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ABSTRACT

We propose a computer vision system, called a “visual
supervisor”, capable of visually monitoring an environ-
ment with the goal of safety monitoring and task verifica-
tion. We demonstrate our system in a spaceborne setting
in which from monocular video sequences, it 1) tracks
and recognizes objects, 2) detects workspace violations,
and 3) supervises in-progress tasks for anomalous situa-
tions, failures, or satisfactory progress. The system com-
bines motion segmentation, object tracking, object iden-
tification, and pose estimation with cognitive reasoning
to construct qualitative interpretations of the scene, such
as, “An object, believed to be a satellite, appears to be
on a collision course with a second object, believed to
be the Space Shuttle.” We demonstrate our framework
on the footage of mission STS-87 as viewed from the
Space Shuttle Columbia, where the proposed framework
correctly identified that the mission had failed.

Key words: Qualitative/Cognitive vision;Task monitor-
ing.

1. INTRODUCTION

There are a number of space-based robotics tasks for
which computer vision can play a critical role. One
such task, critical to the Canadian Space Agency’s role
in the International Space Station, involves the automatic
grasping of a known object by a robotic arm. A cali-
brated vision system can provide the instantaneous posi-
tion and orientation of the object with respect to the cam-
era, allowing the robot to visually track and thereby grasp
the object. Although there exist techniques in the com-
puter vision community for computing (and tracking) the
pose of a geometric object from a 2-D image (sequence),
these techniques can fail under extreme lighting condi-
tions, such as those found in a space-based environment.
Unfortunately, such failures cannot always be readily de-
tected by the tracking module. Furthermore, even when

a failure can be self-detected, automatic recovery (pose
correction) may not be possible without manual inter-
vention. These task-specific modules overconstrain the
world, which is both a blessing and a curse. For when the
environment changes unexpectedly, their myopic view of
the world can render them helpless.

To cope with this limitation, we introduce the concept of a
“visual supervisor” module that can visually monitor the
environment with the goal of safety monitoring and task
verification. The visual supervisor can track moving ob-
jects, label the objects according to prototypical classes,
detect and react to events in a larger context, and may pro-
vide initialization and operational constraints to the task
specific modules. The resulting framework therefore con-
sists of a hierarchy of visual behaviours, each sensing the
world at a different level of resolution. Task-specific be-
haviours, such as pose estimation, tracking, and grasping
subsume lower-level behaviours, such as camera control
and obstacle avoidance. The task-specific behaviours, in
turn, are subsumed by the visual supervisor, which can
both monitor and govern their performance as well as
their interaction with other task-specific behaviours.

One of the highlights of the proposed scheme is that it
brings together qualitative and quantitative visual pro-
cesses in a behavior-based control environment. This
coupling is motivated by the fact that although task-
specific vision, such as CAD-based vision and tracking
(1), can yield accurate metric pose information, it cannot
accommodate abnormal conditions, such as extreme illu-
mination changes or unexpected objects. A more qual-
itative visual “front end” that can identify and track the
qualitative shapes of multiple objects without knowing
their exact geometry can provide a level of robustness es-
sential for space robotics.

Operations in space have evolved for the most part with
a human presence. As the capabilities of robotic systems
improve, they offer a viable way to reduce the costs and
risks associated with human presence in space. Ground
controlled, semi- and fully autonomous space systems
will require complex vision systems that can operate un-
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der space illumination, as well as a large range of dis-
tances and viewpoints. Current space vision systems
are designed for single functions only and rely on op-
erator assistance. Future vision systems will incorpo-
rate different strategies (modules), use different modal-
ities, monitor their operation, and function autonomously
(2). Autonomy is the key requirement for future space
vision/robotics applications, such as those listed below:

