Training Restricted Boltzmann Machines using Approximations to
the Likelihood Gradient

Tijmen Tieleman

TIJMEN@CS.TORONTO.EDU

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada

Abstract

A new algorithm for training Restricted
Boltzmann Machines is introduced. The al-
gorithm, named Persistent Contrastive Di-
vergence, is different from the standard Con-
trastive Divergence algorithms in that it
alms to draw samples from almost exactly
the model distribution. It is compared to
some standard Contrastive Divergence and
Pseudo-Likelihood algorithms on the tasks
of modeling and classifying various types of
data. The Persistent Contrastive Divergence
algorithm outperforms the other algorithms,
and is equally fast and simple.

1. Introduction

Restricted Boltzmann Machines (RBMs) (Hinton
et al., 2006; Smolensky, 1986) are neural network mod-
els for unsupervised learning, but have recently seen a
lot of application as feature extraction methods for
supervised learning algorithms (Salakhutdinov et al.,
2007; Larochelle et al., 2007; Bengio et al., 2007;
Gehler et al., 2006; Hinton et al., 2006; Hinton &
Salakhutdinov, 2006). The success of these models
raises the issue of how best to train them.

Most training algorithms are based on gradient de-
scent, but the standard objective function (training
data likelihood) is intractable, so the algorithms dif-
fer in their choice of approximation to the gradient
of the objective function. At present, the most pop-
ular gradient approximation is the Contrastive Diver-
gence (CD) approximation (Hinton et al., 2006; Hin-
ton, 2002; Bengio & Delalleau, 2007); more specifi-
cally the CD-1 approximation. However, it is not ob-
vious whether it is the best. For example, the CD
algorithm has a parameter specifying the number of

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Markov Chain transitions performed, and although
the most commonly chosen value is 1, other choices
are possible and reasonable, too (Carreira-Perpinan &
Hinton, 2005).

In this paper, a new gradient approximation algorithm
is presented and compared to a variety of CD-based al-
gorithms. The quantitative measures of test data like-
lihood (for unsupervised learning) and classification
error rate (for supervised learning) are investigated,
and the type of feature detectors that are developed
are also shown. We find that the new algorithm pro-
duces more meaningful feature detectors, and outper-
forms the other algorithms.

The RBMs on which these experiments were done all
had binary units. However, this special case can easily
be generalized to other harmoniums (Smolensky, 1986;
Welling et al., 2005) in which the units have Gaussian,
Poisson, multinomial, or other distributions in the ex-
ponential family, and the training algorithms described
here require only minor modifications to work in most
of those models.

In Section 2, the RBM model and CD gradient es-
timator are discussed. In Section 3, the Persistent
Contrastive Divergence algorithm is introduced. In
Sections 4 and 5, the experiments and results are de-
scribed, and Section 6 concludes with a discussion and
some plans for future work.

2. RBMs and the CD Gradient
Approximation

2.1. Restricted Boltzmann Machines

An RBM is an energy-based model for unsupervised
learning (Hinton, 2002; Smolensky, 1986). It consists
of two layers of binary units: one visible, to represent
the data, and one hidden, to increase learning capac-
ity. Standard notation is to use i for indices of visible
units, j for indices of hidden units, and w;; for the
strength of the connection between the " visible unit
and the j*® hidden unit. If v; denotes the state of the



Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

ith visible unit, and h; denotes the state of the j

hidden unit, an energy function is defined on states:
E(?), h) = — Zi,j vihjwij — Zz Uibl' — Zj hjbj, where b
stands for the biases. Through these energies, proba-
bilities are defined as P(v, h) = e_EZ(v’h) where Z is the
normalizing constant Z = 3_ e E@¥) . The proba-
bility of a data point (represented by the state v of
the visible layer) is defined as the marginal: P(v) =
>onP,h) = E’L%E(h) Thus, the training data
likelihood, using just one training point for simplicity,
is ¢ = log P(v) = ¢ —¢~ where ¢ =log >, e F:h)
and ¢~ =logZ =log>_, e E@Y) The positive gra-

dient % is simple: M = v; - P(hj = 1Jv). The

ow; Owj

negative gradient gf; = P(v; = 1,h; = 1), however,
ij

is intractable. If we could get samples from the model,

we could Monte Carlo approximate it, but even getting

those samples is intractable.

