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Abstract
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2007

Three questions about various energy-based probability models are asked and answered.

The first is whether the Contrastive Divergence algorithm computes the gradient of any

function at all - the answer is no. The second is whether there is a tractable Monte

Carlo approximation to the gradient for variational learning in a large class of models

including Sigmoid Belief Networks - the answer is yes. The third is how we might do early

stopping for Restricted Boltzmann Machines, which have intractable objective functions

- the problem is studied thoroughly, some old algorithms are reviewed and some new and

better ones are introduced, and the way is pointed to the ultimate algorithm for this

problem.
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Chapter 1

Introduction

In this thesis, I describe some findings of the past one and a half years of my research.

Because that research covered multiple areas in machine learning, there will be several

sections in this thesis, with only weak connections between them. The introduction

brings in the necessary definitions and conventions. After that, the first section describes

a finding about the Contrastive Divergence algorithm. The second section describes a

gradient derivation for a different model. The third section describes how to do early

stopping in energy-based models.

A large number of mathematical formulas appear in this thesis. I have attempted

to make sure that they are not required for general understanding, by including much

intuitive explanation. Einstein allegedly said once that an expert is he who can explain

his knowledge to his grandmother, and since this Master’s thesis is an attempt to show

expertise, I have tried to make it as accessible as possible.

Since we stand on the shoulders of giants, much of this thesis is introduction to and

explanation of the work on which my findings build. This thesis is, unfortunately, not

aiming to be entirely understandable to my grandmother, so I chose to explain only briefly

the oldest and hopefully best known work, and give more explanation of the newer work.

Of course, references are included everywhere.

1



Chapter 2

Boltzmann Machines

2.1 General

One approach to unsupervised learning is the Boltzmann Machine (BM) neural network

[6], which is briefly described in this section. A BM defines a probability distribution

over binary vectors of some fixed length. It is usually visualized as a collection of units

(neurons), and symmetric connections between them (which can be thought of as pairs

of synapses). Such a connection connects two neurons, and not all pairs of neurons need

be connected. Neurons are not connected to themselves. Neurons also have a bias, which

can be interpreted as a connection to an invisible neuron that is always active.

2.2 Main concepts and notation

Let N be the number of neurons. The bias to the ith unit can be denoted by bi. The

strength of the connection between unit i and unit j will be cij.

For simplicity, let us pretend that all connections are present. The ones that we want

to be absent can have strength 0, which in effect makes them absent.

A configuration of a BM is an assignment of binary values (activities) to each of the

units. Clearly, there are 2N configurations. Let us denote the state (activity) of the ith

2
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Figure 2.1: Visualization of a Boltzmann Machine. Some of the units are designated as

visible units, while the others are hidden. Units, biases, and connections are named.
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unit in configuration C by sC
i .

The first concept is that of energy. Every configuration has an energy, which is defined

to be E(C) = −
∑

i s
C
i · bi −

∑

i<j sC
i · sC

j · cij. From this, one can see that indeed, the

biases can be thought of as connections to units that are always on.

From these energies, probabilities can be calculated. The probability of some config-

uration C is defined to be P (C) = e−E(C)

Z
, where the normalizing constant Z is defined

to be Z =
∑

α e−E(α), with α standing for each of the 2N configurations.

With these definitions, one has a model of data distributions, which can therefore

be used for unsupervised learning. To model a data set D, consisting of binary vectors

of length l, create a BM with l units, and somehow try to find biases and connection

strengths that make the model’s distribution close to the data distribution.

Alternatively, one can designate some of the units to be visible units, and the remain-

ing ones to be hidden units. Then, to model the same data set, create a BM with l visible

units and some freely chosen number of hidden units. The probability of a data vector

x under this alternative BM is the sum of probabilities of all configurations in which the

visible units’ states are in accordance with x. There are 2nh such configurations, where

nh is the number of hidden units. This second approach to modeling is the one we will

use from now on. Having hidden units has the advantage that more distributions can

be modeled; if an unlimited number of them is available, any distribution that does not

include probabilities of zero can be modeled.

2.3 Likelihood gradient for BMs

Before we continue, it is time to fix some more notation. Let us rename the individual

neurons: vi is the ith visible unit, and hi is the ith hidden unit. Symbols ~v and ~h

stand for configurations of the full set of visible and hidden units. For example, P (~v)

stands for the probability that a BM assigns to some configuration ~v of the visible units.
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Since a configuration of the visible units, together with a configuration of the hidden

units, comprises a full configuration, the pair will have an energy, which we denote as

E(~v,~h). Ptrain(·) stands for the training data distribution, which can be viewed both

as a distribution over binary vectors of length l and as a (desired) distribution over

configurations of the visible units. Thus, the goal in learning is to get a BM for which

P (·) over configurations of the visible units (which represent data points) is similar to

the training data distribution Ptrain(·).

Let us now look more closely at the process of finding a set of biases and connection

strengths that yield a model distribution that is close to the data distribution. Since

exhaustive search is too slow for current computers, we do this by gradient training. We

start with some parameter vector θ which describes all biases and connection strengths,

and try to change θ in such a way that the model gets better. In short, we repeatedly

find the gradient vector of θ w.r.t. some objective function, and change θ a bit in the

direction of that gradient. So first, we need an objective function.

Assuming the training data is a sequence of i.i.d. observations, one reasonable ob-

jective function is the product of probabilities of the training data points, also called

likelihood. For more convenient notation and programming we instead prefer the log-

arithm of this likelihood, and to make it all look even more mathematically grounded,

let us choose the average log likelihood, i.e. φ =
∑

~v Ptrain(~v) log(P (~v)). Let us also

make the dependence on θ explicit: φ(θ) =
∑

~v Ptrain(~v) log(P θ(~v)). This dependence

also suggests switching to Eθ(C) (or Eθ(~v,~h)) for energy, and Zθ for the normalizing

constant. With all this new notation, the probability of some data point, or equivalently

some configuration of the visible units, is P θ(~v) =
P

~h
e−Eθ(~v,~h)

Zθ .
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The gradient can now be found through some juggling of equations.

∂φ(θ)

∂θ
=

∂

∂θ

∑

~v

Ptrain(~v) log(P θ(~v))

=
∂

∂θ

∑

~v

Ptrain(~v) log

(

∑

~h
e−Eθ(~v,~h)

Zθ

)

=
∂

∂θ

∑

~v

Ptrain(~v) ·



log
∑

~h

e−Eθ(~v,~h) − log(Zθ)





= −
∂ log(Zθ)

∂θ
+

∂
∑

~v Ptrain(~v) log
(

∑

~h
e−Eθ(~v,~h)

)

∂θ

= −
∂φ−(θ)

∂θ
+

∂φ+(θ, Ptrain)

∂θ

(2.1)

In the last line, the gradient was separated into two parts: the gradient of φ−(θ) =

log(Zθ), the negative part, and the gradient of φ+(θ, Ptrain) =
∑

~v Ptrain(~v) log
(

∑

~h
e−Eθ(~v,~h)

)

,

the positive part; named after how they appear in φ. They are somewhat independent

and deserve independent attention.