• Robotic applications for reuseable space vehicles

• On-orbit satellite servicing

• Planetary exploration

• Servicing of scientific payloads

• Support to space infrastructure development

• Utilization and maintenance of existing and future
space infrastructure

Furthermore, as reliance on autonomous controllers in-
creases, visual supervisors, such as the one described
in this paper, become increasingly relevant. The visual
supervisor will not only monitor the task-specific visual
processes, but also monitor the interaction of these pro-
cesses. For a robot mounted on the space station to
grasp an object, for example, one might envision a vi-
sual supervisor whose field of view not only contains the
robot’s workspace but also the surrounding region. From
this vantage, the visual supervisor can not only examine
the progress of the task involving the robot, but also de-
tect if an unauthorized object is about to encroach on its
workspace. The visual supervisor thus provides a visual
“sanity check” on what’s happening in the environment.

We demonstrate our visual supervisor framework on the
footage of mission STS-87— an actual satellite acquisi-
tion task—as viewed from the Space Shuttle Columbia.
The system correctly observes and reports the anomalous
condition that the acquisition has failed.

The paper is organized as follows. We begin by present-
ing the system overview in Section 2. Then in Section 3,
we explain the motion segmentation and tracking mod-
ule. Section 4 describes the object representation and
matching scheme. In Section 5, we introduce our spatio-
temporal reasoning scheme for object identification. Sec-
tion 6 introduces task hypothesis generation and verifi-
cation scheme. We conclude the paper with results and
conclusions in sections 7 and 8, respectively.

2. SYSTEM OVERVIEW

The visual supervisor follows a hierarchical visual pro-
cessing paradigm where low-level visual routines, such as
motion segmentation and tracking, support higher-level
processing that involves spatio-temporal reasoning (Fig-
ure 1). A long-standing challenge in computer vision
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Figure 1. The Visual Supervisor: An Overview

is to successfully combine low-level visual routines with
knowledge-based reasoning to construct high-level qual-
itative interpretations of a scene that go beyond the usual
interpretations, such as background-forground separation
or motion tracking. We address this challenge by employ-
ing CoCo—an agent control framework that combines
reactivity and deliberation by managing the cogitation-
action cycle (3).

Due to extreme lighting variation in a space environment,
appearance-based recognition modules are ineffective for
object identification. The only stable feature that we can
exploit for object identification and pose estimnation is
the shape of an object’s silhouette. Our framework there-
fore begins my recovering the silhouette boundary of a
moving object, and then recognizes the object based on
the qualitative shape of the silhouette. We will describe
these two modules in greater detail in the following sec-
tions.

The first step involves tracking regions of coherent mo-
tion, corresponding to multiple, independently moving
objects, against a possibly moving background, in the
field of view. We then construct a part-based represen-
tation consisting of a collection of qualitatively defined
parts, called a shock graph, from the bounding contour
of a given coherently moving region. Next, an integrated
graph indexing/matching module matches the recovered
shock graph against a database of shock graph “views” of
known objects, resulting in a ranked list of object-view
hypotheses.

The reasoning module uses the available motion history
and object pose hypotheses and employs weak, domain-
independent notions of spatial and temporal coherence to
quickly identify objects and characterize their motions.
Given a priori knowledge of the currently active tasks,
the system attempts to compare the observed object be-
havior with the expected object behavior. Unrecogniz-
able objects or unexpected object motions can be used to
issue warnings and invoke task specific routines to further
investigate the anomalies.
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Figure 1. This figure illustrates the basic struc-
ture of our approach. Region-based information
is used to derive flow constraints, which are typ-
ically sparse. This information can be made more
dense by warping image pixels to find pixels with
matching intensities in the two images. These con-
straints provide data for the active contour, and
the contour is warped between frames according
to the motion parameters. The contour reinforces
spatial coherence by allowing us to consider only
motion constraints within the contour.

warping the image according to the recovered motion, and
comparing the intensities of corresponding pixels, as de-
scribed in Section 2.2. Matching intensity values provides
a sufficiently dense set of constraints to initialize an active
contour whose shape is then governed by both motion and
image gradient information, as described in Section 2.3. In
subsequent frames, motion information is used to warp the
recovered boundary (active contour) to the next frame in a
motion feedforward step, described in Section 2.4.

