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Abstract

We present a framework for categorical shape recognition. The coarse shape of an object is captured by a multiscale blob decompo-
sition, representing the compact and elongated parts of an object at appropriate scales. These parts, in turn, map to nodes in a directed
acyclic graph, in which edges encode both semantic relations (parent/child) as well as geometric relations. Given two image descriptions,
each represented as a directed acyclic graph, we draw on spectral graph theory to derive a new algorithm for computing node correspon-
dence in the presence of noise and occlusion. In computing correspondence, the similarity of two nodes is a function of their topological
(graph) contexts, their geometric (relational) contexts, and their node contents. We demonstrate the approach on the domain of view-
based 3-D object recognition.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Object categorization has long been a goal of the object
recognition community, with notable early work by Bin-
ford [3], Marr and Nishihara [32], Agin and Binford [1],
Nevatia and Binford [35], and Brooks [6] attempting to
construct and recognize prototypical object models based
on their coarse shape structure. However, the representa-
tional gap between low-level image features and the
abstract nature of the models was large, and the communi-
ty lacked the computational infrastructure required to
bridge this representational gap [22]. Instead, images were
simplified and objects were textureless, so that extracted
image features could map directly to salient model features.
In the years to follow, such generic object recognition sys-
tems gave way to exemplar-based systems, first passing
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through highly constrained geometric (CAD) models, and
on to today’s generation of appearance-based models.
Whether the images were moved closer to the models (ear-
lier approaches) or the models moved closer to the images
(later approaches), the representational gap has remained
largely unaddressed.

The community is now returning to the problem of
object categorization, using powerful machine learning
techniques and new appearance-based features. However,
appearance-based representations are not invariant to sig-
nificant within-class appearance change, due to texture,
surface markings, structural detail, or articulation. As a
result, the categories are often very restricted, such as faces,
cars, motorcycles, and specific species of animals. Accom-
modating significant within-class shape variation puts sig-
nificant demands on a representation: (1) it must capture
the coarse structure of an object; and (2) it must be local,
in order to accommodate occlusion, clutter, and noise.
These criteria point to a structured shape description not
unlike the ambitious part-based recognition frameworks
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proposed in the 70s and 80s. However, the representational
gap facing these early systems still poses a major obstacle.

We begin by imposing a strong shape prior on the parts
and relations making up an object. Specifically, we repre-
sent a 2-D object view as a multiscale blob decomposition,
whose part vocabulary includes two types, compact blobs
and elongated ridges, and whose relations also include
two types, semantic (parent/child and sibling) and geomet-
ric. The detected qualitative parts and their relations are
captured in a directed acyclic graph, called a blob graph,
in which nodes represent parts and edges capture relations.

Choosing a restricted vocabulary of parts helps us
bridge the representational gap. Early generation systems
started with low-level features such as edges, regions, and
interest points, and were faced with the challenging task
of grouping and abstracting them to form high-level parts,
such as generalized cylinders. By severely restricting the
part vocabulary, we construct a high-level part detector
from simple, multiscale filter responses. Although the parts
are simple and qualitative, their semantic and geometric
relations add rich structure to the representation, yielding
a shape representation that can be used to discriminate
shape categories.

Any shortcut to extracting high-level part structure from
low-level features, such as filter responses, will be prone to
error. Thus, the recovered blob graph will be missing
nodes/edges and will contain spurious nodes/edges, setting
up a challenging inexact graph-matching problem. In our
previous work on matching rooted trees [50], we drew on
spectral graph theory to represent the coarse ‘‘shape’’ of
a tree as a low-dimensional vector based on the eigenvalues
of the tree’s symmetric adjacency matrix. Our matching
algorithm utilized these vectors in a coarse-to-fine match-
ing strategy that found corresponding nodes. Although
successfully applied to shock trees, the matching algorithm
suffered from a number of limitations: (1) it could not han-
dle the directed acyclic graph structure found in, for exam-
ple, our multiscale blob graphs, e.g., a blob may have two
parents; (2) it was restricted to matching hierarchical par-
ent/child relations, and could not accommodate sibling
relations, e.g., the geometric relations between blobs at a
given scale; and (3) the matching algorithm was an approx-
imation algorithm that could not ensure that hierarchical
and sibling relations were preserved during matching,
allowing, for example, two siblings (sharing a parent) in
one tree to match two nodes in the other tree having an
ancestor/descendant relationship.

We first extend our matching algorithm to handle direct-
ed acyclic graphs, drawing on our recent work in indexing
hierarchical structures [48], in which we represent the
coarse shape of a directed acyclic graph as a low-dimen-
sional vector based on the eigenvalues of the DAG’s anti-
symmetric adjacency matrix. Next, we introduce a notion
of graph neighborhood context, allowing us to accommo-
date sibling relations, such as our blob graphs’ geometric
relations, into our matching algorithm. Finally, we extend
the matching algorithm to ensure that both hierarchical
and sibling relations are enforced during matching, yielding
improved correspondence in the presence of noise and
occlusion. The result is a far more powerful matching
framework that’s ideally suited to our multiscale blob
graphs.

Following a review of related work in Section 2, we
describe our qualitative shape representation in Section 3.
Next, we describe our new matching algorithm in Section
4. In Section 5, we evaluate the approach on the domain
of view-based 3-D object recognition. We discuss the limi-
tations of the approach in Section 6, and draw conclusions
in Section 7.

2. Related work

There has been considerable effort devoted to both scale
space theory and hierarchical structure matching, although
much less effort has been devoted to combining the two
paradigms. Coarse-to-fine image descriptions are plentiful,
including work by Burt [7], Lindeberg [30], Simoncelli
et al. [51], Mallat and Hwang [31], and Witkin and Ten-
nenbaum [57]. Some have applied such models to directing
visual attention, e.g., Tsotsos [54], Jägersand [20], Olshau-
sen et al. [36], and Takac̀s and Wechsler [52]. Although
such descriptions are well suited for tasks such as com-
pression, attention, or object localization, they often lose
the detailed shape information required for object
recognition.