Notice first, however, for any nonempty set S of configurations, that

∂ log
(

∑

C∈S e−Eθ(C)
)

∂θ
=

1
∑

C∈S e−Eθ(C)
·
∂
∑

C∈S e−Eθ(C)

∂θ

=
1

∑

C∈S e−Eθ(C)
·
∑

C∈S

∂e−Eθ(C)

∂θ

=
1

∑

C∈S e−Eθ(C)
·
∑

C∈S

e−Eθ(C) ·
∂ − Eθ(C)

∂θ

=
∑

C∈S

e−Eθ(C)

∑

C∈S e−Eθ(C)
·
∂ − Eθ(C)

∂θ

=
∑

C∈S

P θ(C)

P θ(S)
·
∂ − Eθ(C)

∂θ
(2.2)

Equation 2.2, in which P θ(S) stands for the
∑

C∈S P θ(C), can be seen as a P θ-weighted

average over S of ∂−Eθ(C)
∂θ

.
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2.3.1 ∂φ−(θ)
∂θ

Using equation 2.2 with S being the set of all configurations, it is immediate that

∂φ−(θ)

∂θ
=

∂ log(Zθ)

∂θ

=
∂ log

(

∑

C e−Eθ(C)
)

∂θ

=
∑

C

P θ(C)
∂ − Eθ(C)

∂θ
(2.3)

2.3.2 ∂φ+(θ,Ptrain)
∂θ

Equation 2.2 is used here, too, once for each ~v, with S being the set of all (~v,~h) pairs

with that particular ~v.

∂φ+(θ, Ptrain)

∂θ
=

∂
∑

~v Ptrain(~v) log
(

∑

~h
e−Eθ(~v,~h)

)

∂θ

=
∑

~v

Ptrain(~v)
∂ log

(

∑

~h
e−Eθ(~v,~h)

)

∂θ

=
∑

~v

Ptrain(~v)
∑

~h

P θ(~v,~h)

pθ(~v)
·
∂ − Eθ(~v,~h)

∂θ

=
∑

~v

Ptrain(~v)
∑

~h

P θ(~h|~v) ·
∂ − Eθ(~v,~h)

∂θ
(2.4)

2.3.3 Monte Carlo approximation

To get an unbiased estimate of ∂φ+(θ,Ptrain)
∂θ

, take for each training data point ~v a sample ~h

from P θ(·|~v), and average ∂−Eθ(~v,~h)
∂θ

(which is trivial to calculate) over these (~v,~h) pairs.

To get an unbiased estimate of ∂φ−(θ)
∂θ

, take a sample configuration C from P θ(·), and

take ∂−Eθ(C)
∂θ

of that configuration.

Finding these samples is, unfortunately, intractable in general. One could do it ap-

proximately using prolonged Gibbs sampling, but in the next section a tractable and

reasonable approximation algorithm for a restricted class of BMs is presented.
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2.4 Restricted Boltzmann Machines

Obtaining samples from various distributions in BMs is difficult but necessary. This

suggests the use of a more restricted class of BMs, which still leaves sufficient complexity

to enable interesting distributions, but somehow makes Gibbs sampling easier. That is

indeed achieved by requiring that there are no connections from hidden units to other

hidden units, and from visible units to other visible units. A BM that satisfies these

requirements is called a Restricted Boltzmann Machine (RBM), first introduced in [9].

The states of the hidden units are now independent given the states of the visible

units, and vice versa. This makes Gibbs sampling particularly easy and efficient: given

the states of the visible units, states for all of the hidden units can be sampled at the

same time, and vice versa.

The independence of the hidden units given the states of the visible units means that

the derivative of φ+ can quickly be found exactly (no Monte Carlo approximation needed

any more). Getting the derivative of φ− is still intractable, but a workable approximation

can now be found.

2.4.1 Unit state probabilities in RBMs

The probability of the ith hidden unit being in the active state (state 1), given the states

of all other units, can be calculated from the probability of two configurations: C0 and

C1. C0 is the configuration with all units as given and the ith hidden unit in state 0; C1

is the same except that sC1
hi

= 1. These configurations are very similar, which can be

highlighted by writing their energies using a common part: E(C0) = Ecommon + E0 and

E(C1) = Ecommon + E1, for some wise choice of Ecommon, E0, and E1.
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E(C0) = −
∑

j

sC0
j · bj −

∑

j<k

sC0
j · sC0

k · cjk

E(C1) = −
∑

j

sC1
j · bj −

∑

j<k

sC1
j · sC1

k · cjk (2.5)

The wise choice of Ecommon (and with it E0 and E1) is

Ecommon = −
∑

j 6=i

sC0
j · bj −

∑

j,k:j<k,j 6=i,k 6=i

sC0
j · sC0

k · cjk (2.6)

E1 = −bhi
−
∑

j 6=hi

sC0
j · chi,j = −bhi

+ −

nv
∑

j=1

sC0
vj

· cvj ,hi
(2.7)

E0 = 0

The simplification in equation 2.7 uses the fact that in an RBM, the only connections

to a hidden unit are those from visible units. Putting things together, we conclude that

P (shi
= 1|states of all other units) =

P (C1)

P (C0) + P (C1)

=
e−E(C1)

e−E(C0) + e−E(C1)

=
e−Ecommon−E1

e−Ecommon−E0 + e−Ecommon−E1

=
e−Ecommon · e−E1

e−Ecommon · e−E0 + e−Ecommon · e−E1

=
e−E1

e−E0 + e−E1

=
1

eE1 + 1

=
1

e
−(bhi

+
Pnv

j=1 svj
·cvj,hi) + 1

=σ

(

bhi
+

nv
∑

j=1

svj
· cvj ,hi

)

(2.8)

where σ(x) = 1
1+e−x . Observe that this probability depends only on the states of the

visible units.
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Similarly, the configuration probabilities for a visible unit, given the configuration of

all hidden units, are independent of the configuration of the other visible units:

P (svi
= 1|states of all other units) = σ

(

bvi
+

nh
∑

j=1

shj
· cvi,hj

)

(2.9)

2.5 Likelihood gradient for RBMs

2.5.1 The derivative of φ+

∂φ+

∂θ
can now be computed exactly.

∂φ+(θ, Ptrain)

∂θ
=
∑

~v

Ptrain(~v)
∑

~h

P θ(~h|~v) ·
∂ − Eθ(~v,~h)

∂θ

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1, h2, h3, . . . , hnh
|~v) ·

∂ − Eθ(~v, h1, h2, h3, . . . , hnh
)

∂θ

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|h1, ~v) · P θ(h3|h1, h2, ~v) · . . . · P θ(hnh
|h1, h2, . . . , hnh−1, ~v)·

∂ − Eθ(~v, h1, h2, h3, . . . , hnh
)

∂θ

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|~v) · P θ(h3|~v) · . . . · P θ(hnh
|~v)·

∂ − Eθ(~v, h1, h2, h3, . . . , hnh
)

∂θ
(2.10)

The last step is done using the observation of equation 2.8 that the distribution over

configurations of a hidden unit given the configuration of the visible units is independent

of the configuration of the other hidden units.
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From equation 2.10, it is easy to find the derivative of φ+ w.r.t. the strength of the

connection between the ith visible unit and the jth hidden unit. Notation [x] stands for

the function that is 1 when x is true and 0 when x is false.