Finally, the spatial coherence of the object boundary in-
fluences the next round of motion estimation by exclud-
ing motion constraints that fall outside the boundary. This
boundary feedback step is described in Section 2.5.

2.1. Motion Estimation

Our approach begins with a multiscale layered motion
estimation technique that is similar to the methods de-
scribed in [10, 18]. In particular, we adopt a robust mixture
model approach related to that described in [12], but in prin-
ciple, any other layered motion approach that generates ei-
ther a parametric motion or a dense, non-parametric motion
can be used instead. The process is described here for ap-
plication at a single scale to simplify its presentation. The
brightness constancy constraint (BCC), ∇T

!x I!u + It = 0,
is well-known, and is the starting point for the estimation of
2-D image velocity !u = [ux uy]T . Each image location pro-
vides a constraint vector !c(!x) = [Ix Iy It]T that satisfies (in
the absence of noise) !c(!x)T !uh = 0, where !uh = [!uT 1]T is
a homogeneous representation of !u, and !u is assumed to be
the motion experienced by the pixel at !x = [x y]T . The in-
ner product of a constraint with a motion vector from an-
other layer will be expected to yield a non-zero value, in
general.

Each motion layer has an associated parametric model
that is either constant or affine, although any parametric
model can be used. Associated with each parametric model
and its associated parameters !θ is a likelihood function
p(!c(!x)|!θ, !x) that indicates how well a constraint !c matches
the motion. For example, for the constant motion model,
we have pconstant(!c(!x)|!u, σ) = G(!c(!x)T !uh; 0, σ). Here,
the notation G(x;µ, σ) represents a Gaussian density over
x with mean µ and standard deviation σ. The likelihood of
a particular constraint !c(!x) with respect to all motion lay-
ers is p(!c(!x)) =

∑n
j=1 πjpj(!c(!x)|!θj , !x), where the πj are

called mixing parameters and satisfy 0 ≤ πj ≤ 1 for all
j and

∑
j πj = 1. An outlier layer is used to model con-

straints not accounted for by other motion layers.
The probability that a constraint comes from any partic-

ular layer j can be computed as

O(!c(!x)|j) =
πjpj(!c(!x)|!θj), !x)

∑n
k=1 πkpk(!c(!x)|!θk), !x))

(1)

and is called its ownership by that layer. Finally, the likeli-
hood of the entire model with respect to a set of measured
constraints {!c(!xq)}m

q=1 is given by

L(!Θ) = Πm
q=1p(!c(!xq)) , (2)

where !Θ = [!θT
1 . . . !θT

n π1 . . . πn]T is the collection of all
model parameters. The EM algorithm [6] is an iterative
technique for maximizing a model’s likelihood with respect
to the observed data. Since, in general, the likelihood is a
non-linear function, the method may find a local minimum
as opposed to the desired global minimum.

Each iteration of the EM algorithm requires that the
number of models n be known, so it is necessary to de-
termine this from the input sequence. Following [16], we

Figure 2. Region-based information is used to derive flow con-
straints, which provide data for the active contour. The contour,
in turn, is warped between frames according to the motion pa-
rameters. The contour reinforces spatial coherence by consid-
ering only those motion constraints that lie within the contour.

3. MOTION SEGMENTATION AND OBJECT
TRACKING

The tracking module (4) estimates spatially coherent mo-
tion by combining region (layered motion estimation)
and boundary information (active contour estimation).
The tracking scheme employed here assumes no a priori
knowledge about the number of regions to be estimated
or the shape of the regions. Furthermore, it does not as-
sume a static background or a stationary camera. These
attributes make the motion estimation and object track-
ing scheme used here particularly suitable for a space
environment, where color-based object tracking schemes
might fail due to harsh lighting situations.

