
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 23:
Course Summary

➜ Course Goals

➜ Summary of what we covered

➜ Feedback questions for you

➜ Sample Exam Question

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Course Rationale
➜ My goals on this course were:

� introduce the main ideas of software engineering
� offer practical experience of developing large software systems

� especially evaluating and modifying software developed by others

� raise awareness of the need for a disciplined approach
� build on your existing experience with programming

➜ Approach
� Typical Software Engineering courses generally:

� introduce the issues of software engineering at a high (theoretical) level
� follow a waterfall lifecycle through the main phases
� introduce one analysis and design method in detail with a team project

� Problems with these courses
� students do not get sufficient experience of the difficulties of large scale

software development and maintenance
� students learn how to use the techniques, but don’t gain an appreciation of why

they are useful

� Hence, the trading game…

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Course Outline
➜ Introductory stuff

� Case Studies
� Software Lifecycles
� Project Management, Risk

Management

➜ Program Design
� Decomposition and Abstraction
� Procedural Abstraction
� Data Abstraction
� Software qualities; modularity
� Design Representations

➜ Verification & Validation
� Testing
� Reviews & Fagan Inspections
� Formal verification
� Debugging and exception handling

➜ Software in the large
� Requirements Engineering

�Structured Analysis
�Object Oriented Analysis
�Formal Analysis

� Specifications
� Software Architectures
� Software Maintenance

�evolution
�reengineering
�reuse

� Software Process Modeling
�process improvement
�capability maturity

� Software Measurement

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Conclusions
➜ Key lessons

� software development is far more than just writing programs
� communication is more important than coding
� testing and inspection are vital for quality assurance
� software engineers need to reflect upon their own development processes

and seek to improve them continuously

➜ Key skills
� judging software quality
� reading/modifying other people’s code
� working with vague or incomplete specifications
� working to tight (impossible!) deadlines
� working with changing requirements/constraints
� communicating about technical work
� negotiating contracts to buy (and sell) software
� working in teams
� learning from mistakes (and learning to reflect on your experiences)
� deciding how much and what types of documentation are helpful
� deciding what is important (because perfect software is impossible)

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Feedback Questions
Did the course meet your expectations?

How useful do you think the course was to you?

What do you feel you have learned?

What did you not learn, that you had hoped to?

What was the best part of the course?

What was the worst part of the course?

How might the course be improved in the future?

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Sample Exam Question
a) Why is random testing insufficient even for relatively small programs?

[2 marks]
b) Unit testing is the process of testing a single program unit (e.g. a

procedure) in isolation from the rest of the program. How would you go
about choosing test cases for unit testing? [4 marks]

c) Integration testing can be tackled top-down or bottom-up. Describe each of
these strategies. Why is integration testing harder than unit testing?

[4 marks]
d) Explain the purpose of each of the following. What types of error is each

likely to find?
i) Endurance testing
ii) Recoverability testing
iii) Regression testing [6 marks]

e) The company you work for develops internet applications. To reduce time to
market, the company is considering dispensing altogether with integration
testing. Instead, the company plans to rely on Beta testing, in which free
trial versions of new software will be sent to existing, trusted customers to
try out, with the agreement that they will report any problems they
encounter. What are the advantages and disadvantages of this approach?

[4 marks]

1

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How we grade it...
a) Why is random testing insufficient even for relatively small programs? [2 marks]
� 2 marks for a detailed explanation, 1 mark for a partial answer. Several possible reasons:

* Each decision point in the code represents a branch. As the number of decision points
grows, the number of possible paths through the code grows exponentially. Random
choices of test data is unlikely to cover all paths.

* Most of the interesting errors in software occur for particular data points, e.g. on the
boundaries between different input ranges. Choosing test data randomly is unlikely to
hit the boundary conditions.

* To properly test software, you need to define its operational profile (i.e. how
frequently it is likely to see each type of input/behaviour). Random selection of test
cases is unlikely to match the operational profile.

b) Unit testing is the process of testing a single program unit (e.g. a procedure) in
isolation from the rest of the program. How would you go about choosing test cases
for unit testing? [4 marks]
� 4 marks for four different ways of choosing test cases OR two different ways of choosing test

cases together with a good explanation of why each approach is good. Can give one mark for
talking about the difference between black and white box testing, but needs more specific
ways of choosing test cases to get more marks:
* Boundary conditions
* Normal behaviours
* Off-nominal cases (inputs that the program is not supposed to be able to handle)
* Parameters in the wrong order
* Different ‘paths’ through the specification
* Test each branch
* Test each conditional statement

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How we grade it...
c) Integration testing can be tackled top-down or bottom-up. Describe each of

these strategies. Why is integration testing harder than unit testing? [4 marks]
� 1 mark for describing each strategy. 1 extra mark for making the difference clear, or for

describing advantages of each. 1 mark for saying why integration testing is harder.
* Top-down: test the top level (‘main’) procedure first, with stubs for each procedure

it calls. Stubs should check whether parameters passed downs are okay, and return
some test data. Then integrate the next level of procedures and test again, repeat
until you’ve integrated the bottom level procedures

* Bottom-up: first test those procedures that don’t call any others. Then integrate &
test the procedures that call the ones you’ve tested, repeat until you reach the top
level (main) procedure.

� Integration testing is harder because it is impossible to ensure every path through the
integrated system is tested, it’s much harder to track down errors, and interface errors that
show up in integration testing tend to be more subtle.

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How we grade it...
d) Explain the purpose of each of the following. What types of error is each likely

to find?
i) Endurance testing
ii) Recoverability testing
iii) Regression testing [6 marks]
� 1 mark for explaining each of three types, 1 mark for describing the types of error each will

find.
* Endurance testing means leaving the system running for long periods of time. It will

catch errors that show up only after a long run, e.g. memory leaks.
* Recoverability testing tests how well the software can recover from bad data, from

hardware failure, from failure of systems it interacts with, from failure of
components within the software. Type of error found are where data (e.g. file
system) gets corrupted and cannot be recovered, program can’t be re-started after
a crash, etc.

* Regression testing means running all the tests again (even those that already passed)
each time the software is modified. This catches errors that are introduced as the
result of fixing other errors.

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How we grade it...
e) The company you work for develops internet applications. To reduce time to

market, the company is considering dispensing altogether with integration testing.
Instead, the company plans to rely on Beta testing, in which free trial versions
of new software will be sent to existing, trusted customers to try out, with the
agreement that they will report any problems they encounter. What are the
advantages and disadvantages of this approach? [4 marks]
� 2 marks for good advantages. E.g:

* Cheaper
* May be able to get the software to market quicker
* Generates early interest in the software, lets users know its on the way.
* Real users are more likely to try out typical patterns of usage
* Real users are more likely to try doing dumb things to the software
* Real users will try out the software on all sorts of weird hardware configurations

� 2 marks for good disadvantages. E.g:
* Cannot control the testing
* Cannot guarantee anything about how thoroughly the software was tested
* Competitors may get hold of your software quicker
* Cannot guarantee the beta testers will report all errors they find
* Beta testers will report all sorts of things that are not errors