∂φ+(θ, Ptrain)

∂cvi,hj

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|~v) · P θ(h3|~v) · . . . · P θ(hnh
|~v)·

∂ − Eθ(~v, h1, h2, h3, . . . , hnh
)

∂cvi,hj

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|~v) · P θ(h3|~v) · . . . · P θ(hnh
|~v)·

[s~v
vi

= 1 ∧ shj
= 1]

=
∑

~v

Ptrain(~v)[s~v
vi
] · P θ(shj

= 1|~v)

=
∑

~v

Ptrain(~v)[s~v
vi
] · σ

(

bhj
+

nv
∑

k=0

s~v
vk
· cvk,hj

)

(2.11)

For the biases it is even simpler:

∂φ+(θ, Ptrain)

∂bvi

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|~v) · P θ(h3|~v) · . . . · P θ(hnh
|~v)·

∂ − Eθ(~v, h1, h2, h3, . . . , hnh
)

∂bvi

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|~v) · P θ(h3|~v) · . . . · P θ(hnh
|~v)·

[s~v
vi

= 1]

=
∑

~v

Ptrain(~v) · [s~v
vi

= 1] (2.12)
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And

∂φ+(θ, Ptrain)

∂bhi

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|~v) · P θ(h3|~v) · . . . · P θ(hnh
|~v)·

∂ − Eθ(~v, h1, h2, h3, . . . , hnh
)

∂bhi

=
∑

~v

Ptrain(~v)
1
∑

h1=0

1
∑

h2=0

1
∑

h3=0

. . .

1
∑

hnh
=0

P θ(h1|~v) · P θ(h2|~v) · P θ(h3|~v) · . . . · P θ(hnh
|~v)·

[shi
= 1]

=
∑

~v

Ptrain(~v) · σ

(

bhi
+

nv
∑

j=1

s~v
vj
· cvj ,hi

)

(2.13)

2.5.2 The derivative of φ−

∂φ−(θ)
∂θ

is intractable, also in RBMs, but there is a reasonable approximation. Recall that,

given a sample from the RBM distribution over full configurations, we can easily get a

Monte Carlo approximation of this gradient, by reporting ∂−Eθ(C)
∂θ

for that configuration

C. Getting this sample from exactly the RBM distribution is intractable, but one can

use prolonged Gibbs sampling from some starting configuration to get a sample from a

hopefully fairly similar distribution. The procedure for getting a more or less unbiased

estimate of ∂φ−(θ)
∂θ

is as follows:

Pick any configuration of the RBM. Repeat the following two steps until out of time

or patience: (1) update the state of the hidden units by sampling from the Bernoulli

distributions with mean σ
(

bhi
+
∑nv

j=1 s~v
vj
· cvj ,hi

)

for the ith hidden unit; (2) update

the state of the visible units by sampling from the Bernoulli distributions with mean

σ
(

bvi
+
∑nh

j=1 s
~h
hj
· cvi,hj

)

for the ith visible unit. Call the last configuration C. Now

report ∂−Eθ(C)
∂θ

, which is trivial to compute for both connection strengths and biases (see

section 2.5.1). This is the more or less unbiased estimate of ∂φ−(θ)
∂θ

. To make it more
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unbiased, perform more updates.

2.6 Contrastive Divergence

Contrastive Divergence (CD) is an algorithm that approximates the data likelihood gra-

dient in RBMs. It is based on the idea that one often does not need to have an accurate

estimate of the gradient, as long as the estimate is in the right direction. It was introduced

in [4] and is briefly explained here.

Because ∂φ+

∂θ
is tractable exactly, the difficulty is approximating ∂φ−(θ)

∂θ
. CD uses

the approximation algorithm described in section 2.5.2, but some details remain to be

specified.

First observe that starting the Gibbs sampling process from a configuration that is

close to the RBM distribution is a good idea. Intuitively, the Gibbs sampling moves

slowly in the direction of the RBM distribution, and if the distance is small, it will

sooner get close. After some training, assuming a reasonable training algorithm, the

training data will be close to the RBM distribution, so starting the Gibbs sampling at

the training data indeed achieves a quick start. CD takes as many estimates of ∂φ−(θ)
∂θ

as there are training data points, and for each estimate the Gibbs sampling starts from

another training data point.

Second, observe that the final estimate of ∂φ+−φ−

∂θ
is the difference of ∂−Eθ(C)

∂θ
for some

C, obtained by sampling the state of the hidden units given some training data point,

and the same ∂−Eθ(C)
∂θ

for another C, sampled from a distribution that is hoped to be

close to the RBM distribution. This estimate is then used by changing the parameters

θ a small amount in the direction of the gradient. Such a procedure would work equally

well if the gradient estimate, summed over all training cases, was a rather poor estimate

but was likely to be in the same direction as the true gradient (as measured by the dot

product between the two). The main justification for CD assumes that indeed the Gibbs
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sampling process moves (slowly) in the direction of the RBM distribution: CD takes only

a few steps in that direction, by doing a few Gibbs sampling updates, and then takes

the aforementioned difference to be an estimate of at least the direction of the gradient

(although the magnitude may be inaccurate).

In summary, to get an estimate of the direction of the gradient, using the CD algo-

rithm, average the following over training data points ~v: ∂−Eθ(C)
∂θ

for some configuration

C obtained by sampling states of the hidden units given the state of the visible units as

specified by ~v, minus ∂−Eθ(C)
∂θ

for some configuration C obtained by running the Gibbs

sampling process up for n iterations, starting with configuration ~v. n stands for the

number of times we update first the visible units and next the hidden units, not counting

the first time we update the hidden units. This n is a parameter, and the algorithm for

a particular choice of this parameter can be called CD-n. CD-1 is the fastest and works

well for most purposes. Higher values of n give more accurate approximations to the true

likelihood gradient, but require more computation time and have greater variance.



Chapter 3

CD not a gradient

One might suspect that although the expected value of CD does not give the ML gradient,

it does give another gradient. [1] found that CD has fixed points (in their toy RBM, at

least), but did not show whether CD is a gradient or not. It turns out that this is not

the case. To prove this point, let us think about the nature of gradients, so that later we

can find evidence that CD fails to conform to this.

3.1 About gradients in general

Take any differentiable scalar function f(θ) of a vector θ of n real numbers. Consider

two parameter vectors, for example the all 2 vector (denoted θ2) and the all 3 vector

(denoted θ3). Consider the difference d = f(θ3) − f(θ2). Now consider the infinitely

many paths from θ2 to θ3. The integral of ∂f(θ)
∂θ

over any such path should be d. Consider

the analogy with a mountain landscape: whatever route one takes between two places,

the total amount one goes up minus the total amount one goes down must be the same,

and must in fact be the difference in elevation between the two places.