The tracking module begins by estimating a sparse set
of motion constraints in successive frames by assum-
ing brightness constancy. These motion constraints are
then classified according to a constant or affine paramet-
ric model using the Expectation Maximization (EM) al-
gorithm. Dense segmentation constraints, which are re-
quired to initialize an active contour, are generated by
warping the images according to the recovered motion
and evaluating the match of pixel intensities. Once initial-
ized, the shape of the active contour is governed by both
motion and image gradient information. The spatially
coherent active contour influences motion estimation in
subsequent frames by excluding motion constraints that
do not lie within the contour, yielding a synergy between
region- and boundary-based motion estimation.

4. SHAPE REPRESENTATION AND MATCHING

The object views emerging from the tracking process
must be matched against a model database to determine
their identity and pose. Toward this end, we represent the
silhouette of each view by a shock graph. A shock graph
is a shape abstraction that decomposes the skeleton of a
silhouette into a set of hierarchically organized primitive
parts (5). This hierarchy is given as a directed acyclic
graph (DAG), in which node attributes encode local shape
properties, such as the radii and relative positions of the
skeleton points. The problem of comparing query views
with model views is then solved by matching the query
graphs against a set of candidate graphs from the model
database.

If there were no noise, our problem could be formu-
lated as a graph isomorphism problem for vertex-labeled
graphs. Unfortunately, with the presence of significant
noise, in the form of the addition and/or deletion of graph
structure, large isomorphic subgraphs may simply not ex-
ist. We overcome this problem by proposing a matching
algorithm that accounts for local similarity measures of
graph topology and node attributes. In turn, our char-
acterization of graph topology becomes the discrimina-
tive feature in a fast screening mechanism for pruning the
database down to a tractable number of candidates. De-
tails of the pruning algorithm can be found in (6).

We draw on the eigenspace of a graph to characterize
the topology of a DAG with a low-dimensional vector.
The eigenvalues of a graph’s adjacency matrix encode
important structural properties of the graph, characteriz-
ing the degree distribution of its nodes. Moreover, we
have shown that the magnitudes of the eigenvalues are
stable with respect to minor perturbations of graph struc-
ture due to, for example, noise, segmentation error, or mi-
nor within-class structural variation (6). For every rooted
directed acyclic subgraph (i.e., a shape part) of the orig-
inal DAG, we compute a function of the eigenvalues of
the subgraph’s antisymmetric {0, 1,−1} node-adjacency
matrix, which yields a low-dimensional topological sig-
nature vector (TSV) encoding of the structure of the sub-
graph. Details of the TSV, along with an analysis of its
stability, can be found in (6).

Each node in a graph (query or model) is assigned a TSV,
which reflects the underlying structure in the subgraph
rooted at that node. This encoding of graph topology al-
lows us to discard all the edges in our two graphs and
then solve the matching problem by finding the best cor-
responding nodes; two nodes are said to be in close cor-
respondence if the distance between their TSVs, and the
distance between their node attributes is small. Such a
formulation amounts to finding the maximum cardinality,
minimum weight matching in a bipartite graph spanning
the two sets of nodes. We combine the above bipartite
matching formulation with a greedy, best-first search in a
recursive procedure to compute the corresponding nodes
in two rooted DAGs which, in turn, yields an overall sim-
ilarity measure that is used to rank the candidates. An
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Figure 3. The DAG matching algorithm. (a) Given a
query graph and a model graph, (b) form bipartite graph
in which the edge weights are the pair-wise node similari-
ties. Then, (c) compute a maximum matching and add the
best edge to the solution set. Finally, (d) split the graphs
at the matched nodes and (e) recursively descend.

overview of the algorithm is depicted in Figure 3, and the
details can be found in (7; 8).

5. OBJECT REASONING

A fundamental requirement for the proper function of the
visual supervisor is robust object identification. The vi-
sual supervisor must be able to positively identify ob-
jects in the field of view given the shape matching re-
sults, recover from short-term segmentation/tracking fail-
ures, and handle object occlusions. To meet these re-
quirements, the visual supervisor maintains an abstracted
mental model of the scene, which is continuously updated
to reflect the passage of time and the latest results from
the visual processing routines. Application of spatio-
temporal rules upon the mental state yields the list of ob-
jects believed to be in the field of view.