2.2. The Contrastive Divergence Gradient
Approximation

To get a tractable approximation of %;7 one uses
some algorithm to approzimately sample from the
model. The Contrastive Divergence (CD) algorithm
is one way to do this. It is designed in such a way
that at least the direction of the gradient estimate is
somewhat accurate, even when the size is not. CD-1
is, at present, the most commonly used algorithm for
training RBMs. One of the algorithms we compare
is regular CD-1; another is CD-10, which is generally
considered to be better if the required computer time
is available.

A variation on CD is mean field CD (Welling & Hinton,
2002), abbreviated MF CD. This has the advantage of
being a deterministic gradient estimate, which means
that larger learning rates can be used. We include
mean field CD-1 in the comparison.

3. The Persistent Contrastive
Divergence Algorithm

CD-1 is fast, has low variance, and is a reasonable
approximation to the likelihood gradient, but it is
still significantly different from the likelihood gradi-
ent when the mixing rate is low. This can be seen by
drawing samples from the distribution that it learns
(see Figure 4). Generally speaking, CD-n for greater
n is preferred over CD-1, if enough running time is
available. In Neal’s 1992 paper about Sigmoid Belief
Networks (1992), a solution is suggested for such situ-
ations. In the context of RBMs, the idea is as follows
(see also (Yuille, 2004)).

What we need for approximating g%; is a sample from
the model distribution. The standard way to get it
is by using a Markov Chain, but running a chain for
many steps is too time-consuming. However, between
parameter updates, the model changes only slightly.
We can take advantage of that by initializing a Markov
Chain at the state in which it ended for the previ-
ous model. This initialization is often fairly close to
the model distribution, even though the model has
changed a bit in the parameter update. Neal uses
this approach with Sigmoid Belief Networks to approx-
imately sample from the posterior distribution over
hidden layer states given the visible layer state. For
RBMs, the situation is a bit simpler: there is only one
distribution from which we need samples, as opposed
to one distribution per training data point. Thus, the
algorithm can be used to produce gradient estimates
online or using mini-batches, using only a few train-
ing data points for the positive part of each gradient
estimate, and only a few ’fantasy’ points for the nega-
tive part. The fantasy points are updated by one full
step of the Markov Chain each time a mini-batch is
processed.

Of course this still is an approximation, because the
model does change slightly with each parameter up-
date. With infinitesimally small learning rate it be-
comes exact, and in general it seems to work best with
small learning rates.

We call this algorithm Persistent Contrastive Diver-
gence (PCD), to emphasize that the Markov Chain is
not reset between parameter updates.

4. Experiments

We did a variety of experiments, using different data
sets (digit images, emails, artificial data, horse image
segmentations, digit image patches), different models
(RBM, classification RBMs, fully visible Markov Ran-
dom Fields), different training procedures (PCD, CD-
1, CD-10, MF CD, pseudo likelihood), and different
tasks (unsupervised vs. supervised learning).

4.1. Data Sets

The first data set that we used was the MNIST dataset
of handwritten digit images (LeCun & Cortes, ). The
images are 28 by 28 pixels, and the data set consists
of 60,000 training cases and 10,000 test cases. To have
a validation set, we split the official training set of
60,000 cases into a training set of 50,000 cases and a
validation set of 10,000 cases. To have binary data, we
treat the pixel intensities as probabilities. Each time a
binary data point is required, a real-valued MNIST im-



Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

age is binarized by sampling from the given Bernoulli
distribution for each pixel. Thus, in effect, our data
set is a mixture of 70,000 factorial distributions: one
for each of the data points in the MNIST data set.

Another data set was obtained by taking small patches
of 5 by 5 pixels, from the MNIST images. To
have somewhat smooth-looking data, we binarized by
thresholding at 1/2. The 70,000 MNIST data points
were thus turned into 70,000 times (28 — 5 + 1) is
4,032,000 patches. This data set was split into train-
ing (60%), validation (20%), and test (20%) sets.

A data set consisting of descriptions of e-mails was
made available by Sam Roweis. It describes 5,000 e-
mails using a variety of binary features - mostly word
presence vs. absence features. The e-mails are labeled
as spam or non-spam.

An artificial data set was created by combining the
outlines of rectangles and triangles. Because this data
set is artificially generated, there is an infinite amount
of it, which helps shed some light on the reasons for
using weight decay regularization.