Let us now assume that CD is indeed the gradient of some such function f . Let us

also set up a simple RBM in which many calculations can be done exactly. Then, we

can travel from some RBM parameter vector θ0 to some other RBM parameter vector θ1.

15
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Along the way, we will integrate the amount that CD tells us we are going up or down

on this underlying function f of which CD is supposed to be the gradient. We must now

find that whatever route we take from θ0 to θ1, this integral must total to f(θ1)− f(θ0).

While we have no idea of what f(θ1) or f(θ0) might be, we do know that the difference

between the two is a constant, so our integral should be the same, whatever route is

taken. As we will see later, this is not always the case for CD, which implies that CD is

not the gradient of any function.

3.2 Details of the experiment

The simple RBM is very simple indeed: it has only one visible unit and one hidden unit.

The training data is simple, too: the only training case is the one where the visible unit

is in state 1. The RBM parameter vector θ contains three numbers, namely the bias of

the visible unit (denoted θv), the strength of the connection between the visible and the

hidden unit (denoted θw), and the bias of the hidden unit (denoted θh), in that order.

Now let us fix θ0 to be [0, 0, 0], i.e. both the biases and the connection strength are 0.

θ1 will be [1, 1, 0], i.e. the bias of the visible unit is 1, the strength of the connection

between the two units is also 1, and the bias of the hidden unit is 0. Let us also fix two

paths from θ0 to θ1. The first path leads from [0, 0, 0] straight to [1, 0, 0], and from there

straight to [1, 1, 0]. The second path leads from [0, 0, 0] straight to [0, 1, 0] and from there

straight to [1, 1, 0].

Now we wish to integrate the CD value over these two paths. In moving from one

parameter vector to another by changing only one of the three parameters, we must

integrate the CD would-be gradient on that parameter. Since we never change the bias

to the hidden unit, we only need to calculate the CD would-be gradient w.r.t. the bias

on the visible unit and w.r.t. the strength of the connection between the units.
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3.3 Notation and preliminary definitions

Let us denote by CDv(θ) the CD would-be gradient w.r.t. the bias on the visible unit,

at parameter vector θ. Similarly, CDw(θ) will be the CD would-be gradient w.r.t. the

weight on the connection between the visible and the hidden unit, and CDh(θ) will be

the same for the bias to the hidden unit (although we will not calculate that). To remind

ourselves of the gradient notation, where CD is supposed to give the gradient of some

function f(θ), we can now write ∂f(θ)
∂θ

= [CDv(θ), CDw(θ), CDh(θ)].

To calculate these CD expected values, we need some notation for the probabilities

of configurations. The CD-1 algorithm specifies that we start with a training vector

on the visible units and then do a Gibbs update on the hidden units. Let us call the

resulting configuration T , which stands for training data, since on the visible units there

is a training vector. After this first update of the hidden units, we do an update on the

visible units, and another update on the hidden units. Let us call the configuration that

we have now reached R, which stands for reconstruction, since on the visible units there

is a reconstruction of the training vector. Let PT :v=a,h=b(θ) denote the probability, under

some parameter vector θ, that starting with our one training point, the T configuration

has the visible unit in state a and the hidden unit in state b. Similarly, let PR:v=a,h=b(θ)

denote the probability, under θ, that, in the reconstruction configuration, the visible

unit is in state a and the hidden unit is in state b. For example, PT :v=0,h=0(θ) = 0 for

all θ, because our training data specifies that the visible unit starts in state 1, so with

no updates on the visible unit it will never be in state 0. Let us also give a name to

the probability of the visible unit being in some particular state in the reconstruction

configuration: define PR:v=a,h=∗(θ) = PR:v=a,h=0(θ) + PR:v=a,h=1(θ).
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3.4 Configuration probabilities

Recall that θv is the bias to the visible unit in parameter vector θ, θw is the strength of

the connection between the two units, and θh is the bias to the visible unit. θh, however,

is always zero, so we simply write a 0 instead.

Now we can write down the equations for the configuration probabilities, starting

with the configuration probabilities of configuration T .

PT :v=0,h=0(θ) = 0 (3.1)

PT :v=0,h=1(θ) = 0 (3.2)

PT :v=1,h=1(θ) = σ(θw) (3.3)

PT :v=1,h=0(θ) = σ(−θw) (3.4)

The distribution over the state of the visible unit in the reconstruction configuration

is as follows.

PR:v=1,h=∗(θ) = σ(θw) · σ(θw + θv) + σ(−θw) · σ(θv) (3.5)

PR:v=0,h=∗(θ) = σ(θw) · σ(−θw − θv) + σ(−θw) · σ(−θv) (3.6)

Last, the configuration probabilities of the reconstruction configuration are as follows.

PR:v=0,h=0(θ) = PR:v=0,h=∗(θ) · σ(−θw) (3.7)

PR:v=0,h=1(θ) = PR:v=0,h=∗(θ) · σ(θw) (3.8)
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PR:v=1,h=0(θ) = PR:v=1,h=∗(θ) · σ(−θw) (3.9)

PR:v=1,h=1(θ) = PR:v=1,h=∗(θ) · σ(θw) (3.10)

3.5 The CD expected values

Now

CDv(θ) = PT :v=1,h=0(θ) + PT :v=1,h=1(θ)

−PR:v=1,h=0(θ) − PR:v=1,h=1(θ) (3.11)

Because of our special training data distribution, this reduces to

CDv(θ) = 1 − PR:v=1,h=0(θ) − PR:v=1,h=1(θ) (3.12)

This can be rewritten as

CDv(θ) = 1 − PR:v=1,h=∗(θ) (3.13)

In a similar fashion, we have

CDw(θ) = PT :v=1,h=1(θ) − PR:v=1,h=1(θ) (3.14)

3.6 The integrals

We have four integrals to calculate, for the four moves we make in our parameter land-

scape. After calculating these four separately, we will add them up appropriately.
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3.6.1 From [0,0,0] to [1,0,0]

This is a move where we change only the bias to the visible unit, so we integrate the

(supposedly) gradient that CD gives for that bias.