Others have developed multi-scale image descriptions
specifically for matching and recognition. Crowley and
Sanderson [10,9,11] extracted peaks and ridges from a
Laplacian pyramid and linked them together to form a tree
structure. However, during the matching phase, little of the
trees’ topology or geometry was exploited to compute cor-
respondence. Rao et al. [40] correlate a rigid, multiscale
saliency map of the target object with the image. However,
like any template-based approach, the technique is rather
global, offering little invariance to occlusion or object
deformation. Boyer and Kak [4] also considered the con-
struction of a structural description from noisy image
primitives. In their approach, the structural description of
an object consists of set of primitive features and their rela-
tionships in the scene, e.g., pairwise orientation among fea-
tures, distance, and an information-theoretic measure of
relational inconsistency. These relationships were subse-
quently extended to a set of parametric descriptions whose
values represented the strengths with which a given pair of
primitives participate in the relationships. The resulting
descriptors were used to identify an optimal mapping func-
tion between the descriptions. In an effort to accommodate
object deformation, Wiskott et al. apply elastic graph
matching to a planar graph whose nodes are wavelet jets.
Although their features are multiscale, their representation
is not hierarchical, and matching requires that the graphs
be coarsely aligned in scale and image rotation [56]. A sim-
ilar approach was applied to hand posture recognition by
Triesch and von der Malsburg [53].
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The representation of image features at multiple scales
suggests a hierarchical graph representation, which can
accommodate feature attributes in the nodes and relational
attributes in the arcs. Although graph matching is a popu-
lar topic in the computer vision literature [14], including
both inexact and exact graph matching algorithms, there
is far less work on dealing with the matching of hierarchical
graphs, i.e., DAGs, in which lower (deeper) levels reflect
less saliency. Pelillo et al. [38] provided a solution for the
matching of hierarchical trees by constructing an associa-
tion graph using the concept of connectivity and solving
a maximal clique problem in this new structure. The latter
problem can be formulated as a quadratic optimization
problem and they used the so-called replicator dynamical
systems developed in theoretical biology to solve it. Pelillo
[37] generalized the framework for matching free trees and
applied simple payoff-monotonic dynamics from evolution-
ary game theory.

Pelillo et al. proposed a solution to the many-to-many
matching of attributed trees [39]. They defined the notion
of an �-morphism between trees, and provided a reduction
from the matching problem to a maximum weight clique in
an association graph. Their solution to the matching prob-
lem used replicator dynamical systems from evolutionary
game theory. The problem of matching hierarchical trees
has also been studied in the context of edit-distance (see,
e.g., [44]). In such a setting, one seeks a minimal set of
re-labeling, additions, deletions, merges, and splits of nodes
and edges that transform one graph into another.

In recent work [12,13], we presented a framework for
many-to-many matching of hierarchical structures, where
features and their relations were represented using directed
edge-weighted graphs. The method begins by transforming
the graph into a metric tree. Next, using graph embedding
techniques, the tree was embedded into a normed vector
space. This two-step transformation allowed us to reduce
the problem of many-to-many graph matching to a much
simpler problem of matching weighted distributions of
points in a normed vector space. To compute the distance
between two weighted distributions, we used a distribution-
based similarity measure, known as the Earth Mover’s
Distance under transformation [8,42].

As mentioned in Section 1, object categorization has
received renewed attention from the recognition communi-
ty. In [16], Fergus et al. present a method to learn and rec-
ognize object class models from unlabeled cluttered scenes
in a scale invariant manner. They employ a probabilistic
representation to simultaneously model shape, appearance,
occlusion, and relative scale. They also use expectation
maximization for learning the parameters of the scale-in-
variant object model and use this model in a Bayesian man-
ner to classify images. Fei-Fei et al. [15] improved on this
by proposing a method for learning object categories from
just a few training images. Their proposed method is based
on making use of priors to construct a generative probabi-
listic model, assembled from object categories that were
previously learned.
Lazebnik et al. [25] present a framework for the repre-
sentation of 3-D objects using multiple composite local
affine parts. Specifically, these are 2-D configurations of
regions that are stable across a range of views of an object,
and also across multiple instances of the same object cate-
gory. These composite representations provide improved
expressiveness and distinctiveness, along with added flexi-
bility for representing complex 3-D objects. Leibe and Schi-
ele [27] propose a new database for comparing different
methods for object categorization. The database contains
high-resolution color images of 80 objects from eight differ-
ent categories, for a total of 3280 images and was used to
analyze the performance of several appearance- and
contour-based methods. The best reported method for cat-
egorization on this database is a combination of both con-
tour- and shape-based methods. This new generation of
categorization systems is primarily appearance-based, and
therefore not well-equipped to handle within-class defor-
mations due to significant appearance change, articulation,
and significant changes in minor geometric detail.

Eigenvalue-based methods have been used by several
researchers to tackle problems in object recognition. Seng-
upta and Boyer [45] introduced an eigenvalue-based feature
representation for CAD models to capture their gross char-
acteristics. This representation was used to compare objects
and partition the dataset into structurally homogeneous
groups. Shapiro and Brady [46] computed feature corre-
spondences using the eigenvectors of proximity graphs.
The closest integrated framework to that proposed here is
due to Shokoufandeh et al. [49], who match multiscale blob
representations represented as directed acyclic graphs. The
multi-scale description in that work, due to Marsic [33],
excluded geometric relations among sibling nodes and did
not include ridge features. Moreover, the matching frame-
work had to choose between two algorithms, one targeting
structural matching, with the other enforcing both struc-
tural and geometrical graph alignment. Our proposed mul-
ti-scale image representation is far richer in terms of its
underlying features, and resembles that of Bretzner and
Lindeberg [5], who explored qualitative, multi-scale hierar-
chies for object tracking. Our matching framework, on the
other hand, offers several orders of magnitude less com-
plexity, handles noise more effectively, and can handle both
structural and geometrical matching within the same
framework.

There is also a large body of work on solving the model
matching problem via establishing direct feature corre-
spondences (without graph matching), and we highlight
only a few examples. Sclaroff and Pentland [43] proposed
the use of generalized symmetries, as defined by each
object’s eigenmodes, for object recognition. They formu-
late shape dissimilarity as the amount of deformation
required to align the proposed modal descriptions. In
[18], Gdalyahu and Weinshall proposed a dynamic pro-
gramming approach for curve matching under deforma-
tion, scaling, and rigid transformations. Belongie et al. [2]
used shape context associated with feature points to
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measure similarity between shapes. Their proposed match-
ing algorithm uses the shape context descriptors for solving
the correspondence between the two shapes and then uses
the correspondences to estimate an aligning trans-
formation. Finally, a two-step procedure consisting of
embedding and Earth Mover’s Distance (EMD) was pro-
posed by Grauman and Darrell [21] for the matching of
2-D contours represented as shape context-like distribu-
tions. However, the abstract nature of the embedding
means that the explicit many-to-many correspondences
between two feature sets cannot be recovered.