Lastly, we used a data set of image segmentations: in
pictures of horses, the segmentation indicates which
pixels are part of the horse and which are background
(Borenstein et al., 2004). By using only the segmen-
tation, we have a binary data set.

4.2. Models

The first model we used is an RBM, exactly as de-
scribed above. For the MNIST and horse segmentation
data sets, we used 500 hidden units; for the artificial
data set we used 100.

One of the evaluations is how well the learned RBM
models the test data, i.e. log likelihood. This is in-
tractable for regular size RBMs, because the time com-
plexity of that computation is exponential in the size
of the smallest layer (visible or hidden). One experi-
ment, therefore, was done using only 25 hidden units,
so that log likelihood could be calculated exactly in
about two hours. Another experiment uses an approxi-
mate assessment of the normalization constant Z, that
was developed recently in our group (Salakhutdinov &
Murray, 2008). This algorithm works for any num-
ber of hidden units, but its reliability has not been
researched extensively. Nonetheless, it seems to give a
reasonable indication, and can be used to complement
other results.

RBMs, however, are models for unsupervised learning,
so for classification we used a slightly different model,
described in more detail in (Hinton et al., 2006). We

used an RBM with one added visible unit, which rep-
resented the label. The training data points are then
combinations of inputs with their labels, and testing
is done by choosing the most likely label given the in-
put, under the learned model. This model we call a
‘classification RBM’. Note that the label unit is not
necessarily binary (although in the spam classification
task it is). In the MNIST classification task it is multi-
nomial: it can have 10 different values. This, however,
does not significantly change the algorithms (Hinton,
2002). For MNIST classification we used 500 hidden
units; for spam classification we used 100.

The third model we tested is significantly differ-
ent: a fully visible, fully connected Markov Ran-
dom Field (MRF) (see for example (Wainwright &
Jordan, 2003)). Omne can use the PCD algorithm
on it, although it looks a bit different in this case.
We compared its performance to the more commonly
used Pseudo-Likelihood optimization algorithm (Be-
sag, 1986). To have exact test data log likelihood mea-
surements, we used small models, with only 25 units.

4.3. The Mini-batch Optimization Procedure

We used the mini-batch learning procedure: we only
used a small number of training points for each gra-
dient estimate. We used 100 training points in each
mini-batch for most data sets.

4.4. Algorithm Detalils

The PCD algorithm can be implemented in various
ways. One could, for example, choose to randomly
reset some of the Markov Chains at regular intervals.
Initial tests showed that the best implementation is as
follows: no Markov Chains get reset; one full Gibbs
update is done on each of the Markov Chains for each
gradient estimate; and the number of Markov Chains
is equal to the number of training data points in a
mini-batch.

PCD for fully visible MRF's is a bit different from PCD
for RBMs. A pleasant difference is that 85% is con-
stant, so it can be precomputed for the entire training
set. Thus, no variance results from the use of mini-
batches, and the training set can be discarded after
% is computed over it. An unpleasant difference is
that the Markov Chain defined by Gibbs sampling has
slower mixing: MRFs with connections between the
visible units lack the pleasant property of RBMs that

all visible units can be updated at the same time.

A Pseudo-Likelihood (PL) gradient computation re-
quires more work than a PCD gradient computation,
because it requires a logistic regression gradient esti-



Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

mate for each of the units. As a result, we found that
using mini-batches of 50 training points instead of 100
took only a little bit more time per training point,
and did allow updating the model parameters almost
twice as often, which is preferable in the mini-batch
optimization procedure.

4.5. Other Technical Details

The learning rates used in the experiments are not
constant. In practice, decaying learning rates often
work better. In these experiments, the learning rate
was linearly decayed from some initial learning rate to
zero, over the duration of the learning. Preliminary
experiments showed that this works better than the
% schedule suggested in theoretical work by (Robbins
& Monro, 1951), which is preferable when infinitely
much time is available for the optimization.

