
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 7: Requirements Modeling III
Last Week:
Modeling II
Information
Structure
Behaviour

Last Week:
Modeling II
Information
Structure
Behaviour

Next Week:
Specification and Validation

Specification Languages
Documentation Standards
Reviews and Inspections

Next Week:
Specification and Validation

Specification Languages
Documentation Standards
Reviews and Inspections

This Week:
Modeling System Qualities

Non-functional Requirements
Satisficing Softgoals

Quality measures

This Week:
Modeling System Qualities

Non-functional Requirements
Satisficing Softgoals

Quality measures

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What are Non-functional Requirements?

‹ Functional vs. Non-Functional
ƒ Functional requirements describe what the system should do

ÿ things that can be captured in use cases
ÿ things that can be analyzed by drawing interaction diagrams, statecharts, etc.
ÿ Functional requirements will probably trace to individual chunks of a program

ƒNon-functional requirements are global constraints on a software system
ÿ e.g. development costs, operational costs, performance, reliability,

maintainability, portability, robustness etc.
ÿ Often known as the “ilities”
ÿ Usually cannot be implemented in a single module of a program

‹ The challenge of NFRs
ƒHard to model
ƒ Usually stated informally, and so are:

ÿ often contradictory,
ÿ difficult to enforce during development
ÿ difficult to evaluate for the customer prior to delivery

ƒHard to make them measurable requirements
ÿ We’d like to state them in a way that we can measure how well they’ve been met

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example NFRs
‹ Interface requirements

ƒ how will the new system interface
with its environment?
ÿUser interfaces and “user-friendliness”
ÿInterfaces with other systems

‹ Performance requirements
ƒ time/space bounds

ÿworkloads, response time, throughput
and available storage space
ÿe.g. ”the system must handle 1,000
transactions per second"

ƒ reliability
ÿthe availability of components
ÿintegrity of information maintained and
supplied to the system
ÿe.g. "system must have less than 1hr
downtime per three months"

ƒ security
ÿE.g. permissible information flows, or
who can do what

ƒ survivability
ÿE.g. system will need to survive fire,
natural catastrophes, etc

‹ Operating requirements
ƒ physical constraints (size, weight),
ƒ personnel availability & skill level
ƒ accessibility for maintenance
ƒ environmental conditions
ƒ etc

‹ Lifecycle requirements
ƒ “Future-proofing”

ÿMaintainability
ÿEnhanceability
ÿPortability
ÿexpected market or product lifespan

ƒ limits on development
ÿE.g development time limitations,
ÿresource availability
ÿmethodological standards
ÿetc.

‹ Economic requirements
ƒ e.g. restrictions on immediate and/or

long-term costs.

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Approaches to NFRs
‹ Product vs. Process?

ƒ Product-oriented Approaches
ÿ Focus on system (or software) quality
ÿ Aim is to have a way of measuring the product once it’s built

ƒ Process-oriented Approaches
ÿ Focus on how NFRs can be used in the design process
ÿ Aim is to have a way of making appropriate design decisions

‹ Quantitative vs. Qualitative?
ƒQuantitative Approaches

ÿ Find measurable scales for the quality attributes
ÿ Calculate degree to which a design meets the quality targets

ƒQualitative Approaches
ÿ Study various relationships between quality goals
ÿ Reason about trade-offs etc.

2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Software Qualities
‹ Think of an everyday object

ƒ e.g. a chair
ƒHow would you measure it’s “quality”?

ÿ construction quality? (e.g. strength of the joints,…)
ÿ aesthetic value? (e.g. elegance,…)
ÿ fit for purpose? (e.g. comfortable,…)

‹ All quality measures are relative
ƒ there is no absolute scale
ƒ we can sometimes say A is better than B…

ÿ … but it is usually hard to say how much better!

‹ For software:
ƒ construction quality?

ÿ software is not manufactured
ƒ aesthetic value?

ÿ but most of the software is invisible
ÿ aesthetic value matters for the user interface, but is only a marginal concern

ƒ fit for purpose?
ÿ Need to understand the purpose

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Fitness
‹ Software quality is all about fitness to purpose

ƒ does it do what is needed?
ƒ does it do it in the way that its users need it to?
ƒ does it do it reliably enough? fast enough? safely enough? securely enough?
ƒ will it be affordable? will it be ready when its users need it?
ƒ can it be changed as the needs change?

‹ But this means quality is not a measure of software
in isolation
ƒ it is a measure of the relationship between software and its application

domain
ÿ might not be able to measure this until you place the software into its

environment…
ÿ …and the quality will be different in different environments!

ƒ during design, we need to be able to predict how well the software will fit
its purpose
ÿ we need to understand that purpose (requirements analysis)
ÿ we need to look for quality predictors (design analysis)

Source: Budgen, 1994, pp58-9

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Factors vs. Criteria
‹ Quality Factors

ƒ These are customer-related concerns
ÿ Examples: efficiency, integrity, reliability, correctness, survivability, usability,...

‹ Design Criteria
ƒ These are technical (development-oriented) concerns such as anomaly

management, completeness, consistency, traceability, visibility,...