3. Building a qualitative shape feature hierarchy

3.1. Extracting qualitative shape features

As mentioned in Section 1, our qualitative feature hier-
archy represents an image in terms of a set of blobs and
ridges, captured at appropriate scales. The representation
is an extension of the work presented in [5]. Blob and ridge
extraction is performed using automatic scale selection, as
described in previous work (see [29,28]). We also extract a
third descriptor, called the windowed second moment

matrix, which describes the directional characteristics of
the underlying image structure.

A scale-space representation of the image signal f is
computed by convolution with Gaussian kernels g (Æ; t) of
different variance t, giving L (Æ; t) = g (Æ; t) * f (Æ). Blob detec-
tion aims at locating compact objects or parts in the image.
The entity used to detect blobs is the square of the normal-
ized Laplacian operator,

r2
normL ¼ tðLxx þ LyyÞ: ð1Þ

Blobs are detected as local maxima in scale-space. Fig. 1(a)
shows an image of a hand with the extracted blobs super-
imposed. A blob is graphically represented by a circle defin-
ing a support region, whose radius is proportional to

ffiffi
t
p

.
Elongated structures are localized where the multi-scale

ridge detector

RnormL ¼ t3=2ððLxx � LyyÞ2 þ 4L2
xyÞ ð2Þ
a b

Fig. 1. Feature extraction: (a) extracted blobs and ridges at appropriate scale
linking ridges.
assumes local maxima in scale-space. Fig. 1(a) also shows
the extracted ridges, represented as superimposed ellipses,
each defining a support region, with width proportional
to

ffiffi
t
p

. To represent the spatial extent of a detected image
structure, a windowed second moment matrix

R ¼
Z

g2R2

L2
x LxLy

LxLy L2
y

 !
gðg; tintÞdg ð3Þ

is computed at the detected feature position and at an inte-
gration scale tint proportional to the scale tdet of the detect-
ed image feature. There are two parameters of the
directional statistics that we make use of here: the orienta-

tion and the anisotropy, given from the eigenvalues k1 and
k2 (k1 > k2) and their corresponding eigenvectors~ek1

and~ek2

of R. The anisotropy is defined as

~Q ¼ 1� k2=k1

1þ k2=k1

; ð4Þ

while the orientation is given by the direction of~ek1
.

To improve feature detection in scenes with poor inten-
sity contrast between the image object and background, we
utilize color information. This is done by extracting fea-
tures in the R, G and B color bands separately, along with
the intensity image. Re-occurring features are rewarded
with respect to significance. Furthermore, if we have
advance information on the color of the object, improve-
ments can be achieved by weighting the significance of
the features in the color bands differently.

When constructing a feature hierarchy, we extract the N

most salient image features, ranked according to the
response of the scale-space descriptors used in the feature
extraction process. From these features, a Feature Map is
built as described in the following sections.

3.1.1. Merging multiple feature responses
This step removes multiple overlapping responses origi-

nating from the same image structure, the effect of which
can be seen in Fig. 1(a). To be able to detect overlapping fea-
tures, a measure of inter-feature similarity is needed. For this
purpose, each feature is associated with a 2-D Gaussian ker-
nel gð~x;RÞ, where the covariance is given from the second
s, (b) extracted features before and after removing multiple responses and
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Fig. 2. Four of the relations between features: (a and b) two normalized distance measures, (c) relative orientation, and (d) bearing.

1 Sibling relationships are not encoded as edges in a structural
description of the graph, thereby ensuring that it is a DAG.
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moment matrix in Eq. (3). When two features are positioned
near each other, their Gaussian functions will intersect. The
similarity measure between two such features is based on the
disjunct volume D of the two Gaussians [24]. This volume is
calculated by integrating the square of the difference between
the two Gaussian functions (gA, gB) corresponding to the
two intersecting features A and B:

DðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRAj þ jRBj

2

r Z
R2
ðgA � gBÞ

2dx: ð5Þ

The choice of a Gaussian function is due to the fact that it
maximizes the entropy of a random variable given its mean
and covariance. The disjunct volume depends on the differ-
ences in position, variance, scale and orientation of the two
Gaussians. For ridges, the measure is more sensitive to
translations in the direction perpendicular to the ridge,
which is desirable as the ridge is better localized in this
direction.

3.1.2. Linking ridges

The ridge detection will produce multiple responses on a
ridge structure that is long compared to its width. These
ridges are linked together to form one long ridge, as illus-
trated in Fig. 1(b). The criteria for when to link two ridges
are based on two conditions: (1) they must be aligned, and
(2) their support regions must overlap. After the linking is
performed, the anisotropy and support region for the
resulting ridge is re-calculated. The anisotropy is re-calcu-
lated from the new length/width relationship as 1-(width

of structure)/(length of structure).

3.2. Assembling the features into a graph

Once the Feature Map is constructed, the component
features are assembled into a directed acyclic graph. Asso-
ciated with each node (blob/ridge) are a number of attri-
butes, including position, orientation, and support region.
The feature at the coarsest scale of the Feature Map is cho-
sen as the root. Next, finer-scale features that overlap with
the root become its children through hierarchical edges.
These children, in turn, select overlapping features (again
through hierarchical edges) at finer scales to be their chil-
dren, etc. From the unassigned features, the feature at
the coarsest scale is chosen as a new root. Children of this
root are selected from unassigned as well as assigned fea-
tures, and the process is repeated until all features are
assigned to a graph. A child node can therefore have multi-
ple parents. To yield a single rooted graph, which is needed
in the matching step, a virtual top root node is inserted as
the parent of all root nodes in the image. Sibling relation-
ships are introduced between nodes that share a parent and
do not have any hierarchical edge between them.1

Associated with every pair of related features are a num-
ber of important geometric attributes. Specifically, for a
pair of vertices, VA representing feature FA and VB repre-
senting feature FB, related through a sibling relation or a
hierarchical edge E ¼ ðVA;VBÞ, we define the following
attributes, as shown in Fig. 2:

• Distance. For sibling vertices, the smallest distance d

from the support region of FA to the support region
of FB, normalized to the largest of the radii rA and rB

(this distance will be zero for overlapping features). If
there is a hierarchical edges E between vertices VA and
VB, the distance between their centers is normalized to
the radius rA of FA in the direction of the distance vec-
tor between their centers.

• Relative orientation. The relative orientation between
FA and FB.

