE
THE UNWEIGHTED ABSCLUTE ERROR ESTIMATE VECTOR (PER UNIT
STEP}) FOR THE UNEXTRAPOLATED APPROXIMATION AND STORE IT IN
Wike2)e THEN CALCULATE THE WEIGHTED MAX NORM OF WwW(x,2) AS
SPECIFIED BY THE ERROR CONTROL INDICATOR C(1). FINALLY,
MODIFY THIS RESULY TO PRODUCE ESTs THE ERROR ESTIMATE (PER
UNIY STEP) FOR THE EXTRAPOLATED APPROXIMATION YTRIAL.

E R K R R R B ]
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CALCULATE THE UNWEIGHTED ABSOLUTE ERROR ESTIMATE VECTOR
DO 300 K = 1, N

W{K,2} = { "{K+1)%8738556750.D0
WIK,3)%9735468750.D0
W{K:43%9709507500.00
W{K.5})*¥8582112000.D0
WK 63%95329710000.D0
H{Ke73}%15076875000,D0
W{KsB8)%97599465000.003/13239B1690800C0.DO

R RS

CONT INUE

CALCULATE THE WEIGHTED MAX NORM OF w(#,2) AS SPECIFIED BY
THE FRROR CONTROL INDICATOR C{1}
TEMP = 6.DO
IF {(CU1} .NE. 1.00)} GO TO 310
ABSOLUTE EPROR CONTROL
PO 305 K = 1+ N ;
TEMP = DMAXL(TEMO DABS{W(K,23)}
CONT INUE
GG TO 360
IF {C{1}) oNE., 2.00) GO TN 3220
RELATIVE ERRCR CONTROL
DO 315 K = 1. N
TEMP = DMAX1{TEMP, DABS(W(Ks2)/Y(K}})
CONTINUE
GO TO 360
IF (C{3i} .NE., 3,00} GO TO 330
WEIGHTS ARE 1/MAX(C{2),ABS(Y(K}})
DO 325 K = 1, N
TEMP = DMAX! (TEMP, DABS(W(Ks2)}
7/ DMAXI(C(2)s DABS(Y(K))) )
CONTINUE
G0 TO 360
IF {CL1) «NEe. 4,003 GO TO 340
WEIGHTS ARE 1/MAX(C{K#303+ABS{Y(KI))
00 335 K = 1, N
TEMP = DMAXI{TEMP, DABS{(YW{X.2})
/ DMAXI(CI(K+30}, DABS{YI{K}}} )}
CONTINUE
GO YO 360
IF {C{1) +NE. 5,00} GO TO 350
HEIGHTS ARE 1/C{K+30)}
00 345 K = i, N
TEMP = DMAXI (TEMP, DABS(W(K,2}/C(K+303 )}
CONTINUE
GO TO 360
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350 CONTINUE
DEFAULT CASE ~ WEIGHTS ARE 1/7MAX{1.,ABS{Y(K}})
DO 355 K = 14 N
TEMP = DMAXI(TEMS, DABS{WI{K.2))
+ / DMAX1{1.D0, DABS{Y{KJ}}} 1}
355 CONTINUE
360 CONT INUE

CALCULATE EST = (THE WEIGHTED MAX NORM OF W{*,2) p*HMAG®SCALE
- EST IS INTENDED TO BE A MEASURE OF THE ERROR PER UNIY
STEP IN YTRIAL

C{19) = TEMP*C(14)*%C{15}

END STAGE 3

FRRR R R R IR AR KRR AR AR KR X R R R Rk e Rk R XA R R R R R
® STAGE 4 - MAKE DECISIONS. ®
Skt dhbhk bk bk kdpk ke hkkdk b kbb bk ke ekt by bk bk o ek dokook Aok

SET IND=5 IF STEP ACCEPTABLE. ELSE SET IND=6
IND = S
IF (C{19) «GT. TOL) IND = 6

Chikkkkkkxkk] NTERRUPT NO 2 IF REQUESTED

aOnn

IF (C{9) +EQ. 0eD0) GO TD 2222
RETURN
RESUME HERE ON RE~ENTRY WITH IND .EQG. 5 OR 6 es «RE=ENTRY o 5

2222 CONTINUE

IF {IND .EQe 63} GO TO 41C

STEP ACCEPTED {(IND .EQe. 5}s SO UPDATE Xe Y FRUOM XTRIAL.
YTRIALs ADD 1 TO THE NO OF SUCCESSFUL STE®Se. AND SET
THE NQ OF SUCCESSIVE FAILURES TO ZEROD

X = C{17}

DO 400 K = 14 N
Y{K} = W{K.9)

400 CONTINUE
C{22) = C(22) + 1.D0
C{23) = 0.00

Chkkkredk kxkkkkRETURN{(WITH IND=3, XEND SAVED, FLAG SET} IF X <EQe XEND

c
C

IF (X «NE. XEND} GO 7O 405
IND =
c{20)
ciz2iy
RETURN
405 CONTINUE
GO YO 420
410 CONT INUE
STEP NOT ACCEPTED {(IND EQ. 6J. S0 ADD ! TOo THE NO OF
SUCCESSIVE FAILURES
Ci23) = C{23) + 1.D0

XEND
1400

oW

Cakkdkxkk dkkx kR ERROR RETURN {(WITH IND==3) IF HMAG <LE. HMIN

IF (C{14) .GT+ C{13)) GO TO 415

IND = =3

RETURN
415 CONTINUE
426 CONT INUE

END STAGE 4
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GO

70O 96999

END LOOP

BEGIN

ABORT ACTION

500 CONTINUE

WRITE(S sS05) INDs TOLse Xo Ns C(13)e XENDs NW,
+ C{22)s C{23)s CL{243s (Y{K)» K = 13 N)
505 FORMAT( /// 1HO, SBHCOMPUTATION STOPPED IN DVERK WITH THE FOLLOWIN
*G VALUES -
+ 7 1HO s SHIND =s (4, SXe 6HTOL =, 1PD13.6,
4+ 1PD22., 15
+ /iH s SBHN =y 184; 5Xs SHHMIN =, 1PD13:6,
* 1PD22,15
4 7 iH s SHNW =5 14, S5Xe¢ 6HHMAX =4 1PD13.6s SXs 11HPREV XEND
+ 1IPD22.15
L3 /7 ir0s 14X 27HNO OF SUCCESSFUL STEPS =
+ F ir s 14X. 27HAND CF SUCCESSIVE FAILURES =,
+ / IH s 14X, 27HND OF FUNCTIDN EVALS =y
+ / iHQOe 23HTHE COMPUONENTS JOF Y ARE
+ /7 (1H . 1IP5D24.15) '
sSTOoP
END ABORT ACTION

END

C{16)s C{20),

SXs 11HX

SX: 1IHXEND

OPFB8.0
CPRF8.0
OPF 8.0

e

"