∫ 1

0

CDv([x, 0, 0])dx =

∫ 1

0

1 − PR:v=1,h=∗([x, 0, 0])dx =

∫ 1

0

1 − (σ(θw) · σ(θw + θv) + σ(−θw) · σ(θv)) ([x, 0, 0])dx =

∫ 1

0

1 − (σ(0) · σ(x) + σ(−0) · σ(x)) dx =

∫ 1

0

1 −

(

1

2
· σ(x) +

1

2
· σ(x)

)

dx =

∫ 1

0

1 − σ(x)dx =

∫ 1

0

1 −
1

1 + e−x
dx =

[x − log(1 + ex)]10 =

1 − log(e + 1) + log(2) (3.15)

3.6.2 From [0,1,0] to [1,1,0]

This is again an integral of CDv, but this time the strength of the connection between

the units is 1, instead of 0.
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∫ 1

0

CDv([x, 1, 0])dx =

∫ 1

0

1 − PR:v=1,h=∗([x, 1, 0])dx =

∫ 1

0

1 − (σ(θw) · σ(θw + θv) + σ(−θw) · σ(θv)) ([x, 1, 0])dx =

∫ 1

0

1 − (σ(1) · σ(1 + x) + σ(−1) · σ(x)) dx =

1 −

∫ 1

0

σ(1) · σ(1 + x)dx −

∫ 1

0

σ(−1) · σ(x)dx =

1 − σ(1) ·

∫ 1

0

σ(1 + x)dx − σ(−1) ·

∫ 1

0

σ(x)dx =

1 − σ(1) ·
[

log(1 + e1+x)
]1

0
− σ(−1) · [log(1 + ex)]10 =

1 − σ(1) ·
(

log(1 + e2) − log(1 + e)
)

−

σ(−1) · (log(1 + e) − log(2)) (3.16)

3.6.3 From [0,0,0] to [0,1,0]

This is an integral of CDw from 0 to 1, with both of the biases are fixed to 0.
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∫ 1

0

CDw([0, x, 0])dx =

∫ 1

0

PT :v=1,h=1([0, x, 0]) − PR:v=1,h=1([0, x, 0])dx =

∫ 1

0

σ(x) − PR:v=1,h=∗([0, x, 0]) · σ(x)dx =

∫ 1

0

σ(x) − (σ(x) · σ(x) + σ(−x) · σ(0)) · σ(x)dx =

∫ 1

0

σ(x)dx −

∫ 1

0

σ(x)3dx −
1

2

∫ 1

0

σ(x) · σ(−x) · dx =

[log(1 + ex)]10 −

[

2 log(1 + ex) (1 + ex)2 + 4ex + 3

2 (1 + ex)2

]1

0

−

1

2

[

−
1

1 + ex

]1

0

=

log(1 + e) − log(2) −
2 log(1 + e)(1 + e)2 + 4e + 3

2(1 + e)2
+

log(2) +
7

8
+

1

2 + 2e
−

1

4
=

4e + 3

2(1 + e)2
+

7

8
+

1

2 + 2e
−

1

4
=

5

8
−

2 + 3e

2 · (1 + e)2
(3.17)

3.6.4 From [1,0,0] to [1,1,0]

The fourth integral is an integral of CDw from 0 to 1, with the bias to the visible unit

fixed at 1.
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∫ 1

0

CDw([1, x, 0])dx =

∫ 1

0

PT :v=1,h=1([1, x, 0]) − PR:v=1,h=1([1, x, 0])dx =

∫ 1

0

σ(x) − (σ(x) · σ(x + 1) + σ(−x) · σ(1)) · σ(x)dx =

∫ 1

0

σ(x)dx −

∫ 1

0

σ(x)2 · σ(x + 1)dx − σ(1) ·

∫ 1

0

σ(x) · σ(−x)dx =

−

[

(e−1)e
1+ex + (e − 2)e · log(1 + ex) + log(1 + e1+x)

(e − 1)2

]1

0

−

σ(1) ·

[

−
1

1 + ex

]1

0

+ [log(1 + ex)]10 =

log(1 + e) − log(2) −

(e−1)e
1+e

+ (e − 2)e · log(1 + e) + log(1 + e2)

(e − 1)2
+

(e−1)e
2

+ (e − 2)e · log(2) + log(1 + e)

(e − 1)2
+ σ(1) ·

1

1 + e
−

1

2
· σ(1) (3.18)

3.7 Conclusion

Now that we know the value of these integrals, we can check whether indeed the integral

from [0, 0, 0] to [1, 1, 0] is independent of the path that is taken. When we add up the

expressions we found for the integrals, no nice and simple expression comes out, so all

we can do is numerically evaluate it. We find that going from [0, 0, 0] to [1, 0, 0] and from

there to [1, 1, 0] gives an integral of 0.379885 + 0.131057 ≈ 0.510942, while going from

[0, 0, 0] to [0, 1, 0] and from there to [1, 1, 0] gives an integral of 0.257753 + 0.238388 ≈

0.49614. If CD truly were the derivative of some function, these two would sum to the

same. Thus we conclude that CD is not the derivative of any function.

There is an important corollary to this. In our small RBM, if we would go from [0, 0, 0]

to [1, 0, 0], from there to [1, 1, 0], from there to [0, 1, 0], and from there back to [0, 0, 0],

then we have seen, according to the CD approximations of gradient, an increase in the

value of the objective function, even though clearly we are back at the same place. This



Chapter 3. CD not a gradient 24

increase is approximately 0.510942−0.496148 = 0.014794. Some thought now shows that

a function g(θ) can be constructed, such that if one were to add the true derivatives of g

to values that CD calculates, then the optimization would go around this square forever,

believing that it gained 0.014794 in the objective function value during each pass.

We do occasionally add gradients of various functions to the gradient of our main

objective function. The best known example is weight decay, but it also happens when

there are two things of which we are maximizing the combined score. The current finding

shows that if one is unfortunate in the choice of additional functions to include in the

optimization, the CD(θ) + ∂g(θ)
∂θ

optimization will not converge.

It must be emphasized that this finding is highly theoretical and may be of no practical

relevance. As noted before, [1] found that in their toy experiments, CD did have fixed

points, which were even somewhat close to fixed points of maximum likelihood learning.

The current finding points out that CD need not always have fixed points, and that in

our toy experiment, there are functions g(θ) such that CD combined with the gradient of

g has no fixed points. However, the author has not yet encountered situations in which

CD alone has no fixed points.



Chapter 4

Learning with variational inference

In RBMs, inference of hidden state given visible state is tractable, but learning is still

somewhat difficult. In a different class of models, well exemplified by Sigmoid Belief

Networks (SBNs, [8]), inference is intractable but once we have a sample from this in-

tractable posterior, learning is easy. When working with this class of models, variational

inference can, sometimes, stand in for proper inference (see [10] for an introduction to

variational methods). In this section, the class of models is described, the basis of varia-

tional methods is described, a tractable Monte Carlo approximation to the gradient w.r.t.

the inference parameters is introduced, and two examples of these models are briefly men-

tioned. A tractable Monte Carlo approximation to the gradient w.r.t. the parameters

of the generative model has long been known and is mentioned here for completeness.

Note that most of this section is review of old work: variational methods have long been

known. The only new part is the tractable Monte Carlo approximation to the gradient

w.r.t. the inference parameters.

4.1 A class of models

Consider probability density models that have a number of configurations, and that

assign to each configuration a probability. RBMs are an example of this. As in RBMs,

25
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the configurations must include some information that is considered ’visible’, so that each

possible data point is represented by the set of configurations of which the visible part

indicates that data point. We require that the probability of configurations be tractable

to calculate, up to a possibly unknown multiplicative factor. We also require that the log

probability gradient for configurations be tractable: if θ denotes the model description,

and C is any configuration, ∂ log(P (C))
∂θ

must be tractable. Note that SBNs meet both of

these requirements, while RBMs only meet the first.