• Bearing. The bearing of a feature FB, as seen from a fea-
ture FA, is defined as the angle of the distance vector
xB–xA with respect to the orientation of A measured
counter-clockwise.

• Scale ratio. The scale invariant relation between FA and
FB is a ratio between scales tFA

and tFB
.

An example of a blob graph for a hand image, showing
hierarchical edges, is shown in Fig. 3.

4. Matching problem formulation

Given two images and their corresponding Feature Map
graphs, G1 = (V1,E1) and G2 = (V1,E1), with jV1j = n1 and
jV2j = n2, we seek a method for computing their similarity.
In the absence of noise, segmentation errors, occlusion, and
clutter, computing the similarity of G1 and G2 could be for-
mulated as a label-consistent graph isomorphism problem.
However, under normal imaging conditions, there may not
exist significant subgraphs common to G1 and G2. We



Fig. 3. Example graph of a hand image, with the hierarchical edges shown
in green. (For interpretation of the references to colours in this figure
legend, the reader is referred to the web version of this paper.)
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therefore seek an approximate solution that captures both
the structural and geometrical similarity of G1 and G2 as
well as corresponding node similarity. Structural similarity
is a domain-independent measure that accounts for similar-
ity in the ‘‘shapes’’ of two graphs, in terms of numbers of
nodes, branching factor distributions, etc. Geometrical
similarity, on the other hand, accounts for consistency in
the relative positions, orientations, and scales of nodes in
the two graphs. In the following subsections, we describe
these two signatures and combine them in an efficient
algorithm to match two blob graphs.

4.1. Encoding graph structure

As described in Section 1, our previous work on rooted
tree matching drew on the eigenvalues of a tree’s symmetric
{0,1} adjacency matrix to encode the ‘‘shape’’ of a tree
using a low-dimensional vector. The eigenvalues of a
graph’s adjacency matrix characterize the graph’s degree
distribution, an important structural property of the graph.
In extending that approach to DAG matching, we first
draw on our recent work in indexing hierarchical (DAG)
structures [48], in which the magnitudes of the eigenvalues
of a DAG’s antisymmetric {0,1,�1} adjacency matrix2

are used to encode the shape of a DAG using a low-dimen-
sional vector. Moreover, the eigenvalues are invariant to
minor structural perturbation of the graph due to noise
and occlusion [45,48].

Let us briefly review the construction of our graph
abstraction; details can be found in [48]. Let D be a
DAG whose maximum branching factor is DðDÞ, and let
the subgraphs of its root be D1; D2; . . . ; DS, as shown in
Fig. 4. For each subgraph, Di, whose root degree is
dðDiÞ, we compute the magnitudes of the (complex) eigen-
2 A matrix with 1’s (�1’s) indicating a forward (backward) edge between
adjacent nodes in the graph (and 0’s on the diagonal).
values of Di’s submatrix, sort the magnitudes in decreasing
order, and let Si be the sum of the dðDiÞ � 1 largest magni-
tudes. The sorted Si’s become the components of a DðDÞ-
dimensional vector assigned to the DAG’s root. If the
number of Si’s is less than DðDÞ, then the vector is padded
with zeroes. We can recursively repeat this procedure,
assigning a vector to each non-terminal node in the
DAG, computed over the subgraph rooted at that node.
We call each such vector a topological signature vector, or
TSV. The TSV assigned to a node allows the structural
context of the node (i.e., the subgraph rooted at the node)
to be encapsulated in the node as an attribute. Finally, it
should be noted that a node may be a member of multiple
subgraphs, for a node may have multiple parents in a
directed acyclic graph. In this case, the node will contribute
to the TSV of each of its parents. Node d in Fig. 4 is an
example of such a node.

4.2. Encoding graph geometry

The above encoding of structure suffers from the draw-
back that it does not capture the geometry of the nodes.
For example, two graphs with identical structure may dif-
fer in terms of the relative positions of their nodes, the
relative orientations of their nodes (for elongated nodes),
and the relative scales of their nodes. Just as we derived a
topological signature vector, which encodes the ‘‘neigh-
borhood’’ structure of a node, we now seek an analogous
‘‘geometrical signature vector’’, which encodes the neigh-
borhood geometry of a node. This geometrical signature
will be combined with our new topological signature in
a new algorithm that computes the distance between
two directed acyclic graphs and preserves hierarchical
constraints.

Let G = (V,E) be a graph to be recognized (input
image). For every pair of vertices u, v 2 V, if there is an
edge E ¼ ðu; vÞ between them, we let Ru,v denote the attri-
bute vector associated with edge E. The entries of each such
vector represent the set of relations R = {distance, relative
orientation, bearing, scale ratio} between u and v, as shown
in Fig. 5. For a vertex u 2 V, we let N (u) denote the set of
vertices v 2 V such that the pair (u,v) form a sibling rela-
tionship. For a relation p 2 R, we will use Pðu; pÞ to denote
the distribution of values of relation p between vertex u and
all the vertices in the set N (u), i.e., Pðu; pÞ is a histogram
encoding the pth entry of the vectors Ru, v for v 2 N (u).3

Given two graphs G = (V,E) and G 0 = (V 0,E 0) with ver-
tices u 2 V and u 0 2 V 0, we compute the similarity between
u and u 0 in terms of their respective distributions Pðu; pÞ
and Pðu0; pÞ, for all p 2 R. Now, let dp(u,u 0) denote the
Earth Mover’s Distance (EMD) [42] between two such dis-
tributions Pðu; pÞ and Pðu0; pÞ, i.e., dp (u,u 0) denotes the
3 The exception to this rule is the orientation relation. Rather than using
absolute orientation, measured with respect to a reference direction, we
instead use the angle from the previous edge in a clockwise ordering of
edges emanating from a vertex.
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minimum amount of work (defined in terms of displace-
ments of the masses associated with histograms Pðu; pÞ
and Pðu0; pÞÞ it takes to transform one distribution into
another. The main advantage of using EMD to compute
dp(u,u 0) lies in the fact that it subsumes many histogram
distances and permits partial matches in a natural way.
This important property allows the similarity measure to
deal with the case where the masses associated with distri-
butions Pðu; pÞ and Pðu0; pÞ are not equal. Details of the
method are presented in [23]. Given the values of dp (u,u 0)
for all p 2 R, we arrive at a final node similarity function
for vertices u and u 0:

rðu; u0Þ ¼ e
�
P
p2R

dpðu;u0Þ
:

4 For shock graphs, each node encoded a set of medial axis, or shock,
points and their similarity was computed based on a Hausdorff distance
between these point sets.
4.3. Matching algorithm

