## University of Toronto

Department of Computer Science

# Lecture 2: Examples of Poor Engineering

# → "Software Forensics" Case Studies:

- 🗞 Mars Pathfinder
- ♦ Mars Climate Observer
- 🏷 Mars Polar Lander
- Deep Space 2

# → Some conclusions

- ${}^{l\!\!\!l}{}_{\!\!\!l}$  e.g. Humans make mistakes, but good engineering practice catches them!

#### © 2001, Steve Easterbrook

# University of Toronto

# NASA JPL's Mars Program

| Mission               | Launch Date Arrival Date   |                                          | Outcome                                    |  |  |
|-----------------------|----------------------------|------------------------------------------|--------------------------------------------|--|--|
| Viking I<br>Viking II | 20 Aug 1975<br>9 Sept 1975 | Landed 20 Jul 1976<br>Landed 3 Sept 1976 | Operated until 1982<br>Operated until 1980 |  |  |
| Mars Observer         | 25 Sept 1992               | Last contact:<br>22 Aug 1993             | Contact lost just before orbit insertion   |  |  |
| Pathfinder            | 4 Dec 1996                 | Landed<br>4 July 1997                    | Operated until 27 Sep<br>1997              |  |  |
| Global Surveyor       | 7 Nov 1996                 | Orbit attained<br>12 Sept 1997           | Still operational                          |  |  |
| Climate Orbiter       | 11 Dec 1998                | Last contact:<br>23 Sept 1999            | Contact lost just before orbit insertion   |  |  |
| Polar Lander          | 3 Jan 1999                 | Last contact:<br>3 Dec 1999              | Contact lost before descent                |  |  |
| Deep Space 2          | 3 Jan 1999                 | Last contact:<br>3 Dec 1999              | No data was ever retrieved                 |  |  |
| Mars Odyssey          | 7 Apr 2001                 | Expected:<br>October 24, 2001            |                                            |  |  |

© 2001, Steve Easterbrook

# University of Toronto

## Department of Computer Science

# Mars Pathfinder

## → Mission

- ♦ Demonstrate new landing techniques >parachute and airbags
- ✤ Take pictures
- & Analyze soil samples
- ७ Demonstrate mobile robot technology >Sojourner

## → Major success on all fronts

- Returned 2.3 billion bits of information
- $\circledast$  16,500 images from the Lander
- ${\ensuremath{\,\textcircled{\sc b}}}$  550 images from the Rover
- $\circledast$  15 chemical analyses of rocks & soil
- $\boldsymbol{\$}$  Lots of weather data
- Both Lander and Rover outlived their design life
- Broke all records for number of hits on a website!!!







© 2001, Steve Easterbrook

## University of Toronto

Department of Computer Science

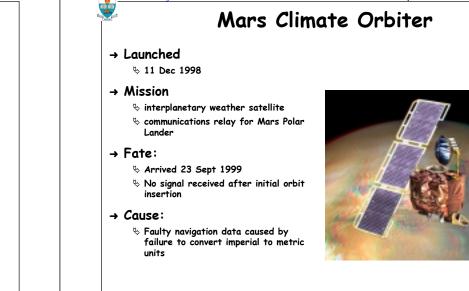
# Pathfinder had Software Errors

### → Symptoms

- Software did total system resets
  - > Symptoms noticed soon after Pathfinder started collecting meteorological data > Some data lost each time