For our variational inference, we will need a second model, that describes a variational

posterior distribution over states given the visible part. For example, a table would do,

but there are more sophisticated methods. We require the ability to sample from this

variational posterior, the ability to calculate probability of configurations in the varia-

tional posterior, up to possibly unknown multiplicative factor (which may be different

for each configuration of the visible units), and again the log probability gradient, which

now is conditional probability: ∂ log(Q(C|vis))
∂θ

, where θ describes the inference model Q(·).

The reader may verify that as long as the variational inference gives the true posterior,

these requirements allow us to obtain a Monte Carlo approximation of the log probability

gradient of a training data set. In fact, we only need two of the mentioned requirements:

the ability to sample from the (now correct) posterior, and the availability of the config-

uration log probability gradient of the density model. Now follows a description of the

situation with incorrect posteriors.

4.2 Some pieces of statistical physics

First, it is time to bring in some basic statistical physics. Consider a set S of configu-

rations of a system. Let each configuration C have an energy E(C) in that system. A

quantity called free energy of the set, F (S), is defined as
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F (S) = − log

(

∑

C∈S

e−E(C)

)

(4.1)

There are many uses and interpretations of the concept of free energy. For now, just

observe how it makes the following probability function sum to 1:

P (C) =
e−E(C)

e−F (S)
(4.2)

With this probability distribution, we can rewrite the free energy into the following

equivalent form:

F (S) =
∑

C∈S

P (C) · (E(C) + log(P (C))) (4.3)

From this we come to variational free energy (VFE). It works with any distribution

Q(·) over configurations. The reader may verify that the two descriptions are indeed

equal.

V (S,Q) =
∑

C∈S

Q(C) · (E(C) + log(Q(C))) (4.4)

=F (S) + K(Q,P ) (4.5)

In the second definition, K stands for the Kullback-Leibler divergence of P (·) from

Q(·), which is defined as

K(P1, P2) =
∑

C∈S

P1(C) log
P1(C)

P2(C)
(4.6)

With this bit of statistical physics, a meaningful and tractable objective function can

be defined.
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4.3 The new objective function

The most common objective function for probability density modeling is log likelihood.

Training data log likelihood is L =
∑

~v Ptrain(~v) log(P (~v)). Let us assume for simplicity

that there is only one training point: L = log(P (~v)). The gradient of this objective

function is intractable, so a different one is needed: one that uses the variational inference.

We have a density model that assigns a probability to each configuration, but the

statistical physics is about energies, so first we need those. The energy of a configuration

C will be E(C) = − log(P (C)). Note that this makes the free energy of the set of

all configurations be 0. Let S(~v) be the set of configurations of which the visible part

indicates our one training point. Now clearly, log(P (~v)) = −F (S(~v)). We also have a

variational posterior Q(·|~v). The new objective function will be −V (S(~v), Q(·|~v)). Note

this this is at most log(P (~v)), and is exactly that only when the inference distribution is

correct: ∀CQ(C|~v) = P (C|~v).

4.4 The gradient

The old objective function, log probability, does not mention the inference model, so it

does not depend on its parameters in any way. The new one, however, does. Let us call

the parameters of the inference model θinf, while the parameters of the main generative

model will be θgen. The gradient w.r.t. the inference parameters is calculated separately

from the gradient w.r.t. the generative parameters.

4.4.1 The gradient w.r.t. θgen

Thanks to the availability of inference, albeit incorrect inference, this gradient is tractable.

Still assume just one training point, called ~v.
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∂ − V (S(~v), Q(·|~v))

∂θgen

= (4.7)

−
∂
∑

C∈S(~v) Q(C|~v) · (E(C) + log(Q(C|~v)))

∂θgen

= (4.8)

−
∂
∑

C Q(C|~v) · (E(C) + log(Q(C|~v)))

∂θgen

= (4.9)

−
∑

C

Q(C|~v) ·
∂E(C)

∂θgen

= (4.10)

∑

C

Q(C|~v) ·
∂ log(P (C))

∂θgen

(4.11)

Equation 4.8 is obtained by expanding V . Equation 4.9 is obtained by observing that

only configurations in S(~v) will have variational posterior probability greater than zero

(assuming any reasonable posterior). Equation 4.10 is obtained by observing that Q(C|~v)

does not depend on θgen. Finally, equation 4.11 is obtained by switching back from energy

notation to probability notation. In equation 4.11 one can see that given the ability to

sample from the variational posterior, and the tractability of the log probability gradient

for configurations in the generative model, we have a nice Monte Carlo approximation:

sample a configuration C from the variational posterior Q(·|~v), and then take ∂ log P (C)
∂θgen

as the approximation.

4.4.2 The gradient w.r.t. θinf

For this gradient, we use the second notation of variational free energy, V (S,Q(·)) =

F (S)+K(Q,P ). This is more convenient because F (S) does not depend on the inference

distribution. Look under these equations for more detail on why they are valid.
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∂ − V (S(~v), Q(·|~v))

∂θinf

= (4.12)

−
∂F (S(~v)) + K(Q(·|~v), P (·|~v))

∂θinf

= (4.13)

−
∂K(Q(·|~v), P (·|~v))

∂θinf

= (4.14)

−
∂
∑

C Q(C|~v) · (log(Q(C|~v)) − log(P (C|~v)))

∂θinf

= (4.15)

−
∑

C

∂Q(C|~v) · (log(Q(C|~v)) − log(P (C|~v)))

∂θinf

= (4.16)

−
∑

C

∂Q(C|~v)

∂θinf

· (log(Q(C|~v)) − log(P (C|~v)))−

∑

C

Q(C|~v) ·
∂ log(Q(C|~v))

∂θinf

= (4.17)

−
∑

C

∂Q(C|~v)

∂θinf

· (log(Q(C|~v)) − log(P (C|~v))) = (4.18)

−
∑

C

∂Q(C|~v)

∂θinf

· (FlogQ,~v(C) + const~v − log(P (C|~v))) = (4.19)

−
∑

C

∂Q(C|~v)

∂θinf

· (FlogQ,~v(C) + const~v − log(P (C)) + log(P (~v))) = (4.20)

−
∑

C

∂Q(C|~v)

∂θinf

· (FlogQ,~v(C) + const~v − log(P (C))) = (4.21)

−
∑

C

∂Q(C|~v)

∂θinf

· (FlogQ,~v(C) + const~v − FlogP (C)) = (4.22)

−
∑

C

∂Q(C|~v)

∂θinf

· (FlogQ,~v(C) − FlogP (C))

−
∑

C

∂Q(C|~v)

∂θinf

· const~v = (4.23)

−
∑

C

∂Q(C|~v)

∂θinf

· (FlogQ,~v(C) − FlogP (C)) = (4.24)

