
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 23:
Software Architectures

 Architectural Styles
 Pipe and filter
Object oriented:

 Client-Server; Object Broker
 Event based
 Layered:

 Designing Layered Architectures
 Repositories:

 Blackboard, MVC
 Process control

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Pipe-and-filter

 Examples:
 UNIX shell commands
 Compilers:

 Lexical Analysis -> parsing -> semantic analysis -> code generation
 Signal Processing

 Interesting properties:
 filters don’t need to know anything about what they are connected to
 filters can be implemented in parallel
 behaviour of the system is the composition of behaviour of the filters

 specialized analysis such as throughput and deadlock analysis is possible

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe

pipe

pipe

pipe

pipe pipe

pipe

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Object Oriented Architectures

 Examples:
 abstract data types

 Interesting properties
 data hiding (internal data representations are not visible to clients)
 can decompose problems into sets of interacting agents
 can be multi-threaded or single thread

 Disadvantages
 objects must know the identity of objects they wish to interact with

object

object

objec t

ob je ct

obj ec t

method
invocation method

invocation

method
invocation method

invocation

Source: Adapted from Shaw & Garlan 1996, p22-3.

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Variant 1: Client Server

 Interesting properties
 Is a special case of the previous pattern object oriented architecture
 Clients do not need to know about one another

 Disadvantages
 Client objects must know the identity of the server

client

client

client

method
invocation

method
invocation

method
invocation

S er ver



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Variant 2: Object Brokers

server

server

broke r

clientc lie nt

cl ie nt

 Interesting properties
 Adds a broker between the clients and servers
 Clients no longer need to know which server they are using
 Can have many brokers, many servers.

 Disadvantages
 Broker can become a bottleneck
 Degraded performance

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Broker Architecture Example

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Event based (implicit invocation)

 Examples
 debugging systems (listen for particular breakpoints)
 database management systems (for data integrity checking)
 graphical user interfaces

 Interesting properties
 announcers of events don’t need to know who will handle the event
 Supports re-use, and evolution of systems (add new agents easily)

 Disadvantages
 Components have no control over ordering of computations

broadcast
medium

agent

agent

agent

agent

announce
event

announce
event

listen for
event

listen for
eventbroadcast

medium

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278

University of Toronto Department of Computer Science

© Easterbrook 2004 8

kernal

Layered Systems

 Examples
Operating Systems
 communication protocols

 Interesting properties
 Support increasing levels of abstraction during design
 Support enhancement (add functionality) and re-use
 can define standard layer interfaces

 Disadvantages
May not be able to identify (clean) layers

kernal

utilities
application layer

users

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Variant: 3-layer data access
Presentation layer

Application Logic layer

Storage layer

Java
A
W

T

A
ppl’n

Views

C on to l
ob je ct s

Bus i ne ss
l ogic

Q
uery

Engi ne

File
M

gm
nt

D
BM

S

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Open vs. Closed Layered Architecture
 closed architecture

 each layer only uses services of the layer
immediately below;

Minimizes dependencies between layers and
reduces the impact of a change.

 open architecture
 a layer can use services from any lower

layer.
More compact code, as the services of lower

layers can be accessed directly
 Breaks the encapsulation of layers, so

increase dependencies between layers

Layer N
Layer N-1

Layer 2
Layer 1

Layer N
Layer N-1

Layer 2
Layer 1

University of Toronto Department of Computer Science

© Easterbrook 2004 11

How many layers?
 2-layers:

 application layer
 database layer
 e.g. simple client-server model

 3-layers:
 separate out the business logic

helps to make both user interface and
database layers modifiable

 4-layers:
 Separates applications from the

domain entities that they use:
boundary classes in presentation layer
control classes in application layer
entity classes in domain layer

 Partitioned 4-layers
 identify separate applications

Application (client)Application (client)

Database (server)Database (server)

Presentation layer (user interface)Presentation layer (user interface)

Business LogicBusiness Logic

DatabaseDatabase

Presentation layer (user interface)Presentation layer (user interface)

ApplicationsApplications

Domain EntitiesDomain Entities

DatabaseDatabase

UI1 UI2 UI3 UI4UI1 UI2 UI3 UI4

App1 App2 App3 App4App1 App2 App3 App4

Domain EntitiesDomain Entities

DatabaseDatabase

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Repositories

 Examples
 databases
 blackboard expert systems
 programming environments

 Interesting properties
 can choose where the locus of control is (agents, blackboard, both)
 reduce the need to duplicate complex data

 Disadvantages
 blackboard becomes a bottleneck

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Variant: Model-View-Controller

controller

control l er
view

m
od el

view propagate propagate

update update

accessaccess

 Properties
One central model, many views (viewers)
 Each view has an associated controller
 The controller handles updates from the user of the view
 Changes to the model are propagated to all the views

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Model View Controller Example

University of Toronto Department of Computer Science

© Easterbrook 2004 15

MVC Component Interaction
University of Toronto Department of Computer Science

© Easterbrook 2004 16

Process Control

 Examples
 aircraft/spacecraft flight control systems
 controllers for industrial production lines, power stations, etc.
 chemical engineering

 Interesting properties
 separates control policy from the controlled process
 handles real-time, reactive computations

 Disadvantages
 Difficult to specify the timing characteristics and response to disturbances

processcontroller

input variables

controlled
variables

control
parameters

manipulated
variables

sen
sor

s

actuators

Source: Adapted from Shaw & Garlan 1996, p27-31.


