
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 12:
Software Design Quality

➜ What is software quality?

➜ How can it be measured?
� How can it be measured before the software is delivered?

➜ Some key quality factors

➜ Some measurable indicators of software quality

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Quality
➜ Think of an everyday object

� e.g. a chair
� How would you measure it’s “quality”?

� construction quality? (e.g. strength of the joints,…)
� aesthetic value? (e.g. elegance,…)
� fit for purpose? (e.g. comfortable,…)

➜ All quality measures are relative
� there is no absolute scale
� we can say A is better than B but it is usually hard to say how much better

➜ For software:
� construction quality?

� software is not manufactured
� aesthetic value?

� but most of the software is invisible
� aesthetic value matters for the user interface, but is only a marginal concern

� fit for purpose?
� Need to understand the purpose

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Fitness
➜ Design quality is all about fitness to purpose

� does it do what is needed?
� does it do it in the way that its users need it to?
� does it do it reliably enough? fast enough? safely enough? securely enough?
� will it be affordable? will it be ready when its users need it?
� can it be changed as the needs change?

➜ But this means quality is not a measure of software
in isolation
� it is a measure of the relationship between software and its application

domain
� might not be able to measure this until you place the software into its

environment…
� …and the quality will be different in different environments!

� during design, we need to be able to predict how well the software will fit
its purpose

� we need to understand that purpose (requirements analysis)
� we need to look for quality predictors

Source: Budgen, 1994, pp58-9

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Can you measure quality from the representation?

image courtesy of www.jsbach.net



5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Measuring Quality
➜ We have to turn our vague ideas about quality into

measurables

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations

(realization of the metrics)

usabilityusability

minutes
taken for
some user
task???

minutes
taken for
some user
task???

time taken
to learn

how to use?

time taken
to learn

how to use?

complexitycomplexity

count
procedure
calls???

count
procedure
calls???

information
flow between

modules?

information
flow between

modules?

reliabilityreliability

run it and
count crashes
per hour???

run it and
count crashes
per hour???

mean time
to failure?
mean time
to failure?

examples...

Source: Budgen, 1994, pp60-1

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Four Key Quality Concepts
➜ Reliability

� designer must be able to predict how the system will behave:
� completeness - does it do everything it is supposed to do? (e.g. handle all

possible inputs)
� consistency - does it always behave as expected? (e.g. repeatability)
� robustness - does it behave well under abnormal conditions? (e.g. resource

failure)

➜ Efficiency
� Use of resources such as processor time, memory, network bandwidth

� This is less important than reliability in most cases

➜ Maintainability
� How easy will it be to modify in the future?

� perfective, adaptive, corrective

➜ Usability
� How easy is it to use?

Source: Budgen, 1994, pp65-7

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Boehm’s NFR list

General 
utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Source: See Blum, 1992, p176

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

McCall’s NFR list

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability
training

I/O volume

Access control
Access audit
Storage efficiency

consistency

instrumentation
expandability
generality
Self-descriptiveness
modularity
machine independence
s/w system independence
comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

Source: See van Vliet 2000, pp111-3

traceability
completeness
accuracy
error tolerance

simplicity
conciseness

data commonality



9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Measurable Predictors of Quality
➜ Simplicity

� the design meets its objectives and has no extra embellishments
� can be measured by looking for its converse, complexity:

� control flow complexity (number of paths through the program)
� information flow complexity (number of data items shared)
� name space complexity (number of different identifiers and operators)

➜ Modularity
� different concerns within the design have been separated
� can be measured by looking at:

� cohesion (how well components of a module go together)
� coupling (how much different modules have to communicate)

Source: Budgen, 1994, pp68-74

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Coupling
Given two units (e.g. methods, classes, modules, …), A and B:

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Source: See van Vliet 2000, pp301-2

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Cohesion
How well do the contents of a procedure (module,

package,…) go together?
Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Source: van Vliet 1999, pp299-300 (after Yourdon & Constantine)

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Typical cohesion problems
➜ Syntactic structure

� cohesion is all about program semantics
� if you use syntactic measures to decide how to design procedures…

� e.g. length, no of loops, etc
� …your design will lack coherence

➜ Hand optimization
� removing repeated code is often counter-productive
� it makes the program harder to modify
� unless the repeated code represents an abstraction

➜ Complicated explanations
� if the only way to explain a procedure is to describe its internals…

� …it is probably incoherent
� look for simple abstractions that can be described succinctly

➜ Naming problems
� if it is hard to think of a simple descriptive name for a procedure…

� …it is probably incoherent



13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How to spot incoherent designs
➜ An abstraction’s effects clause is full of ‘and’s

� e.g.

� Unless there is a strong functional link, use separate procedures
� temporal cohesion (bad)
� logical cohesion (very bad)

➜ An effects clause contains ‘or’s, ‘if…then…else’s, etc.
� e.g.

� These should be separate procedures
� control coupling by switching (bad)
� coincidental cohesion (very bad)
� logical cohesion (very bad)

effects: initialize the data structures and initialize the screen display
and initialize the history stack and initialize the layout defaults and
display an introductory text

effects: initialize the data structures and initialize the screen display
and initialize the history stack and initialize the layout defaults and
display an introductory text

effects: if x=0 then returns size(a[]) else if x=1 then returns sum(a[])
else if x=2 then returns mean(a[]) else if x=3 then returns median(a[])
effects: if x=0 then returns size(a[]) else if x=1 then returns sum(a[])
else if x=2 then returns mean(a[]) else if x=3 then returns median(a[])

Source: Liskov & Guttag 2000, chapter 14.

14

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Summary
➜ Software quality generally means fitness for purpose

� need to know what that purpose is…
� …what functions must it perform
� …what other properties must it have (e.g. modifiability, reliability,

usability…)

➜ Not all quality attributes can be measured during
design
� because quality is not an attribute of software in isolation
� but we can look for predictors

➜ Reliability, efficiency, maintainability, usability
� are usually the four most important quality factors
� …although different authors give different lists

➜ Modularity is often a good predictor of quality
�measure it by looking at cohesion and coupling

15

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)”
Wiley, 1999.

Chjapter 6 introduces the key ideas about software quality. Section 11.1 covers design considerations
such as modularity, coupling and cohesion.

Budgen, D. “Software Design”, 1994.
The neat book is one of the best introductions to the idea of “quality” software design that I’ve come
across. Chapters 4 and 6 give a good overview of software design quality

Liskov, B. and Guttag, J., “Program Development in Java: Abstraction,
Specification and Object-Oriented Design”, 2000, Addison-Wesley.

chapter 14 is a nice summary of how to assess the quality of a piece of software.

Pirsig, R. M., “Zen and the Art of Motorcycle Maintenance : An Inquiry
into Values”, 1974, William Morrow & Company.

This is a novel about one man’s quest to understand what “quality” is really all about. Great bedtime
reading!