−
∑

C

Q(C|~v) ·
∂ log(Q(C|~v))

∂θinf

· (FlogQ,~v(C) − FlogP (C)) (4.25)

Equation 4.13 is obtained by expanding V into free energy and KL divergence. Equa-

tion 4.14 is found by dropping the free energy, which does not depend on θinf. Equation

4.15 is found by expanding the expression of KL divergence. Equation 4.16 is a simple
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rewrite. Equation 4.17 points out that change in θinf affects the KL divergence in two

ways. Equation 4.18 drops the second term of the preceding equation, because it is easily

shown to be zero. Equation 4.19 uses the assumed fact that we have a tractable func-

tion, here called FlogQ,~v(·), that calculates the log probability of configuration C in the

variational posterior of ~v, up to some possibly unknown additive constant, which may

depend on ~v. Equation 4.20 is found by expanding the conditional probability. Equation

4.21 is found by including log(P (~v)) in const~v. Equation 4.22 uses the assumed tractable

FlogP (·) that gives log(P ) up to some additive constant, while that constant disappears

into const~v. Equation 4.23 isolates const~v. Equation 4.24 drops the second term of the

preceding equation, because that term is zero. Equation 4.25 switches to log probability

gradient and enables the Monte Carlo approximation: take a sample from Q(C|~v), and

from there use three functions that are each assumed tractable, to get the estimate of

∂−V (S(~v),Q(·|~v))
∂θinf

.

In reality, we have multiple training points. As with likelihood, the VFE objective

function is simply averaged over training points, and the same happens to the gradient.

4.5 Two examples

4.5.1 SBN

One example from this class of models has been mentioned already: Sigmoid Belief

Networks, combined with some suitable inference model. One could, for example, set up

an SBN for inference, in which the dependencies are in the direction opposite to the one

in the generative model. SBNs meet all of the requirements, because exact probability

of configurations is tractable, as is sampling. Thus, SBNs exceed the requirements by

also allowing sampling from the main generative model, as well as exact probability

calculation (as opposed to probability up to an unknown normalizing constant).
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4.5.2 SBN-RBM

A second example is a model built as a combination of an SBN and an RBM, introduced in

[3], combined with an SBN for inference. This model provides neither tractable sampling

from the generative model, nor exact probability calculation in the generative model, but

neither are necessary for the present gradient calculation, and the model has advantages

that allow good initialization. One should note that for this model, ∂ log(P (C))
∂θgen

is not

available exactly, but the CD approximation can be used for that.

4.6 Usability

Some practice and some theory suggest that this algorithm may be of limited value,

due to the high variance of the gradient estimates. A different approximation algorithm,

called Wake-Sleep [5], has more bias (i.e. it is not unbiased) and empirically less variance.

One might try to take advantage of the absence of bias in the present algorithm by using

it in the final stage of training, to do some fine-tuning. The details and elaboration on

all of this, however, are future work.



Chapter 5

Early stopping on likelihood for

RBMs

Gradient-based learning requires more than just an algorithm to calculate a gradient.

Another component is an algorithm that decides which model to pick from the series found

during optimization; this is also known as early stopping. Usually, one selects the model

that has the best performance on a separate validation data set. For RBMs, however,

this simple approach is infeasible, because the objective function that we optimize for

is intractable. In this section, some alternatives are studied. First, there will be some

comments about commonly used alternatives. Second, there will be another method,

viewed in several different ways. And in conclusion, the way will be pointed to the

ultimately best method.

5.1 The problem

As was mentioned before, the most commonly used objective function is average log like-

lihood: φ =
∑

~v Ptrain(~v) log(P (~v)). In RBMs, this is intractable, because the normalizing

constant of RBMs is intractable.

33
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5.2 Tractable alternatives

One approach is to use another goodness measure, and hope that it resembles our original

measure, or that at least still the selected model will be good. One should keep in mind

that these alternative objective measures are not used for training. They are evaluated

only on the validation set, and we never use their gradients. A plot demonstrating

performance of these methods is included at the end of this section.

5.2.1 Reconstruction error

The CD algorithm specifies how to get a reconstruction of each data point: the recon-

struction distribution of some data point ~v1 is Prec, ~v1(~v2) =
∑

~h
P (~h|~v1)P (~v2|~h), or in

words, the probability that CD-1 will use ~v2 as negative data when positive data is ~v1.

One might suspect that for a well trained RBM, this reconstruction of training data is

usually similar to the training data itself. Note that this is not necessarily true. The qual-

ity of fit of an RBM has more to do with the reconstruction distribution averaged over all

training points: that distribution should be similar to the training data distribution, but

individual training points may be reconstructed as different training points. Anyway, it

is an empirical finding that as RBM training proceeds, reconstructions of training data

get closer to their original. This suggests setting up some measure of reconstruction error

(RE), and then doing early stopping based on validation data reconstruction error.

An upside of this approach is that calculating this takes little time: simply sample

some ~h from P (~h|~v1), sample some ~v2 from P (~v2|~h), and count the number of visible

units that have different states in ~v1 and ~v2. A disadvantage is that there is randomness

in this procedure, but to get a more reliable estimate one may repeat the procedure. A

more serious consideration than these practical issues is whether this approach will result

in stopping at the right time. Empirically, it appears not to do so: stopping occurs too

late. There is an intuitive explanation of why this happens.
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As training goes on, the connection strengths of the RBM tend to grow. In a manner

quite independent of quality of fit, large weights tend to produce accurate reconstructions

or, equivalently, slow mixing of the Markov Chain. Consider some hidden unit h with

a strong positive connection to some visible unit v. Due to the strong connection, the

probability that h will have the same state as v in samples from P (~h|~v1), is large. The

connection is symmetric, so the same goes for sampling from P (~v2|~h). This shows that

with large weights, it is quite probable that the reconstruction is similar to the original.

Quality of fit also reduces reconstruction error, and this is the effect that we are

looking for and would like to isolate. But the effect of simply the size of the weights

is significant, and results in stopping much too late. This makes stopping on validation

data reconstruction error a poor approach.

5.2.2 Pseudo likelihood

A second approach is pseudo likelihood (PL). The pseudo likelihood of some configuration

~v of the visible units is PPL(~v) =
∏

i P (~v|~v−i), where ~v−i stands for the configuration ~v on

all visible units except the ith. One could take the average log PL of the validation data

set as the alternative goodness measure. This is tractable in RBMs, but takes significantly

more time than RE because of the cost of calculating exponentials and logarithms. It

has the advantage over RE that it is deterministic. Like RE, however, PL tends to result

in stopping too late, although the effect is less severe.

5.3 Approximating likelihood

Instead of using tractable alternatives, one could try to approximate true likelihood, and

do early stopping on that approximation.

The first observation to be made is that truly approximating likelihood is very difficult,

because it implies approximating the normalizing constant of the RBM, which is at the
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moment considered a difficult problem. For early stopping, however, nobody needs the

true value of the objective function: only differences between the scores of several (similar)

models are needed, and this might be easier.