The shock graph-based shape matching module treats
each frame independently and returns a ranked list of
object-view hypotheses for each image region that ex-
hibits coherent motion as estimated by the motion seg-
mentation and object tracking routines (Figure 4). De-
pending upon the quality of the bounding contour and the
number of objects in the object-view database, the hy-
potheses might be ranked incorrectly, or worse, do not
even include the target object. What further compounds
the problem of choosing a candidate object for the region
is the fact that object-pose hypotheses for a given region
of motion can vary considerably between frames. The
object reasoning module accounts for the noisy nature of
motion segmentation and object tracking by maintaining
a small, manageable number of candidate objects, instead
of committing to a single object for a given region.

The object reasoning module examines object-view hy-
potheses across multiple frames to select candidate ob-

INDEXING RESULTS

Rank  Object Name     View #   Similarity

0     fuzzy_spartan   315      1         
1     fuzzy_spartan   225      0.868278  
2     fuzzy_spartan   270      0.868278  
3     fuzzy_spartan   135      0.868278  
4     fuzzy_spartan   45       0.759339  
5     BAT             16       0.546703  
6     fuzzy_spartan   315      0.546703  
7     fuzzy_spartan   0        0.472085  
8     fuzzy_spartan   0        0.414933  
9     KNIFECLV        77       0.414933  
10    BAT             22       0.400738  
11    BAT             81       0.400738  
12    BAT             101      0.400738

MATCHING RESULTS

Rank  Object Name     View #   Similarity

0     fuzzy_spartan   45       0.753641  
1     fuzzy_spartan   135      0.546489  
2     dog             46       0.538645  
3     pig             42       0.525449  
4     fuzzy_spartan   0        0.515806  
5     dog             71       0.501153  
6     ESPRESSO        3        0.490926  
7     camel           127      0.487582  
8     camel           70       0.473799  
9     dog             47       0.467701  
10    pig             87       0.464735  
11    fuzzy_spartan   225      0.454066  
12    HORSE           86       0.449975  
13    fuzzy_spartan   0        0.435783  
14    camel           22       0.428474  
15    fuzzy_spartan   0        0.410162  
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Figure 4. Object pose hypotheses with similarity value of more
than 0.4 for Region 1 in the video frame. The list of hypotheses
also contains objects that clearly do not exist in space, which is
due to the fact that models for these objects are present in the
shape matching database. The models were added intentionally
to challenge the shape matching and object reasoning modules.

jects for a given region. It begins by accumulating votes
for each hypothesized object for a given region over mul-
tiple frames. Objects that occur more frequently receive
higher votes, and those above a certain threshold are kept
as possible candidates for the region. The success of our
voting scheme depends on the assumption that inaccura-
cies in object hypotheses are temporally inconsistent and
unstable, i.e., a given region will not be assigned the same
incorrect object across multiple frames. We observed em-
pirically that the above assumption holds true in our set-
ting.

A naive voting scheme that involves counting the number
of occurrences of a hypothesized object is not enough,
as it only takes into account the frequency of occurrence
without paying any attention to the pattern of occurrence
(Figure 5(a)). We instead propose a weighted, occlusion
sensitive, and time-discounted voting scheme, which for-
malizes the notion that 1) recurrent and temporally stable
hypotheses are more likely, 2) objects that have not been
hypothesized for the last few frames should be forgotten,
and 3) objects believed to be occluded should retain their
values at least for some time in the future (Figure 5(b)).

The number of candidates for a given region can be fur-
ther reduced by employing domain specific knowledge
including reasoning about object pose, invoking object
specific recognition routines, or querying a human opera-
tor. Object pose reasoning involve enumerating all possi-
bilities within object pose space, computing a domain-
dependent cost for each possibility, and keeping only
possibilities that have low costs (Figure 5(c)). Reason-
ing about an object’s pose requires guarantees about the
speed at which the shape matching module operates vis-
à-vis the time scale of the environment. For the current
prototype, we do not assume these guarantees, so we have
not yet implemented domain specific reasoning for object
identification.