As mentioned in Section 1, our previous work addressed
the problem of matching rooted trees, and was unable to
match directed acyclic graphs, unable to accommodate
geometric relations among nodes, and unable to preserve
hierarchical and sibling relations. Still, it serves as the start-
ing point for our new algorithm, and we review it accord-
ingly. The method was a modified version of Reyner’s
algorithm [41,55] for finding the largest common subtree.
The main idea of the algorithm was to cast the structural
matching problem as a set of bipartite graph-matching
problems. A similarity matrix between the two graphs’
nodes was constructed with each entry computing the pair-
wise similarity between a particular node in the first tree
and a node in the second tree. This similarity measure
was a weighted combination of the distance between the
two nodes’ TSVs, reflecting the extent to which their under-
lying subtrees had similar structure, and the two nodes’
internal attributes were similar.4

The algorithm is illustrated in Fig. 6. The best pairwise
node correspondence obtained after a maximum cardinali-
ty maximum weight (MCMW) bipartite matching is



a

d e
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Fig. 6. The DAG matching algorithm. (a) Given a query graph and a model graph, (b) form bipartite graph in which the edge weights are the pair-wise
node similarities. Then, (c) compute a maximum matching and add the best edge to the solution set. Finally, (d) split the graphs at the matched nodes, and
(e) recursively descend.
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Fig. 7. A case in which the hierarchical constraints between query nodes
and model nodes will be violated after two iterations of the algorithm.
Note that only non-zero Wq,m values are shown.
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extracted and put into the solution set of correspondences.
In a greedy fashion, the algorithm recursively matches the
two resulting pairs of corresponding forests, at each step
computing a maximum matching and placing the best cor-
responding pair of nodes in the solution set. The key idea in
casting a graph-matching problem as a number of MCMW
bipartite matching problems is to use the topological signa-
ture vectors (TSV) to penalize nodes with different underly-
ing graph structure. This effectively allows us to discard the
graphs’ edge structure and formulate the problem as an
attributed point matching problem, with a node’s underly-
ing structural context encoded as a low-dimensional vector
node attribute.

To extend this framework to accommodate DAG
matching, geometric relations, and hierarchical/sibling
constraint satisfaction, we begin by introducing some defi-
nitions and notations. Let Q ¼ ðV Q;EQÞ and
M ¼ ðV M;EMÞ be the two DAGs to be matched, with
jV Qj ¼ nQ and jV Mj ¼ nM. Define d to be the maximum
degree of any vertex in Q and M, i.e.,
d ¼ maxðdðQÞ; dðMÞÞ. For each vertex v, let v(v) 2 Rd be
the topological signature vector (TSV), introduced in
Section 4.1. The bipartite edge-weighted graph
G ¼ ðV Q; V M;EGÞ is represented as a nQ � nM matrix W

whose (q,m)th entry has the value:

Wq;m ¼ arðq;mÞ þ ð1� aÞðjjvðqÞ � vðmÞjjÞ; ð6Þ
where r (q, m) denotes the node similarity between nodes
q 2 Q and m 2M, and a is a convexity parameter that
weights the relevance of each term. Using the scaling algo-
rithm of Gabow and Tarjan [17], we can efficiently com-
pute the maximum cardinality, maximum weight
matching in G with complexity O(jViEj), resulting in a list
of node correspondences between Q and M, called L, that
can be ranked in decreasing order of similarity.

The relative contributions of the topological and geo-
metrical components is clearly task dependent. Assigning
a low weight to the geometric term emphasizes only the
structural differences between two graphs while abstracting
away the details of the parts. Such a weighting is appropri-
ate for very coarse, structural matching. Conversely,
increasing the weight of the geometric term accentuates
the detailed geometric differences between the features,
which is more appropriate for subclass, or exemplar recog-
nition. Thus, changing the weight of a from a low value to
a high value effectively yields a coarse-to-fine matching
strategy.
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Fig. 8. Preserving sibling relationships by propagating the information from the previous best match. The matching pair (q4,m3) is chosen over the slightly
better match (q4,m5), because it results in two siblings in the query being matched to two siblings in the model.
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This set of node correspondences maximizes the sum of
node similarities, but does not enforce any hierarchical
constraints other than the implicit ones encoded in
(iv(q) � v(m)i). Thus, instead of using all the node corre-
spondences, we take a greedy approach and assume that
only the first one is correct, and remove the subgraphs
rooted at the selected matched pair of nodes. We now have
two smaller problems of graph matching, one for the pair
of removed subgraphs, and another for the two remainders
of the original graphs. Both subproblems can, in turn, be
solved by a recursive call of the above algorithm. The com-
plexity of such a recursive algorithm is O(n3).

It turns out that splitting subgraphs at nodes with high
confidence of being a good correspondence is not a strong
enough constraint to guarantee that all the hierarchical
relations are satisfied. Consider, for example, the graphs
in Fig. 7. After the first iteration of the matching algorithm,
nodes (q5,m5) will be matched since their similarity is the
highest one in L1. In the next iteration, the subgraph rooted
at q5, Q�, and the subgraph rooted at m5, M�, as well as
their corresponding complement graphs Qc and Mc, will
be recursively evaluated.5 When matching Qc against Mc,
the best node correspondence according to the outlined
algorithm will be (q4,m3). It is easy to see that this match
violates the hierarchical constraints among nodes because
the siblings q4 and q5 are mapped to m3 and m5, respective-
ly, with m3 a parent of m5.

Another constraint that arises in several domains is that
of preserving sibling relationships. Note that this constraint
is not, strictly speaking, a hierarchical constraint, since
there are no hierarchical dependencies among sibling
nodes. While it may be tempting to enforce this constraint
when matching, there is a possibility that a sibling relation
is genuinely broken by an occluder. In such a case, we may
not want to enforce this constraint or else we will be unable
to find meaningful matching subgraphs. A compromise
solution would be to penalize the matches that break a sib-
5 In the recursive call for Q� and M�, nodes q5 and m5 will be in the
solution set, and so they will not be evaluated again.
ling relationship so as to favor those that provide a good
set of correspondences while maintaining these relation-
ships intact.