Some experiment parameters, such as the number of
hidden units, and the size of the mini-batches, were
fixed. However, the initial learning rate was chosen
using a validation set, as was weight decay for the
(shorter) experiments on the spam, horses, MNIST
patches, and artificial data sets. For each algorithm,
each task, and each training duration, 30 runs were
performed with evaluation on validation data, trying
to find the settings that worked best. Then a choice of
initial learning rate and, for the shorter experiments,
weight decay, were made, and with those chosen set-
tings, 10 more runs were performed, evaluating on test
data. This provided 10 test performance numbers,
which were summarized by their average and standard
deviation (shown as error bars).

5. Results
5.1. The three MNIST Tasks

The results on the three MNIST tasks are shown in
Figures 1, 2, and 3.

It is clear that PCD outperforms the other algorithms.
PCD, CD-1, and MF CD all take approximately the
same amount of time per gradient estimate, with MF
CD being a little bit faster because it does not have
to create random numbers. CD-10 takes about four
times as long as PCD, CD-1, and MF CD, but it is
indeed better than CD-1.

While CD-1 is good for some purposes, it is substan-
tially different from the true likelihood gradient. This
can be seen by drawing samples from an RBM that
was trained with CD-1. Figure 4 shows those next to
samples drawn from an RBM that was trained using
PCD. 1t is clear that PCD is a better approximation

-125

-130f

il PCD
-140f

CD-10

145}
150}
CD-1

-155f

-160}
MF CD

-165[

test data log likelihood per case

MOS8 P 9l0 il iz o3 ol 55 o
training time in seconds (logarithmic)

Figure 1. Modeling MNIST data with 25 hidden units (ex-
act log likelihood)

-80

-85}

-90

-95f

-100

-110p

-115f

F——————CDF
-120F

BTS00 T 12 513 g4 oI5 i6 o7 I8
training time in seconds (logarithmic)

test data log likelihood per case

Figure 2. Modeling MNIST data with 500 hidden units
(approximate log likelihood)



Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

99

©
©

©
|

©
>

©
33}

©
=

93

percentage correctly classified

¥ 0 il 2 I3 o4 5 6 7 o
training time in seconds (logarithmic)

Figure 3. Classification of MNIST data

-45

test data log likelihood per case

-70

77 B 29 210 it 212 213 ol
training time in seconds (logarithmic)

Figure 5. Modeling artificial data

to the likelihood gradient.

Classification is a particularly interesting task because
it gives an indication of how well the model can extract
relevant features from the input. RBMs are most of-
ten used as feature detectors, and this finding suggests
that PCD creates feature detectors that give better
classification than CD-1.

5.2. Modeling Artificial Data

In Figure 5 we see essentially the same as what hap-
pened on the MNIST tasks. MF CD is clearly the
worst of the algorithms, CD-1 works better, and CD-
10 and PCD work best, with CD-10 being preferable
when little time is available and PCD being better if
more time is available.

©
N
=)

N

o
Q
)

©
[
[N}

X
|
T

© © ©
o o N
o © =)

©
o
IS

1

MF CD

percentage correctly classified
]

©
o
o

©
@
©

77 B 29 210 it 212 213 i
training time in seconds (logarithmic)

Figure 6. Classifying e-mail as spam versus non-spam

This data set was artificially generated, so there was
an infinite amount of data available. Thus, one might
think that the use of weight decay serves no purpose.
However, all four algorithms did work best with some
weight decay. The explanation for this is that CD al-
gorithms are quite dependent on the mixing rate of the
Markov Chain defined by the Gibbs sampler, and that
mixing rate is higher when the parameters of the model
are smaller. Thus, weight decay keeps the model mix-
ing reasonably well, and makes CD algorithms work
better. The effect is strongest for MF CD, which per-
forms only one Gibbs update and does so without in-
troducing noise. MF CD worked best with a weight
decay strength of 1073. CD-1 does introduce some
noise in the update procedure, and required less weight
decay: 3-107*. CD-10 performs more updates, and
is less dependent on the mixing rate. The best weight
decay value for CD-10 turned out to be approximately
1.3-10~%. Finally, the mixing mechanism used by PCD
is even better, but it is still based on the Gibbs sam-
pler, so it, too, works better with some weight decay.
The best weight decay strength for PCD was approx-
imately 2.5 - 1075,

5.3. Classifying E-mail Data

In Figure 6 the results on the e-mail classification task
are shown. Because this is a small data set (5,000 data
points in total, i.e. only 1000 test data points), we see
that the error bars on the performace are quite large.
Thus, we cannot carefully compare the performance of
CD-1, CD-10, and PCD. We only see that MF CD is,
again, not the best method.