The object reasoning module handles object ‘entry’,
‘exit’, and ‘occlusion’ events by examining the number of
motion regions as estimated by the motion segmentation
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Figure 5. Object Reasoning—a hypothetical scenario. (a) Object pose hypotheses for a given region at successive frames. (c) Objects’
votes accumulated over successive frames. After 8 frames, object ‘a’ appears the most likely candidate. (b) Object pose interpretation
tree (object ‘a’) construction after applying an object persistence constraint. Domain specific knowledge can be used to assign a cost
to every path in this tree; paths with higher costs are less likely. Reasoning within the object pose space further reduces the number of
candidate objects for a given region.

routine. An ‘entry’ event is detected when a new region
is detected through motion segmentation. The object rea-
soning module avoids spurious ‘entry’ events by enforc-
ing spatial coherence and a temporal stability constraint
on the newly detected region over successive frames, i.e.,
the new region must be reliably detected across multiple
frames before it is considered a valid ‘entry’ event. An
‘exit’ event is detected when an object leaves the field of
view, which results in a decrease in the number of es-
timated motion regions. The number of estimated mo-
tion regions also decreases during object occlusion, so
the object reasoning module employs first- and second-
order spatial knowledge to distinguish between an ‘exit’
and an ‘occlusion’ event. An ‘exit’ events happens when
one of the regions vanishes and none of the existing re-
gions have the same spatial coordinates. This decision is
finalized over multiple frames to avoid spurious events.

The object reasoning module can also detect when two
objects form a physical connection, e.g., during a suc-
cessful satellite capture operation, and to which we refer
as a ‘coupled’ event. We assume that the two objects are
rigidly connected after the ‘coupled’ event, so we can use
the number of estimated motion regions as a cue to detect
a ‘coupled’ event. A ‘coupled’ event is detected when 1)
the number of estimated regions of motion decreases and
2) the resulting bounding contour resembles the union of
the two bounding contours, one for each object, prior to
the ‘coupled’ event.

6. TASK VERIFICATION

Task verification is a primary requirement for safety mon-
itoring. The idea is that the visual supervisor should not
only identify the various objects in the field of view, but
also establish that their interactions are safe. Here, the no-
tion of safety is determined by the set of active tasks—the
same interaction between some objects can have vastly
different interpretations given the active tasks. For exam-
ple, an observation that A and B are moving toward each
other should be interpreted as a possible collision in the
absence of an active ‘A joins B’ task.

Objects in the field of view determine which tasks are
possible. In the absence of any knowledge about active
tasks, the problem of inferring which task is active is both
challenging and computationally expensive due to a large
number of potential tasks that must be reasoned about;
2n tasks, for example, are possible with n objects. The
visual supervisor, therefore, restricts the reasoning about
tasks to the list of active tasks, which can be regarded as
a scheme for focusing attention to what is relevant.

The visual supervisor defines each task in terms of actions
and actors. We can describe a task in BNF form as

<task> ::= <task> <stage>
<stage> ::= <stage> <action>
<action> ::= <action> <actors>
<actors> ::= <object> <actors>
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It simply states that a task consists of multiple stages and
that each stage defines the behaviors of, and interaction
between, objects. This allows the visual supervisor to
quickly construct a list of objects that should be in the
field of view for a given task to be active. As a first step,
this list is matched against the set of objects estimated to
be in the field of view by the object reasoning module.
The matching provides a quick way to rule out tasks that
are not active and to identify objects that should not be
present in the field of view.

