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Lecture 23:
Software Architectures

 Architectural Styles
 Pipe and filter
Object oriented:

 Client-Server; Object Broker
 Event based
 Layered:

 Designing Layered Architectures
 Repositories:

 Blackboard, MVC
 Process control
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Pipe-and-filter

 Examples:
 UNIX shell commands
 Compilers:

 Lexical Analysis -> parsing -> semantic analysis -> code generation
 Signal Processing

 Interesting properties:
 filters don’t need to know anything about what they are connected to
 filters can be implemented in parallel
 behaviour of the system is the composition of behaviour of the filters

 specialized analysis such as throughput and deadlock analysis is possible
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Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279
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Object Oriented Architectures

 Examples:
 abstract data types

 Interesting properties
 data hiding (internal data representations are not visible to clients)
 can decompose problems into sets of interacting agents
 can be multi-threaded or single thread

 Disadvantages
 objects must know the identity of objects they wish to interact with
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Source: Adapted from Shaw & Garlan 1996, p22-3.
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Variant 1: Client Server

 Interesting properties
 Is a special case of the previous pattern object oriented architecture
 Clients do not need to know about one another

 Disadvantages
 Client objects must know the identity of the server
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Variant 2: Object Brokers
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 Interesting properties
 Adds a broker between the clients and servers
 Clients no longer need to know which server they are using
 Can have many brokers, many servers.

 Disadvantages
 Broker can become a bottleneck
 Degraded performance
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Broker Architecture Example
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Event based (implicit invocation)

 Examples
 debugging systems (listen for particular breakpoints)
 database management systems (for data integrity checking)
 graphical user interfaces

 Interesting properties
 announcers of events don’t need to know who will handle the event
 Supports re-use, and evolution of systems (add new agents easily)

 Disadvantages
 Components have no control over ordering of computations
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Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278
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kernal

Layered Systems

 Examples
Operating Systems
 communication protocols

 Interesting properties
 Support increasing levels of abstraction during design
 Support enhancement (add functionality) and re-use
 can define standard layer interfaces

 Disadvantages
May not be able to identify (clean) layers
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Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.
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Variant: 3-layer data access
Presentation layer

Application Logic layer

Storage layer
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Open vs. Closed Layered Architecture
 closed architecture

 each layer only uses services of the layer
immediately below;

Minimizes dependencies between layers and
reduces the impact of a change.

 open architecture
 a layer can use services from any lower

layer.
More compact code, as the services of lower

layers can be accessed directly
 Breaks the encapsulation of layers, so

increase dependencies between layers
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How many layers?
 2-layers:

 application layer
 database layer
 e.g. simple client-server model

 3-layers:
 separate out the business logic

helps to make both user interface and
database layers modifiable

 4-layers:
 Separates applications from the

domain entities that they use:
boundary classes in presentation layer
control classes in application layer
entity classes in domain layer

 Partitioned 4-layers
 identify separate applications
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Repositories

 Examples
 databases
 blackboard expert systems
 programming environments

 Interesting properties
 can choose where the locus of control is (agents, blackboard, both)
 reduce the need to duplicate complex data

 Disadvantages
 blackboard becomes a bottleneck
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Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280
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Variant: Model-View-Controller
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 Properties
One central model, many views (viewers)
 Each view has an associated controller
 The controller handles updates from the user of the view
 Changes to the model are propagated to all the views
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Model View Controller Example
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MVC Component Interaction
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Process Control

 Examples
 aircraft/spacecraft flight control systems
 controllers for industrial production lines, power stations, etc.
 chemical engineering

 Interesting properties
 separates control policy from the controlled process
 handles real-time, reactive computations

 Disadvantages
 Difficult to specify the timing characteristics and response to disturbances
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Source: Adapted from Shaw & Garlan 1996, p27-31.