However, we can conclude that RBMs can be used for
this task, too, with acceptable performance, and that



Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

Figure 4. Samples from an RBM that was trained using PCD (left) and an RBM that was trained using CD-1 (right).
Clearly, CD-1 did not produce an accurate model of the MNIST digits. Notice, however, that some of the CD-1 samples

vaguely resemble a three.

test data log likelihood per case

57 B 29 210 i 12 213 oia
training time in seconds (logarithmic)

Figure 7. Modeling horse segmentation data

PCD is a reasonable choice of training algorithm.

5.4. Modeling Horse Contours

In Figure 7 we see a different picture: PCD is not
the best algorithm here. The most plausible explana-
tion is that although the same amount of training time
was used, the data is much bigger: 1024 visible units,
and 500 hidden units. Thus, there were 20 times as
many connections in the RBM to be learned, which
also means processing one mini-batch took more than
10 times as long as for the artificial data. Thus, we

are essentially looking at a short optimization. Above,
we already saw that CD-10 is better than PCD when
little time is available, and that is confirmed here. We
conjecture that, given significantly more training time,
PCD would perform better than the other algorithms.

5.5. PCD on Fully Visible MRFs

To verify that PCD also works well with other mod-
els, we did some experiments with fully visible, fully
connected MRFs. To be able to have exact test data
likelihood evaluation, we made the MRFs small, and
modeled 5 by 5 pixel patches from the MNIST digit
images.

Pseudo-Likelihood (PL) training works reasonably
well on this data set, but it does not produce the best
probability models. Presumably this is simply because
PL optimizes a different objective function. As a re-
sult, PL needed early stopping to prevent diverging
too much from the data likelihood objective function,
and the optimal learning rates are more or less in-
versely proportional to the duration of the optimiza-
tion. Even with only a few seconds training time, the
best test data likelihood is already achieved: —5.35.

PCD training does go more in the direction of the data
likelihood function - asymptotically it gives its exact
gradient. Thus, PCD did profit from having more time
to run. Figure 8 shows the performance. The asymp-
totic value of approximately —5.15 does seem to be
the best possible model: we also used exact gradient



Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

test data log likelihood per case

E o » P 7 B D

training time in seconds (logarithmic)

Figure 8. Training a fully visible MRF

optimization (which is slow, but possible), and this
equally ended up with test data log likelihood of —5.15.
However, the entropy of the training data distribution
is significantly less than 5.15 ’nats’ it is 4.78 nats.
This difference is probably due to the fact that the
model has insufficient complexity to completely learn
the training data distribution.

Incidentally, the training data log likelihood is only
0.004 better than the test data log likelihood - pre-
sumably because this data set is quite large and the
model is quite small.

6. Discussion and Future Work

One issue not investigated is the use of weight decay. It
is quite possible that the more approximate algorithms
(such as CD-1 and MF CD) would benefit more from
weight decay than CD-10 and PCD. In an RBM with
zero weights, CD-1 and MF CD give exactly the like-
lihood gradient, and in general, in RBMs with small
weights those algorithms give better approximations
to the likelihood gradient than in RBMs with large
weights. Weight decay keeps the weights small, and
thus enables gradient estimates that approximate the
likelihood gradient more closely. For many tasks, how-
ever, large weights may be required for good perfor-
mance, so strong weight decay is undesirable if it can
be avoided.

Also, the amount of training time used in these ex-
periments is insufficient to find the asymptotic per-
formance. In Figure 3 one can see, for example, that
PCD clearly profits from more training time. To find
out what its performance would be with more training
time is future work, but we have seen runs (with more

training time and more hidden units) where as few
as 104 out of the 10,000 test cases were misclassified.
Clearly, this is worth investigating further.

Another issue suggesting future work is that the clas-
sification RBMs in these experiments were not trained
to maximize classification performance. They were
trained to accurately model the joint distribution over
images and labels. It is possible to train classification
RBMs directly for classification performance; the gra-
dient is fairly simple and certainly tractable. A natu-
ral way to use this classification error gradient is after
training the RBM for joint density modeling. How-
ever, in preliminary experiments we found that this
procedure begins to overfit very quickly (often after
improving performance by less than 0.1%), so we did
not include it in this paper. It is, however, still possi-
ble that combining the classification gradient with the
density modeling gradient is a method that could yield
more improvements. This is future work.