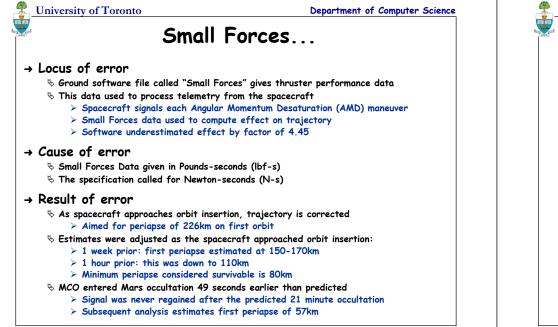
## → Cause

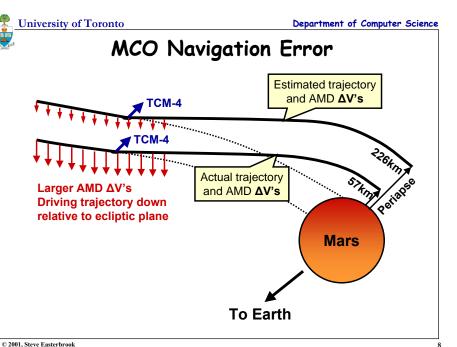
- ${\ensuremath{\,\textcircled{\sc b}}}$  3 Process threads, with bus access via mutual exclusion locks (mutexs):
  - > High priority: Information Bus Manager
  - $\succ {\sf Low}$  priority: Meteorological Data Gathering Task
- > Medium priority: Communications Task


### Spriority Inversion:

- >Low priority task gets mutex to transfer data to the bus
- > High priority task blocked until mutex is released
- > Medium priority task pre-empts low priority task
- > Eventually a watchdog timer notices Bus Manager hasn't run for some time...

### → Factors


- ∜Very hard to diagnose:
  - > Hard to reproduce
- > Need full tracing switched on to analyze what happened
- &Was experienced a couple of times in pre-flight testing
  - > Never reproduced or explained
  - > Hence testers assumed it was a hardware glitch


© 2001, Steve Easterbrook



University of Toronto

© 2001, Steve Easterbrook





Department of Computer Science

#### © 2001, Steve Easterbrook

# **Contributing Factors**

- → For 4 months, AMD data not used due to file format errors Naviaators calculated data by hand
  - File format fixed by April 1999
  - Anomalies in trajectory became apparent almost immediately
- → Limited ability to investigate:
  - Thrust effects measured along line of sight using doppler shift
  - AMD thrusts are mainly perpendicular to Earth-spacecraft line of sight
- → Poor communication between teams:
  - E.g. Issue tracking system not properly used by navigation team
    Anomalies not properly investigated
- → Inadequate staffing
  - Operations team monitoring three missions simultaneously (MGS, MCO and MPL)

© 2001, Steve Easterbrook

- → Operations Navigation team unfamiliar with spacecraft
  - ✤ Different team from development & test
  - bid not fully understand the significance of the anomalies
  - Familiarity with previous mission (MGS) assumed sufficient:
    - > but AMD was performed 10-14 times more often on MCO as it has asymmetric solar panels.
  - → Inadequate Testing
    - Software Interface Spec not used during unit testing of small forces s/w
    - End-to-end test of ground software never completed
    - ✤ Ground software was not considered "mission critical" so less rigorous V&V

### → Inadequate Reviews

Key personnel missing from critical design reviews

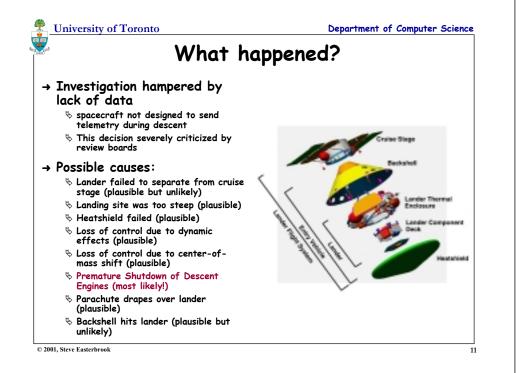
## University of Toronto

#### Department of Computer Science

# Mars Polar Lander

## → Launched

🏷 3 Jan 1999


- → Mission
  - 🗞 Land near South Pole
  - big for water ice with a robotic arm

## → Fate:

- 🗞 Arrived 3 Dec 1999
- No signal received after initial phase of descent
- → Cause:
  - 🗞 Several candidate causes
  - Most likely is premature engine shutdown due to noise on leg sensors



© 2001, Steve Easterbrook





### Department of Computer Science

# Premature Shutdown Scenario

### $\rightarrow$ Cause of error

- ✤ Magnetic sensor on each leg senses touchdown
- $\circledast$  Legs unfold at 1500m above surface
  - > transient signals on touchdown sensors during unfolding
  - > software accepts touchdown signals if they persist for 2 timeframes
  - > transient signals likely to be long enough on at least one leg

