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Talk outline

• Deep Belief Nets as stacks of Restricted Boltzmann Machines.

– Nonlinear Dimensionality Reduction.
– Discriminative Fine-tuning for Regression and Classification.

• Deep Belief Nets as Generative Models.

– A Generative Model of Simple Shapes.

• Another Application of Deep Belief Nets (if time permits).

– Semantic Hashing for Ultra Fast Document Retrieval.
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Restricted Boltzmann Machines
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• We can model an ensemble of binary images
using Restricted Boltzmann Machines (RBM).

• RBM is a two-layer network in which
visible, binary stochastic pixels v are connected
to hidden binary stochastic feature detectors h.

• A joint configuration (v,h) has an energy:

E(v,h) = −
∑

i∈pixels

bivi −
∑

j∈features

bjhj −
∑

i,j

vihjWij

• The probability that the model assigns to v is

p(v) =
∑

h∈H

p(v,h) =
∑

h∈H

exp(−E(v,h))∑
u,g exp(−E(u,g))
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Inference and Learning
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• Conditional distributions over hidden and visible units are given by
logistic function:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i viWij)

p(vi = 1|h) =
1

1 + exp(−bi −
∑

j hjWji)

• Maximum Likelihood learning:

∆Wij = ǫ(< vihj >data − < vihj >∞)

• Contrastive Divergence (1-step) learning:

∆Wij = ǫ(< vihj >data − < vihj >1)
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What a single RBM learns

• Random sample of the RBM’s receptive fields (W ) for MNIST (left)
and Olivetti (right).

• Input data

• Learned W
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Learning Stacks of RBM’s
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• A single layer of binary features generally
cannot perfectly model the structure in the data.

• Perform greedy, layer-by-layer learning:

– Learn and Freeze W1.
– Treat the existing feature detectors, driven

by training data, σ(W T
1 V ) as if they were data.

– Learn and Freeze W2.
– Greedily learn as many layers of features

as desired. .

• Under certain conditions adding an extra layer
always improves a lower bound on the log
probability of data (explained later).

• Each layer of features captures strong high-order
correlations between the activities of units in the
layer below. .
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Nonlinear Dimensionality Reduction
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• Perform greedy, layer-by-layer pretraining.

• After pretraining multiple layers, the model is
unrolled to create a deep autoencoder.

• Initially encoder and decoder networks use the
same weights.

• The global fine-tuning uses backpropagation
through the whole autoencoder to fine-tune the
weights for optimal reconstruction. .

• Backpropagation only has to do local search.

• We used a 625-2000-1000-500-30 autoencoder to
extract 30-D real-valued codes for Olivetti face
patches (7 hidden layers is usually hard to train).

• We used a 784-1000-500-250-30 autoencoder to
extract 30-D real-valued codes for MNIST images.
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The Big Picture
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Reuters Corpus: Learning 2-D code space

Autoencoder 2−D Topic Space
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• We use a 2000-500-250-125-2 autoencoder to convert test documents
into a two-dimensional code.

• The Reuters Corpus Volume II contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

• We used a simple “bag-of-words” representation. Each article is
represented as a vector containing the counts of the most frequent
2000 words in the training dataset.
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Results for 10-D codes

• We use the cosine of the angle between two codes as a measure of
similarity.

• Precision-recall curves when a 10-D query document from the test
set is used to retrieve other test set documents, averaged over
402,207 possible queries.
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Deep Belief Nets for Classification
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• After layer-by-layer pretraining of a 784-500-500-2000-10 network,
discriminative fine-tuning achieves an error rate of 1.2% on MNIST.
SVM’s get 1.4% and randomly initialized backprop gets 1.6%.

• Clearly pretraining helps generalization. It ensures that most of the
information in the weights comes from modeling the input data.

• The very limited information in the labels is used only to slightly
adjust the final weights.
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A Regression Task

• Predicting the orientation of a face patch.

-66.84 43.48 14.22 30.01−57.14 −35.75

• Labeled Training Data:
Input: 1000 labeled training patches Output: orientation

from Olivetti faces of 30
training people.

• Labeled Test Data:
Input: 1000 labeled test patches . Predict: orientation

from Olivetti faces of 10
new people.

• Gaussian Processes with Gaussian kernel (using Radford Neal’s
software) achieves a RMSE of 16.35◦ (±0.45◦).
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Deep Belief Nets for Regression

-66.84 43.48 14.22 30.01−57.14 −35.75 Unlabeled

• Additional Unlabeled Training Data: 12000 face patches from 30
training people.

• Pretrain a stack of RBM’s: 784-1000-500.

• Features were extracted with no idea of the final task.

Train a dumb linear regression model RMSE 13.73◦.
on the top-level features using
the labeled 1000 training cases:

The same GP on the top-level features: RMSE 10.06◦ (±0.36◦).
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The Generative View of Stacks of RBM’s
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• When Wfrozen = W, the two models are the same.

• The weights Wfrozen define p(v0|h0,Wfrozen) but also indirectly
define p(h0).

• Idea: Freeze bottom layer of weights at Wfrozen and change higher
layers to build a better model for p(h0), that is closer to the posterior
hidden features produced by Wfrozen applied to the data
p(h0|v0,W

T
frozen).

• As we learn a new layer, the inference becomes incorrect, but the
bound on the log probability of the data increases (see Hinton et.al.).
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The Generative View of Stacks of RBM’s
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• What about explaining away?

• A complementary prior exactly cancels out correlations created by
explaining away! So the posterior factors.
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Two Alternatives to Our Method
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• Alternative 1:

– Without complementary prior, learning one layer at a time is hard
because of explaining away.

• Alternative 2:

– If we start with different weights in each layer and try to learn
them all at once, we have major problems.

– Just to calculate the prior for h0 requires integration over all
higher-level hidden configurations! Good luck with that.
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Semantic Hashing

W +ε

W +ε

W +ε

W

W

W

W

W

W

W

W

W +ε

W +ε

W +ε

W

2000

500

500

2000

500

2000
1 1

2 2

500

500

Gaussian
Noise

500

3 3

2000

500

2000
1

2

500
2

1

3

Code Layer

2

500

1

3

20

Fine−tuning

2

1

3 4

5

6

Code Layer20

UnrollingRecursive Pretraining

500
RBM

500

500
RBM

3

RBM
20

Bag of Words

T

T

T T

T

T

• Learn to map documents into semantic 20-D binary code and use
these codes as memory addresses.

• We have the ultimate retrieval tool: Given a query document,
compute its 20-bit address and retrieve all of the documents stored at
the similar addresses with no search at all.
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Semantic Hashing
Reuters 2−D Embedding of 20−bit codes
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TF−IDF
TF−IDF using 20 bits
Locality Sensitive Hashing

• We used a simple C implementation on Reuters dataset (402,212
training and 402,212 test documents).

• For a given query, it takes about 0.5 milliseconds to create a short-list
of about 3,000 semantically similar documents.

• It then takes 10 milliseconds to retrieve the top few matches from
that short-list using TF-IDF, and it is more accurate than full TF-IDF.

• Locality-Sensitive Hashing takes about 500 milliseconds, and is less
accurate.

• Our method is 50 times faster than the fastest existing method and is
more accurate.
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THE END
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