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Talk outline

e Deep Belief Nets as stacks of Restricted Boltzmann Machines.

— Nonlinear Dimensionality Reduction.
— Discriminative Fine-tuning for Regression and Classification.

e Deep Belief Nets as Generative Models.
— A Generative Model of Simple Shapes.

e Another Application of Deep Belief Nets (if time permits).
— Semantic Hashing for Ultra Fast Document Retrieval.



Restricted Boltzmann Machines

e We can model an ensemble of binary images
using Restricted Boltzmann Machines (RBM).

e RBM is a two-layer network in which W
visible, binary stochastic pixels v are connected

to hidden binary stochastic feature detectors h. @ Q Q
v
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e A joint configuration (v, h) has an energy:
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e The probability that the model assigns to v is

v exp(—E(v,h))
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Inference and Learning
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data reconstruction fantasy

e Conditional distributions over hidden and visible units are given by

logistic function:
1
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e Maximum Likelihood learning:
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p(v; = 1/h) =

e Contrastive Divergence (1-step) learning:
AW, = e(<vih; >gata — <vihj>1)



What a single RBM learns

e Random sample of the RBM'’s receptive fields (17') for MNIST (left)
and Olivetti (right).

e Input data

5 6 | 3 EESES(BY)

e .earned W




Learning Stacks of RBM'’s

¢ A single layer of binary features generally
cannot perfectly model the structure in the data.

e Perform greedy, layer-by-layer learning:

— Learn and Freeze 1W;.
— Treat the existing feature detectors, driven

by training data, o(1W{ V) as if they were data.
— Learn and Freeze V5.

— Greedily learn as many layers of features
as desired.

e Under certain conditions adding an extra layer
always improves a lower bound on the log
probability of data (explained later).

e Hach layer of features captures strong high-order
correlations between the activities of units in the
layer below.
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Nonlinear Dimensionality Reduction

e Perform greedy, layer-by-layer pretraining.

o After pretraining multiple layers, the model is
unrolled to create a deep autoencoder.

e Initially encoder and decoder networks use the
same weights.

e The global fine-tuning uses backpropagation
through the whole autoencoder to fine-tune the
weights for optimal reconstruction.

e Backpropagation only has to do local search.

e We used a 625-2000-1000-500-30 autoencoder to
extract 30-D real-valued codes for Olivetti face
patches (7 hidden layers is usually hard to train).

e We used a 784-1000-500-250-30 autoencoder to  umroling
extract 30-D real-valued codes for MNIST images.




The Big Picture

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pretraining

Show Demo.
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Reuters Corpus: Learning 2-D code space

Autoencoder 2-D Topic Space

European Community LSA 2-D Topic Space
Interbank Markets Monetary/Economic

Disasters and
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e We use a 2000-500-250-125-2 autoencoder to convert test documents
into a two-dimensional code.

e The Reuters Corpus Volume II contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

e We used a simple “bag-of-words” representation. Each article is
represented as a vector containing the counts of the most frequent
2000 words in the training dataset.
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Results for 10-D codes

e We use the cosine of the angle between two codes as a measure of
similarity.
e Precision-recall curves when a 10-D query document from the test

set is used to retrieve other test set documents, averaged over
402,207 possible queries.
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Deep Belief Nets for Classification
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Pretraining Unrolling Fine-tuning

e After layer-by-layer pretraining of a 784-500-500-2000-10 network,
discriminative fine-tuning achieves an error rate of 1.2% on MNIST.
SVM'’s get 1.4% and randomly initialized backprop gets 1.6%.

e Clearly pretraining helps generalization. It ensures that most of the
information in the weights comes from modeling the input data.

e The very limited information in the labels is used only to slightly
adjust the final weights.
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A Regression Task

e Predicting the orientation of a face patch.
-66.84 43.48 -57.14 14.22 -35.75 30.01

ST

e Labeled Training Data:
Input: 1000 labeled training patches Output: orientation
from Olivetti faces of 30
training people.

e Labeled Test Data:
Input: 1000 labeled test patches Predict: orientation
from Olivetti faces of 10
new people.

e Gaussian Processes with Gaussian kernel (using Radford Neal’s
software) achieves a RMSE of 16.35° (£0.45°).



Deep Belief Nets for Regression

-66.84 43.48 -57.14 1422 -35.75 30.01 Unlabeled
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e Additional Unlabeled Training Data: 12000 face patches from 30
training people.

e Pretrain a stack of RBM’s: 784-1000-500.

e Features were extracted with no idea of the final task.

Train a dumb linear regression model RMSE 13.73°.
on the top-level features using
the labeled 1000 training cases:

The same GP on the top-level features: RMSE 10.06° (£0.36°).



The Generative View of Stacks of RBM'’s

etc.

e When Weoen = W, the two models are the same.

e The weights Wy,,..,, define p(vo|ho, Wirozen) but also indirectly
define p(hy).
e [dea: Freeze bottom layer of weights at Wgo,0n and change higher

layers to build a better model for p(hy), that is closer to the posterior
hidden features produced by Wgzen applied to the data

p(ho\VO, Wi

frozen) .
e As we learn a new layer, the inference becomes incorrect, but the
bound on the log probability of the data increases (see Hinton et.al.).



The Generative View of Stacks of RBM'’s

etc.
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e What about explaining away?

e A complementary prior exactly cancels out correlations created by
explaining away! So the posterior factors.
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Two Alternatives to Our Method
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e Alternative 1:

— Without complementary prior, learning one layer at a time is hard
because of explaining away.

e Alternative 2:

— If we start with different weights in each layer and try to learn
them all at once, we have major problems.

— Just to calculate the prior for hy requires integration over all
higher-level hidden configurations! Good luck with that.
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Semantic Hashing
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e Learn to map documents into semantic 20-D binary code and use
these codes as memory addresses.

e We have the ultimate retrieval tool: Given a query document,
compute its 20-bit address and retrieve all of the documents stored at
the similar addresses with no search at all.
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Semantic Hashing

Reuters 2-D Embedding of 20-bit codes
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e We used a simple C implementation on Reuters dataset (402,212
training and 402,212 test documents).

e For a given query, it takes about 0.5 milliseconds to create a short-list
of about 3,000 semantically similar documents.

o It then takes 10 milliseconds to retrieve the top few matches from
that short-list using TF-IDF, and it is more accurate than full TF-IDF.

e Locality-Sensitive Hashing takes about 500 milliseconds, and is less
accurate.

e Our method is 50 times faster than the fastest existing method and is
more accurate.
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THE END