The matching is non-trivial due to the fact that multiple
objects are usually estimated for each region of coher-
ent motion. We propose a weighted matching scheme to
address this issue, where the strength of an object deter-
mines the relevance of a match. Also, different stages of
a task might involve different objects, so in general, it is
not sufficient to match a task-wide list of objects. The
visual supervisor instead matches the object list for each
stage against the objects estimated to be in the field of
view. This yields a set of possible stages that might be
active which, in turn, gives a hint as to what task(s) might
be active.

Stage verification is performed by observing the interac-
tion of the objects. In the current prototype, we are able to
identify the following interactions between two objects:

• Two objects are maintaining their distance.

• Two objects are converging.

• Two objects are diverging.

7. RESULTS

We demonstrate the framework on the footage of mission
STS-87 as viewed from Space Shuttle Columbia. The
objective of this mission was to capture the Spartan satel-
lite by using a robotic arm mounted on the Space Shuttle.
An astronaut maneuvered the arm to bring it closer to,
and eventually dock with, the satellite. This mission was
aborted when the arm collided with the satellite, sending
the latter into a spin.

7.1. Stage 1: Motion Segmentation and Object
Tracking

We first processed the video to identify moving objects.
For this video, the motion segmentation and object track-
ing module correctly identified two regions of coherent
motion with bounding contours shown in Red and Cyan
(Figure 6).

7.2. Stage 2: Object Matching

The estimated regions are passed to the shape matching
module that determines their identity and pose by match-

(a) Region 1 (b) Region 2 (c) Match Matrix

Figure 7. The estimated regions, such as those for Frame 855
shown here (a)-(b), are passed on to the object matching mod-
ule that returns a ranked list of object-pose hypothesis for each
region. For Frame 855, the top five matches for Region 1 are
‘satellite’, ‘arm’, ‘arm’, ‘guitar’, and ‘guitar’, and for Region
2: ‘umbrella’, ‘satellite’, ‘satellite’, ‘umbrella’, and ‘satellite’.
The correct match for Region 1 is ‘arm’ and for Region 2 is
‘satellite’. (c) The results of matching the estimated regions
in every frame against the model database. Rows represent
the regions in every frame (a total of 772 rows; 2 regions in
386 frames; we processed every fifth frame starting from Frame
25). Columns (633) represent the number of views in the model
database. White indicates a high-similarity value.

ing the shock graph representation of a region’s bounding
contour against a model database (Figure 7). Our model
database contains multiple views of 20 different objects,
including 22 views of the Spartan satellite and 4 views of
the robotic arm shown in the video. The performance of
the shape matching module, given the fact that the model
database contains 633 unique views, is a testament to the
robustness of our shape matching scheme.

We created view-based models for the satellite (to be
used by the shape matching routine) by rendering silhou-
ette images of the 3D satellite CAD model from multi-
ple views (Figure 8(a)) and then computing shock graphs
from these images. It turns out that the 3D satellite CAD
model has minor structural detail not visible on the actual
object, which results in a shock graph that is noticeably
different from a shock graph that is extracted from the
bounding contour of the region corresponding to the ac-
tual satellite. This translates into poor performance of
the shape matching routine. We resolve this issue by ap-
plying a Gaussian filter on the silhouette image, thereby
bridging the representational gap between model and im-
age.

We also created view-based models for the robotic arm
shown in the test video. Here, due to lack of a readily
available geometric model of the arm and given the fact
that it is never fully visible in the video, we extracted a
silhouette for the arm for every frame in the video, and
clustered them into 4 exemplar silhouettes through K-
Means clustering. We then computed shock graphs for
these exemplars and added these to the model database.

7.3. Stage 3: Object Reasoning

The object reasoning module identifies the two regions
from the object-view hypotheses returned from the shape
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(a) Frame 25 (b) Frame 300 (c) Frame 855 (d) Frame 1890

Figure 6. Motion tracking and segmentation routine successfully estimated two regions exhibiting coherent motion and computed their
bounding contours (a)-(d).