The main limitation of PCD is that it appears to re-
quire a low learning rate in order to allow the ” fantasy”
points to be sampled from a distribution that is close to
the stationary distribution for the current weights. A
theoretical analysis of this requirement can be found in
(Yuille, 2004) and (Younes, 1999). Some preliminary
experiments, however, suggest that PCD can be made
to work well even when the learning rate is much larger
than the one suggested by the asymptotic justification
of PCD and we are currently exploring variations that
allow much larger learning rates.

Acknowledgements

I thank Geoffrey Hinton and Ruslan Salakhutdinov
for many useful discussions and helpful suggestions.
Nikola Karamanov and Alex Levinshtein helped by
providing data sets. The anonymous reviewers also

provided many useful suggestions. This research was
supported by NSERC and Microsoft.

References

Bengio, Y., & Delalleau, O. (2007). Justifying and gen-
eralizing contrastive divergence (Technical Report
1311). Université de Montréal.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.,
& Montreal, Q. (2007). Greedy Layer-Wise Train-
ing of Deep Networks. Advances in Neural Informa-
tion Processing Systems 19: Proceedings of the 2006
Conference.

Besag, J. (1986). On the statistical analysis of dirty



Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

pictures. Journal of the Royal Statistical Society B,
48, 259-302.

Borenstein, E., Sharon, E., & Ullman, S. (2004). Com-
bining Top-Down and Bottom-Up Segmentation.
Computer Vision and Pattern Recognition Work-
shop, 2004 Conference on, 46-46.

Carreira-Perpinan, M., & Hinton, G. (2005). On con-
trastive divergence learning. Artificial Intelligence
and Statistics, 2005.

Gehler, P., Holub, A., & Welling, M. (2006). The rate
adapting poisson model for information retrieval
and object recognition. Proceedings of the 23rd in-
ternational conference on Machine learning, 337—

344.

Hinton, G. (2002). Training Products of Experts by
Minimizing Contrastive Divergence. Neural Compu-
tation, 14, 1771-1800.

Hinton, G., & Salakhutdinov, R. (2006). Reducing
the Dimensionality of Data with Neural Networks.
Science, 313, 504-507.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J.,
& Bengio, Y. (2007). An empirical evaluation of
deep architectures on problems with many factors
of variation. Proceedings of the 24th international
conference on Machine learning, 473—480.

LeCun, Y., & Cortes, C. The MNIST database of
handwritten digits.

Neal, R. (1992). Connectionist learning of belief net-
works. Artificial Intelligence, 56, 71-113.

Robbins, H., & Monro, S. (1951). A Stochastic Ap-
proximation Method. The Annals of Mathematical
Statistics, 22, 400-407.

Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Re-
stricted Boltzmann machines for collaborative filter-
ing. Proceedings of the 24th international conference
on Machine learning, 791-798.

Salakhutdinov, R., & Murray, I. (2008). On the quan-
titative analysis of deep belief networks. Proceedings
of the International Conference on Machine Learn-
mng.

Smolensky, P. (1986). Information processing in dy-
namical systems: foundations of harmony theory.
MIT Press Cambridge, MA, USA.

Wainwright, M., & Jordan, M. (2003). Graphical mod-
els, exponential families, and variational inference.
UC Berkeley, Dept. of Statistics, Technical Report,
649.

Welling, M., & Hinton, G. (2002). A New Learning Al-
gorithm for Mean Field Boltzmann Machines. Ar-
tificial Neural Networks-Icann 2002: International
Conference, Madrid, Spain, August 28-30, 2002:
Proceedings.

Welling, M., Rosen-Zvi, M., & Hinton, G. (2005). Ex-
ponential family harmoniums with an application to
information retrieval. Advances in Neural Informa-
tion Processing Systems, 17, 1481-1488.

Younes, L. (1999). On the convergence of markovian
stochastic algorithms with rapidly decreasing ergod-
icity rates. Stochastics An International Journal of
Probability and Stochastic Processes, 65, 177-228.

Yuille, A. (2004). The Convergence of Contrastive Di-
vergences. Advances in Neural Information Process-
ing Systems, 3, 4.