‹ Quality Factors and Design Criteria are related:
ƒ Each factor depends on a number of associated criteria:

ÿ E.g. correctness depends on completeness, consistency, traceability,...
ÿ E.g. verifiability depends on modularity, self-descriptiveness and simplicity

ƒ There are some standard mappings to help you…

‹ During Analysis:
ƒ Identify the relative importance of each quality factor

ÿ From the customer’s point of view!
ƒ Identify the design criteria on which these factors depend
ƒMake the requirements measurable

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Boehm’s NFR list

General
utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Source: See Blum, 1992, p176

3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

McCall’s NFR list

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability

training

I/O volume

Access control

Access audit

Storage efficiency

consistency

instrumentation

expandability

generality

Self-descriptiveness

modularity

machine independence

s/w system independence

comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

Source: See van Vliet 2000, pp111-3

traceability

completeness

accuracy

error tolerance

simplicity

conciseness

data commonality

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Making Requirements Measurable
‹ We have to turn our vague ideas about quality into

measurables
The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations

(realization of the metrics)

usabilityusability

minutes
taken for
some user
task???

minutes
taken for
some user
task???

time taken
to learn

how to use?

time taken
to learn

how to use?

complexitycomplexity

count
procedure
calls???

count
procedure
calls???

information
flow between

modules?

information
flow between

modules?

reliabilityreliability

run it and
count crashes
per hour???

run it and
count crashes
per hour???

mean time
to failure?

mean time
to failure?

examples...

Source: Budgen, 1994, pp60-1

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Softgoals: the NFR framework
‹ Goal types:

ƒ Non-functional Requirement
ƒ Satisficing Technique (e.g. a design

choice)
ƒ Claim (supporting/explaining a choice)

‹ Contribution Types:
ƒ AND links (decomposition)
ƒ OR links (alternatives)
ƒ Sup links (supports)
ƒ Sub links (subgoal)

‹ Evaluation of goals
ƒ Satisficed
ƒ Denied
ƒ Conflicting
ƒ Undetermined

Source: Chung, Nixon, Yu & Mylopoulos, 1999

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

NFR Catalogues
Source: Cysneiros & Yu, 2004

‹ Predefined catalogues of NFR decomposition
ƒ Provides a knowledge base to check coverage of an NFR
ƒ Provides a tool for elicitation of NFRs
ƒ Example:

4

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Portability
‹ Definition:

ƒ the degree to which software running on one platform can easily be
converted to run on another

‹ Considerations:
ƒ Portability is hard to quantify:

ÿ it is hard to predict on what other platforms will the software be required to run
ƒ Portability is strongly affected by design choices:

ÿ E.g. choice of languages, operating systems and tools that are universally
available and standardized

ƒ Portability requirements should be given priority for systems that may have
to run on different platforms in the near future.

14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Reliability
‹ Definition

ƒ the ability of the system to behave consistently in a user-acceptable
manner when operating within the environment for which it was intended.

‹ Comments:
ƒ Reliability can be defined in terms of a percentage (say, 99.999%)
ƒ This may have different meaning for different applications:

ÿ Telephone network: the entire network can fail no more than, on average, 1hr
per year, but failures of individual switches can occur much more frequently

ÿ Patient monitoring system: the system may fail for up to 1hr/year, but in those
cases doctors/nurses should be alerted of the failure. More frequent failure of
individual components is not acceptable.

ƒ Best we can do may be something like:
ÿ "...No more than X bugs per 10KLOC may be detected during integration and

testing; no more than Y bugs per 10KLOC may remain in the system after
delivery, as calculated by the Monte Carlo seeding technique of appendix Z; the
system must be 100% operational 99.9% of the calendar year during its first
year of operation..."

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Measuring Reliability…
‹ Example reliability requirement:

ƒ “The software shall have no more than X bugs per thousand lines of code”
ƒ ...But how do we measure bugs at delivery time?

‹ Use bebugging
ƒ a number of seeded bugs are introduced to the software system, then

testing is done and bugs are uncovered (seeded or otherwise)

Number of bugs = # of seeded bugs x # of detected bugs
in system # of detected seeded bugs

ƒ ...BUT, not all bugs are equally important!

16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Other Reliability Metrics
‹ How to identify suitable metrics

ƒ Analyze the loss incurred by software system failure,
ÿ eg., destruction of the panet, destruction of a city, death of some people, injury

to some people, major financial loss, major embarrassment, minor financial loss.
ƒ Different metrics are more appropriate in different situations

‹ Example metrics
ƒ Probability of failure on demand.

ÿ measures the likelihood that the system will behave in an unexpected way when
some demand is made of it. This is most relevant to safety-critical systems.

ƒ Rate of Failure Occurrence (ROCOF).
ÿ measures the frequency of unexpected behaviour. For example, ROCOF=2/100

means that 2 failures are likely to occur within every 100 time units.
ƒMean Time to Failure (MTTF)

ÿ Measures average interval between failures
ƒ Availability

ÿ Measures the likelihood that the system will be available for use.
ÿ This is a good measure for applications such as telecommunications, where the

repair/restart time is significant and the loss of service is important.

5

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Safety
‹ When is safety important?

ƒ Safety is a critical requirement for certain types of software systems…
ÿ e.g., nuclear plants, airplanes, X-ray machines,

ƒ …where failure may result in loss of human life.

‹ Techniques for analyzing safety:
ƒHazard analysis

ÿ A hazard is a condition which may cause human death or injury (a “mishap”)
ÿ Traces from problems to hazards, or from hazards back to problems

ƒ Fault tree analysis
ÿ Creates a tree showing cause and effect of each failure

‹ Risk Analysis:
ƒ Probability of hazard

ÿ Measures how likely the hazard is to occur
ƒ Severity of a hazard

ÿ Measures the worst possible damage caused if the hazard does occur
ƒ Risk

ÿ measures the overall risk (combines probability with severity)