Fig. 8 illustrates the problem. Assuming that (q5,m4) has
just been added to the solution set, the next best correspon-
dence is (q4,m5), which violates a sibling constraint. To
avoid this, we can propagate the information provided by
the previous best match (q5,m4). This information is used
to favor q4’s sibling, so that (q4,m3) can be chosen instead.
Since we do not want to become too sensitive to noise in
the graph, we shall consider preserving the sibling-or-sib-
ling-descendant relationships instead of the stricter sibling
relationship. We will refer to this asymmetric relation
between nodes as the SSD relation.6 Note that due to the
asymmetry of the relation, the desired propagation of
information will occur only when the algorithm proceeds
in a top-down fashion. In the next section, we will see
how to promote a top-down node matching.

Before continuing, let us define the rather intuitive node
relationships that we will be working with. Let GðV ;EÞ be
a DAG and let u, v be two nodes in V. We say that u is a
parent of v if there is an edge from u to v. Furthermore, let
u be the ancestor of v if and only if there is a path from u to
v. Similarly, let u be a SSD of v if and only if there exists a
parent of v that is also an ancestor of u.

The relations defined above will allow us to express the
desired constraints. However, we first need to determine
how to make this information explicit, for it is not immedi-
ately available from the adjacency matrices of the graphs.
A simple method is to compute the transitive closure
graphs of our graphs. The transitive closure of a directed
graph G ¼ ðV ;EÞ is a directed graph H ¼ ðV ; F Þ, with
(v,w) in F if and only if there is a path from v to w in G.
The transitive closure can be computed in linear time in
the size of the graph O(jViEj) [19].
6 Note that while the sibling relationship is symmetric, the SSD
relationship is not, i.e., if u is the ‘‘nephew’’ of v, then SSD(u,v) is true,
but SSD(v,u) is false.



7 Here we follow the convention in the graph theory literature that
considers the order of a graph to be the number of nodes in the graph, and
the size of the graph to be the number of edges in the graph.
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It is easy to see, from the above definition, that the tran-
sitive closure of a graph is nothing else than the ancestor
relation. Computing the SSD relation, on the contrary,
requires a bit of extra work. Let AG be the adjacency matrix
of the DAG, GðV ;EÞ, and let TG be the adjacency matrix of
the transitive closure graph of G. By means of these two
matrices, we can now compute the non-symmetric SSD
relation by defining SG as the jVj · jVj matrix, where

SGðu; vÞ ¼
1 if 9w2V fAGðw; vÞ ¼ 1&TGðw; uÞ ¼ 1g;
0 otherwise:

�
ð7Þ

Armed with our new matrices TQ;TM;SQ, and SM, we can
update the similarity matrix, W, at each iteration of the
algorithm, so as to preserve the ancestor relations and to
discourage breaking SSD relations. At the first iteration,
n = 0, we start with W0 = W. Next, let (q 0,m 0) be the best
node correspondence selected at the nth iteration of the
algorithm, for n P 0. The new weights for each entry
Wnþ1

q;m of the similarity matrix, which will be used as edge
weights in the bipartite graph at iteration n + 1, are updat-
ed according to:

Wnþ1
q;m ¼

0 if TQðq; q0Þ 6¼ TMðm;m0Þ;
bWn

q;m else if SQðq; q0Þ 6¼ SMðm;m0Þ;
Wn

q;m otherwise;

8><
>: ð8Þ

where 0 6 b 6 1 is a term that penalizes a pair of sibling
nodes in the query being matched to a pair of non-sibling
nodes in the model. It is sufficient to apply a small penalty
to these cases, since the goal is simply to favor siblings over
non-siblings when the similarities of the others are compa-
rable to that of the siblings.

It is clear that when q 0 and m 0 are the roots of the sub-
graphs to match, the ancestor and SSD relations will be
true for all the nodes in the DAG. Thus, in practice, when
matching the q 0-rooted and m 0-rooted DAGs, we can avoid
evaluating the conditions above. In addition, we know that
only a few weights will change as the result of new node
correspondences, and so we only need to update those
entries of the matrix. This can be done efficiently by design-
ing a data structure that simplifies the access to the weights
that are to be updated. Alternatively, the update step can
also be efficiently implemented with matrices by noticing
that the column of AG corresponding to node u tells us
all the parents of u, while the row of TG corresponding
to node v give us all the descendants of v. Thus, given a
node pair (q 0,m 0), the positive entries in the rows of TQ

and TM corresponding to the non-zero entries in columns
q 0 and m 0 of AQ and AM, respectively, coincide with the
only the entries of Wn

q;m that need to be updated at each
iteration of the algorithm.

A careful look at the algorithm as it has been stated so
far will reveal that, in general, the first node correspon-
dences found will be those among lower-level nodes in
the hierarchy. We can expect this bottom-up behavior of
the algorithm because the lower-level nodes carry less
structural information and so their weight will be less
affected by the structural difference of the graphs rooted
at them. Therefore, nodes at the bottom of the hierarchy
will tend to have high similarity values and consequently,
they will be chosen to split the graphs, creating small
DAG’s with few constraints on the nodes.

A solution to this problem is to redefine the way we
choose the best edge from the bipartite matching. Instead
of simply choosing the edge with greatest weight, we will also
consider the order7 of the DAG rooted at the matched nodes
to select the pair of nodes that have a large similarity weight
and are also roots of large subgraphs. We define the mass,
m (v), of node v as the order, n (T), of the DAG rooted at
v. For a given graph GðV ;EÞ, the jVj-dimensional mass vec-
tor, MG, in which each of its dimensions is the mass m (v) of a
distinct v 2 V, can be computed from the transitive closure
matrix, TG, of the graph by MG ¼ TG �~1, where ~1 is the
jVj-dimensional vector whose elements are all equal to 1.
Thus, MG is a vector in which each element MGðvÞ, for
v 2 V, is the number of nodes in the DAG rooted at v.

Unfortunately, the mass does not give us enough infor-
mation about the depth of the subgraph rooted at a node
since, for example, the path of n nodes has the same mass
as the star of n nodes. A better idea is to consider the cumu-
lative mass, m̂. Let m̂ðvÞ be defined as the sum of all the
masses of the nodes of the DAG rooted at v. Thus, the
cumulative mass vector will be given by M̂G ¼ TG �MG,
which can also be written as M̂G ¼ T2

G �~1. This vector
can then be used to obtain a relative measure of how tall
and wide the rooted subgraphs are with respect to the
graph they belong to, by simply normalizing the masses.
Let ~MG be the normalized cumulative mass vector given by

~MG ¼
M̂G

maxv2V fM̂GðvÞg
; ð9Þ

where the normalizing factor will correspond to the cumu-
lative mass of the node whose in-degree is zero—a root—
and has the greatest cumulative mass in G.