In this section, one basic algorithm is presented, and then viewed in a few different

ways, each of which suggests a variation. First, however, we need some notation and

conventions.

5.3.1 Preliminaries

Let us denote the validation data distribution by Pval(·). The validation score, which is a

function of the validation distribution and the RBM parameter setting θ, is average log

likelihood: S(θ, Pval) =
∑

~v Pval(~v) log(P θ(~v)). Not only configuration probability, but

every concept from RBMs must from now on have a superscript of θ, because we are

dealing with different RBMs. Therefore, we will also see Zθ and Eθ(·).

The task is formalized as follows. Given a sequence of RBMs, each only infinitesi-

mally different from its neighbors, produce estimates of the difference in validation score

between each pair of neighbors. Given estimates of these differences, one can make the

usual early stopping plot, from which it is easy to pick a good model. The assumption of

infinitesimal differences is, of course, one of those convenient assumptions that everybody

knows to be false.

The task for a specific pair of neighbors is described conveniently by θ1 and θ2, the

parameters of the first and the second RBM, respectively. The supposedly infinitesimal

difference θ2 − θ1 will be abbreviated as dθ.

5.3.2 The algorithm

The first description of the algorithm is the one that comes to mind most naturally. Later

follows a more thorough analysis of what it really does.

The objective function, validation data log likelihood, is intractable, but we do have
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a reasonable approximation to its gradient: Contrastive Divergence. And whoever has

a gradient has enough information to estimate differences. Let us denote the CD-

approximated gradient, which is a function of the training data distribution Ptrain(·) and

of the RBM parameters θ, as follows: ∆̂CD(θ, Ptrain(·)) ≈
∂

P

~v Ptrain(~v) log(P θ(~v))

∂θ
= ∂S(θ,Ptrain)

∂θ
.

To estimate S(θ2, Pval)−S(θ1, Pval), simply take the dot product of dθ with the estimate

of ∂S(Pval,θ)
∂θ

∣

∣

θ1
. If instead of a deterministic ∆̂CD(Pval, θ), we get an unbiased estimate of

that (as is the case when using CD), the estimate of S(Pval, θ2) − S(Pval, θ1) will also be

unbiased, because of linearity of the dot product.

This algorithm is easy to implement and works reasonably well, as can be seen in the

plot at the end of this section. However, like PL, it results in stopping a bit too late. The

most logical explanation for this is some unknown but systematic difference between the

CD approximated gradient and the true gradient.

5.3.3 A more thorough analysis

The CD algorithm has two parts: the estimate of a ’positive’ gradient and the estimate

of a ’negative’ gradient. Let us recall why that is so.

S(θ, Pval) =
∑

~v

Pval(~v) log(P θ(~v))

=
∑

~v

Pval(~v) log

(

∑

~h
e−Eθ(~v,~h)

Zθ

)

= − log(Zθ) +
∑

~v

Pval(~v) log





∑

~h

e−Eθ(~v,~h)





= − φ−(θ) + φ+(θ, Pval) (5.1)

The symbols φ+ and φ− were introduced in exactly this way in section 2.3.

φ+ is completely tractable, so φ+(θ2, Pval) − φ+(θ1, Pval) is tractable even when dθ is

not infinitesimally small. Our remaining concern is φ−(θ2)−φ−(θ1), or ∂φ−(θ)
∂θ

∣

∣

θ1
(assuming
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infinitesimally small dθ). Recall equation 2.3:

∂φ−(θ)

∂θ
=
∑

C

P θ(C)
∂ − Eθ(C)

∂θ
(5.2)

From this equation we see that to get an unbiased estimate of ∂φ−(θ)
∂θ

, we need a

sample configuration C from P θ(·). The algorithm described above does that by doing

some Gibbs sampling, starting at the training data, and hoping to move away from the

training data towards the RBM distribution. But there might be other ways to do it;

ways that might get a sample from a distribution closer to the RBM distribution.

If we do use CD, we can at least use CD-n for some n > 1. The greater this n, the

closer the approximation to the true likelihood gradient. It was said before that although

CD-1 gives a bad approximation of the true gradient, it often still gets the direction more

or less correct, but the fact remains that the greater this n, the better the approximation,

and that includes the approximation to the direction.

5.3.4 Alternative ways to get samples

There are other ways to get samples from P θ(·). The quality of our approximation of

∂φ−(θ)
∂θ

depends only on how close our sampling distribution is to the RBM distribution,

so any improvements must be achieved by changing the sampling process.

The canonical way to obtain such a sample is to start a Gibbs sampling procedure

with some randomly chosen initial configuration. CD has a major improvement over that

method by starting not at a random configuration but at a training data configuration.

But there is an even better way to initialize. Because we are estimating the gradient

for many different θ, all very similar to each other, we can start the Gibbs sampling

procedure at a configuration at which it left off for the previous θ. Since the θ values are

similar, the previous RBM distribution will be a very good approximation to the current

one, and this way, as we analyze each θ, we get closer and closer to the RBM distribution,
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even though it is changing. Note that, unfortunately, this method can give estimators

that have greater variance than those taken from the normal CD approach, because in

the normal CD approach, the Markov chain is always started from the training data,

while with this new approach, the chain is started from different points each time.

This method, which can reasonably be called CD-memory, works very well for the

present purpose (see the plot at the end of this section). To the author’s knowledge, it

has not been tested for obtaining a gradient on training data. It might work well there,

too, but there is also a chance that samples from the previous RBM distribution will

not be good samples from the current RBM distribution, because the gradient update

that was calculated based on them has made these configurations less probable under

the RBM-in-training.

5.3.5 Concluding notes

Given that dθ is not quite infinitesimally small, there are some tricks for better approxi-

mating the gradient between θ1 and θ2. See for example [7].

Note also that φ−(θ2)− φ−(θ1) is a difference of logarithms of normalizing constants,

or, equivalently, a ratio of normalizing constants. The task of approximating ratios

of normalizing constants is well studied in the field of statistics, see for example [2].

Trying to invent new methods for it without using the knowledge that has been built up

by much excellent research in the field of statistics seems a waste of effort. Therefore, I

conclude this section by noting that the ultimate way of doing early stopping on validation

likelihood for RBMs is to ask a good statistician for his favorite way of estimating ratios

of normalizing constants. This method, however, has not (yet) been tried by the author.
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Figure 5.1: This plot allows one to compare the various early stopping methods discussed

here. An RBM was trained on images of handwritten twos from the USPS data set. On

a separate validation set, these measures were evaluated. The RBM had only 20 hidden

units, so the true likelihood could be calculated. Note that the scale of the Y axis differs

across measures (from bits to to pseudo bits to squared pixel reconstruction errors), so

numbers have been omitted. Also note that as the CD-based measures only estimate

differences, the y=0 line is of no significance. The only thing that can be compared in

this plot is where the peaks are. In this experiment, validation data reconstruction error

only decreased, but RE is not as bad as it looks here: with weight decay, it eventually

starts to increase (the current experiment was done without weight decay).
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