### → Factors

& System requirement to ignore the transient signals

- > But the *software* requirements did not describe the effect
- ightarrow s/w designers didn't understand the effect, so didn't implement the requirement
- $\boldsymbol{\$}$  Engineers present at code inspection didn't understand the effect
- $\boldsymbol{\$}$  Not caught in testing because:
  - > Unit testing didn't include the transients
  - > Sensors improperly wired during integration tests (no touchdown detected!)
  - > Full test not repeated after re-wiring

## → Result of error

🗞 Engines shut down before spacecraft has landed

- > When engine shutdown s/w enabled, flags indicated touchdown already occurred
- $\succ$  estimated at 40m above surface, travelling at 13 m/s
- > estimated impact velocity 22m/s (spacecraft would not survive this)
- > nominal touchdown velocity 2.4m/s

## University of Toronto

Department of Computer Science

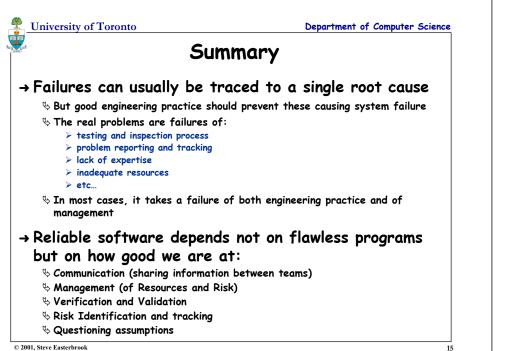
# Deep Space 2

## → Launched

🗞 3 Jan 1999

## → Mission

- ♦ 2 small probes piggybacked on Mars Polar Lander
- ♦ Demonstration of new technology ✤ Separate from MPL 5 minutes before atmosphere entry
- ✤ Bury themselves in Martian Soil
- ✤ Return data on soil analysis and look for water


### → Fate:

♦ No signals were received after launch

### → Cause:

🗞 Unknown ♦ (System was not ready for launch)

© 2001, Steve Easterbrook





### University of Toronto

#### Department of Computer Science

| Factor<br>Didn't test to spec         |   | Ariane<br>501<br>● | Path-<br>finder | MCO<br>● | MPL | <b>DS-2</b> |
|---------------------------------------|---|--------------------|-----------------|----------|-----|-------------|
|                                       |   |                    |                 |          |     |             |
| Tested "wrong" system                 |   |                    |                 |          | •   |             |
| No regression test                    |   |                    |                 |          | •   |             |
| Lack of integration testing           |   | •                  |                 | •        |     | •           |
| Lack of expertise at inspections      |   | •                  |                 | •        | •   |             |
| System changed after testing          |   |                    |                 |          | •   | ?           |
| Reqt not implemented                  |   | ?                  |                 | •        | •   |             |
| Lack of diagnostic data during ops    |   |                    | •               | •        | •   | •           |
| S/W used before ready                 |   |                    |                 | ?        | ?   | •           |
| Different team maintains S/W          |   |                    |                 | •        | •   |             |
| Didn't use problem reporting system   |   |                    | •               | •        | •   | ?           |
| Didn't track problems properly        |   | •                  | •               | •        | •   | ?           |
| Didn't investigate anomalies          |   |                    | •               | •        |     |             |
| Poor communication between teams      |   | •                  | •               | •        | •   | ?           |
| Insufficient staffing                 |   |                    |                 | •        | •   | •           |
| Failure to adjust budget and schedule |   |                    |                 | •        | •   | •           |
| Inexperienced managers                |   |                    |                 | •        | •   | ٠           |
| Commercial pressures took priority    |   | •                  |                 | •        | •   | •           |
| reused code w/o checking assumptions  |   | •                  |                 |          |     |             |
| 'Redundant' design not redundant      | ٠ | •                  |                 |          |     |             |

© 200

13



© 2001, Steve Easterbrook

14