The cumulative mass is exactly the piece of information
we need, since it should be easy to see that for all the trees
with n nodes, the star is the one with smallest cumulative
mass, while the path is the one with the greatest. Hence,
the cumulative mass, m̂, for the root of a tree of order n sat-
isfies 2n� 1 6 m̂ 6 1

2
nðnþ 1Þ. This measure is a good indi-

cator of how deep and wide a subtree is, and so provides a
means to find a compromise between the node similarities
and their positions in the graph.

We can then promote a top-down behavior in the algo-
rithm by selecting the match (q,m)+ from the list, L,
returned by each MCMW bipartite matching, with the
maximum convex sum of the similarity and the relative
mass of the matched nodes,
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ðq;mÞþ ¼ argmaxðq;mÞ2L

fcWq;m þ ð1� cÞmaxð ~MQðqÞ; ~MMðmÞÞg; ð10Þ

where 0 6 c 6 1 is a real value that controls the influence of
the relative cumulative mass in selecting the best match.
Since we want to promote a top-down association of nodes
without distorting the actual node similarities, we suggest c
to be in the interval [0.7,0.9]. In Fig. 9, we compare the
sequences of graph splits using different values for c. When
c = 1, we obtain the original equation in [47] that, as can be
seen in the figure, tends to produce a bottom-up behavior
of the algorithm.

Given the set of node correspondences between two
graphs, the final step is to compute an overall measure of
graph similarity. The similarity of the query graph to the
model graph is given by

rUðQ;MÞ ¼
ðnQ þ nMÞ

P
ðq;mÞþ2UWq;m

2nQnM

; ð11Þ

where nQ and nM are the orders of the query graph and the
model graph, respectively.

The graph similarity is given by a weighted average of
the number of matched nodes in the query and in the mod-
el, where the weights are given by the node similarity of
each matched node pair. If all the query nodes are matched
with similarity 1, i.e., their attributes are identical, we haveP
ðq;mÞþ2UWq;m ¼ nQ, and so rUðQ;MÞ ¼ 1

2
nQ

nM
þ 1

� �
. Since

all query nodes have been matched, we know that
nM P nQ, and so rUðQ;MÞ will be one when all the model
nodes are mapped, and less than one otherwise. Therefore,
the graph similarity is proportional to the quality of each
pair of node correspondences, and inversely proportional
to the number of unmatched nodes, both in the query
and in the model. Hence, a model that contains the query
as a relatively small subgraph is not as good a match as
0.77

q1

q
4

q
2

0.8 | 0.63

0.97

q5 q8q3

q6 q7

q10

q9

q11

0.98   0.7

0.92

34

11 14 5

1

1 1 1 

5 3 1 

Fig. 9. An example in which c < 1 can promote a top-down behavior in the alg
are computed according to Eq. 10, for c = 1 and c = 0.7. For the given set of n
the pair of leaves (q6,m4), whereas for c = 0.7, the best node correspondence is t
to colours in this figure legend, the reader is referred to the web version of th
a model for which most of nodes match those of the query
graph, and vice versa.

Finally, it should be noted that the relative weighting of
the topological and geometric terms in the bipartite graph
edge weights need not be constant for all edges. Since each
edge spans an image node and a model node, the model can
be used to define an a priori weighting scheme that is edge
dependent. Thus, if portions of the model were more geo-
metrically constrained (e.g., articulation was prohibited),
those model nodes could have a higher weighting on their
geometric similarity component. Similarly, portions of
the model that were less constrained could have a higher
weighting on the topological similarity component. This
is a very powerful feature of the algorithm, allowing the
incorporation of local model constraints into the matching
algorithm.

The final algorithm is shown in Fig. 10. The first step of
the algorithm is to compute a node similarity matrix, the
transitive closure matrices, the sibling matrices, and the
node TSVs for both graphs. Assuming a linear algorithm
for the pairwise node similarities, the former matrix can
be computed in O(n3). The other matrices can, in turn,
be obtained in linear time and in quadratic time, respective-
ly. At each iteration of the algorithm, we have to compute
a MCMW bipartite matching, sort its output, and update
the similarity matrix. The complexity at each step is then
determined by that of the bipartite matching algorithm,
O (jViEj), since it is the most complex operation of the
three. The number of iterations is bounded by
minðnQ; nMÞ, and so the overall complexity of the algorithm
is O(n3). Hence, we have provided the algorithm with
important properties for the matching process while main-
taining its original complexity. An example of the blob cor-
respondence computed over two hand exemplars is shown
in Fig. 11.
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Fig. 10. Algorithm for matching two directed acyclic graphs.
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5. Experiments

We evaluate our framework on the domain of view-
based 3-D object recognition where the objective is to
choose the right object (identification) for a particular que-
ry view and also to determine its correct pose (pose estima-
tion). To provide a comprehensive evaluation, we used two
popular image libraries; the Columbia University COIL-20
(20 objects, 72 views per object) [34] and the ETH Zurich
ETH-80 (8 categories, 10 exemplars per category, 41 views
per exemplar) [26]. Sample views of objects from these two
libraries are shown in Fig. 12. Note that in the ETH-80
library, some categories have very similar shape, differing
only in their appearance. Thus, the horse, dog, and cow
categories were collapsed to form a 4-legged animal catego-
ry, the apple and tomato categories were collapsed to form
a spherical fruit category, and the two car instance catego-
ries were collapsed to form a single car category.

We applied the following leave-one-out procedure to
each database to evaluate the proposed framework. Specif-
ically, we initially removed the first entry from the data-
base, used it as a query, and computed its similarity with
each of the remaining views in the database. We then
returned the query back to the database and repeated the
same process for each of the other database entries. This
process results in an n · n similarity matrix, where the entry
(i, j) indicates how similar views i and j are. For a particular
query, we classify its identification as correct if the maxi-
mum similarity is obtained with a view which belongs to
the same object as the query. Consequently, pose estima-
tion is correct if view i of object j, vi,j matches most closely
with vn,j, where n is one of i’s neighboring views.

Our overall recognition rates for COIL-20 and ETH-80
datasets are 93.5% and 97.1%, respectively. We show a part
of the matching results in Table 1. Upon investigation as to
why the COIL-20 dataset yields poorer performance, we
found that most of the mismatches were between three dif-
ferent car objects: column three of the first row, column
one of the second row, and column four of the fourth
row, as shown in the left of Fig. 12. Despite being different
objects with different appearance, their coarse shape struc-
ture is similar and their blob graphs are indeed similar. If
we group these three exemplars into the same category
and count these matches as correct, our recognition rate
rises to 96.5%. Our recognition framework is clearly suited
to coarse shape categorization as opposed to exemplar
matching.