(a) (b)

Figure 8. (a) Silhouette image by rendering a 3D satellite CAD
model; notice the fine detail. (b) The same image after Gaussian
smoothing.

matching module . It only considers hypotheses whose
similarity value exceeds 0.4. The object reasoning mod-
ule has correctly estimated Region 1 to be the satellite
and Region 2 to be the robotic arm (Figure 9).

7.4. Stage 4: Task Identification and Verification

In the current setup, the set of active tasks contains only
one task: ‘dock’. During a ‘dock’ task, a robotic arm
moves closer to the satellite until the latter is successfully
captured. Upon a successful capture the satellite and the
arm are rigidly coupled and exhibit the same motion char-
acteristics. Given this description of the ‘dock’ task, we
can describe it as follows:

<dock> ::= <approach> <captured>
<approach> ::= <converge> <sat> <arm>
<captured> ::= <coupled> <sat_arm> |

<coupled> <sat> <arm>

The visual supervisor matches the objects identified in
Stage 3 with the actors (or objects) required for the vari-
ous stages of the active task and decided that both objects
are expected to be in the field of view. In a more general
setting when one of the objects is not expected to be in
the field of view, the visual supervisor can either raise an
alert or employ a more suitable routine for further visual
analysis.

The next step is to resolve the current stage of the task.
In general, specialized routines are required to decide be-
tween different stages; however, we were able to use the
relative motion of the two objects to choose the active

stage. We label the relative motion as converging, diverg-
ing, and coupled by fitting a linear model to the track-
ing data and examining its slope. Two objects that ap-
pear to be converging in a video do not necessarily imply
that these are also coming closer in 3D, so the visual su-
pervisor also estimated the relative depth of the two ob-
jects by comparing their image area to the model dimen-
sions. Monocular depth estimation, while not as accurate
as stereo depth estimation, is sufficient for our purpose.
Also, the visual supervisor can potentially employ a bet-
ter depth estimation strategy when the need arises.

The visual supervisor estimated the current stage to be
‘approach’, as the two objects exhibited distinct motions.
The visual supervisor also estimated that the two ob-
jects are converging, thereby deciding that the ‘approach’
stage is progressing satisfactorily.

Around Frame 855 the two regions are almost touching
each other, so the visual supervisor estimates that the cur-
rent stage is ‘captured‘. Due to task failure, however, the
satellite starts moving away from the robotic arm and vi-
sual supervisor detects that the two objects are diverging
from each other and estimates that the ‘captured’ stage is
failing.

8. CONCLUSIONS

We have proposed a visual supervisor framework capa-
ble of constructing qualitative interpretations of a scene
from monocular videos with the aim of safety monitor-
ing. The framework brings together motion segmenta-
tion, object tracking, view-based shape matching, and a
new spatio-temporal reasoning scheme within an agent
control framework. The object reasoning module can cor-
rectly identify visual events, such as ‘entry’, ‘exit’, ‘oc-
clusion’, and ‘coupled’. Our task description scheme al-
lows task hypotheses to be generated from the identified
objects. Low-level visual routines can then by used for
task recognition and monitoring. We have demonstrated
the framework on the footage from mission STS-87 and
the initial results appear promising.

We envision that visual supervisors, such as the one de-
scribed here, will become more relevant as an increasing
number of space missions are performed autonomously
by intelligent controllers without a human in the loop. As
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Figure 9. Voting results for possible candidates for Region 1 (a) and Region 2 (b). The object reasoning module correctly inferred
Region 1 to be a satellite and Region 2 to be a robotic arm. We only show candidates whose vote at any point during the sequence
exceeds 0.03.

such, the framework introduced here is a step in this di-
rection.

There are a number of things that we want to address
in the future. First, we want to evaluate the visual su-
pervisor on monocular videos from multiple missions
which, among other things, requires us to include view-
based models of some other objects in the shape match-
ing database. Next, we want to investigate more sophis-
ticated task recognition and monitoring schemes. Most
importantly, we want to close the loop between the rea-
soning module and the low-level visual routines, which
would allow the reasoning module to guide the low-level
visual routines, making them more competent and robust.
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