For pose estimation, we observe that in all but 9.8% and
14.6% of the COIL-20 and ETH-80 experiments, respec-
tively, the closest match selected by our algorithm was a
neighboring view. Note that if the closest matching view
was not an immediate neighbor drawn from the same

exemplar, the match was deemed incorrect, despite the fact
that the matching view might be a neighboring view of a
different exemplar from the same category. This is perhaps
overly harsh, as reflected by the 14.6% results, but view
alignment between exemplars belonging to the same cate-
gory was not provided. These results can be considered
worst case for several additional reasons. Given the high
similarity among neighboring views, it could be argued that



Fig. 11. Example correspondence computed between two blob graphs.
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our pose estimation criterion is overly harsh, and that per-
haps a measure of ‘‘viewpoint distance’’, i.e., ‘‘how many
views away was the closest match’’ would be less severe.
Fig. 12. Views of sample objects from the Columbia University Imag
In any case, we anticipate that with fewer samples per
object, neighboring views would be more dissimilar, and
our matching results would improve. More importantly,
many of the objects are rotationally symmetric, and if a
query has an identical view elsewhere in the dataset, that
view might be chosen (with equal similarity) and scored
as an error.

To demonstrate the framework’s robustness, we per-
formed five perturbation experiments on both datasets.
The experiments were identical to the experiments above,
except that we randomly chose a node, v, in the query
graph, if the number of nodes in the directed acyclic sub-
graph rooted at v was less than 10% of the number of nodes
in the original graph, we deleted the rooted subgraph from
the query. We then repeated the same process for maxi-
mum ratios of 20%, 30%, 40%, and 50%. The results are
shown in Table 2, and reveal that the error rate increases
gracefully as a function of increased perturbation.
Although not a true occlusion experiment, which would
require that we replace the removed subgraph with an
occluder subgraph, these results demonstrate the frame-
work’s ability to match local structure, a property essential
for handling occlusion.

The above experiments clearly establish the efficacy of
the proposed generic object recognition framework. But
one might wonder how other graph-matching frameworks
perform on the same features, or how non-graph-matching
frameworks might perform on the same features. We begin
by comparing our proposed recognition framework to a
different graph-matching framework operating on the same
features. Specifically, we compare our framework to its
predecessor, a state-of-the-art inexact graph-matching
algorithm first demonstrated on the problem of shock
graph matching [50]. Unlike its predecessor, our new algo-
rithm enforces a number of hierarchical and sibling con-
straints that result in a strengthened graph-matching
framework. Table 3 compares the two graph matchers
(‘‘current’’ and ‘‘Siddiqi et al.’’), in terms of both recogni-
tion and pose estimation, on the COIL-20 and ETH-80
datasets. The improvement due to the new constraint
checking is dramatic for both tasks on both datasets, clear-
ly demonstrating the improvement in graph matching.
e Library (COIL-20) and the ETH Zurich (ETH-80) Image Set.



Table 1
Top matched models are sorted by the similarity to the query

Table 2
Recognition rate as a function of increasing perturbation in the form of missing data

Perturbation 10% 20% 30% 40% 50%
Recognition rate (COIL-20) 91.2% 89.5% 87.3% 83.7% 78.6%
Recognition rate (ETH-80) 94.2% 91.5% 89.3% 84.7% 82.6%

Percentages indicate how much of the query graph was removed prior to matching.

Table 3
Comparison of proposed graph-matching framework to a competing graph-matching framework, proposed by Siddiqi et al. [50]

Algorithm COIL-20 ETH-80

Rec. (%) Pose est. (%) Rec. (%) Pose est. (%)

Current 93.5 90.2 97.1 85.4
Siddiqi et al. 79.9 58.4 87.4 77.5

Significant improvement is seen on both recognition and pose estimation tasks for both the COIL-20 and ETH-80 databases.
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Next, we compare our recognition framework to a
non-graph-based matching algorithm. Specifically, we
compare our framework to an algorithm that retains the
same features, but discards the graph structure. Blobs
and ridges are matched using the Earth Mover’s Distance
algorithm [8], constrained to ensure a one-to-one match-



Table 4
Comparison of proposed graph-matching framework to a competing non-graph-matching framework, based on the Earth Mover’s Distance [8]

Algorithm COIL-20 ETH-80

Rec. (%) Pose est. (%) Rec. (%) Pose est. (%)

Current 93.5 90.2 97.1 85.4
Constrained EMD 94.1 67.7 80.1 58.1

Significant improvement is seen on three of four experiments.
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ing of features (to be consistent with our proposed frame-
work). The results of the comparison are shown in
Table 4. With the exception of the COIL-20 recognition
experiment, the improvement of our proposed algorithm
is significant, indicating the representational power of
capturing the topology of the parts. One possible explana-
tion for the less dramatic improvement on the COIL data-
base might be that part articulation among the exemplars
in a category is minimal; in fact, few of the objects have
very definitive part structure at all. Whereas the structure
of our blob/ridge graph is invariant to articulation of its
parts (although such transformations can be penalized
in the contextual node similarity function), a purely geo-
metric matching scheme cannot accommodate such
transformations.
6. Limitations

Both the representation and matching components of
our integrated framework have limitations. Since it is based
on image gradients, the blob and ridge decomposition does
not perform well in the presence of textured surfaces, and
spurious and missing blobs may result. Although the
matching algorithm can accommodate both noise and
occlusion, it does rely on there being a sufficient number
of one-to-one correspondences to discriminate the correct
model from other models. If blobs are highly over- or
under-segmented, matching may fail as too few one-to-
one correspondences may exist.
7. Conclusions

Matching two images whose similarity exists at the
coarse shape level is critical to object categorization.
Blobs and ridges provide an ideal multiscale part vocab-
ulary for coarse shape modeling which, when combined
with an array of geometric relations in the form of a
graph, yield a powerful categorical shape representation,
providing a powerful, hierarchical characterization of an
object’s coarse shape. Our inexact graph-matching frame-
work exploits both the topological as well as the geomet-
rical relations in a directed acyclic graph to yield an
efficient algorithm for coarse-to-fine shape matching.
We have demonstrated the generality of the framework
by applying it to two different domains (without
domain-specific tuning), with very encouraging results
in each domain.
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