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3. Laplace and Variational Inference.
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5. Markov chain Monte Carlo algorithms.
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Basic Notation

P (x) probability of x

P (x|θ) conditional probability of x given θ

P (x, θ) joint probability of x and θ

Bayes Rule:

P (θ|x) =
P (x|θ)P (θ)

P (x)

where

P (x) =

∫
P (x, θ)dθ Marginalization

I will use probability distribution and probability density interchangeably. It should be obvious from the context.
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Inference Problem

Given a dataset D = {x1, ..., xn}:

Bayes Rule:

P (θ|D) =
P (D|θ)P (θ)

P (D)

P (D|θ) Likelihood function of θ

P (θ) Prior probability of θ

P (θ|D) Posterior distribution over θ

Computing posterior distribution is known as the inference problem.

But:

P (D) =

∫
P (D, θ)dθ

This integral can be very high-dimensional and difficult to compute.
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Prediction

P (θ|D) =
P (D|θ)P (θ)

P (D)

P (D|θ) Likelihood function of θ

P (θ) Prior probability of θ

P (θ|D) Posterior distribution over θ

Prediction: Given D, computing conditional probability of x∗ requires

computing the following integral:

P (x∗|D) =

∫
P (x∗|θ,D)P (θ|D)dθ

= EP (θ|D)[P (x∗|θ,D)]

which is sometimes called predictive distribution.

Computing predictive distribution requires posterior P (θ|D).
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Model Selection

Compare model classes, e.g. M1 andM2. Need to compute posterior

probabilities given D:

P (M|D) =
P (D|M)P (M)

P (D)

where

P (D|M) =

∫
P (D|θ,M)P (θ|M)dθ

is known as the marginal likelihood or evidence.
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Computational Challenges
• Computing marginal likelihoods often requires computing very high-

dimensional integrals.

• Computing posterior distributions (and hence predictive

distributions) is often analytically intractable.

• In this class, we will concentrate on Markov Chain Monte Carlo

(MCMC) methods for performing approximate inference.

• First, let us look at some specific examples:

– Bayesian Probabilistic Matrix Factorization

– Bayesian Neural Networks

– Dirichlet Process Mixtures (last class)
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Bayesian PMF
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We have N users, M movies, and integer rating values from 1 to K.

Let rij be the rating of user i for movie j, and U ∈ RD×N , V ∈ RD×M
be latent user and movie feature matrices:

R ≈ U>V

Goal: Predict missing ratings.
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Bayesian PMF

UVj i

R
ij

j=1,...,M
i=1,...,N

σ

Θ
V U

Θ

αα
V U Probabilistic linear model with Gaussian

observation noise. Likelihood:

p(rij|ui, vj, σ2) = N (rij|u>i vj, σ2)

Gaussian Priors over parameters:

p(U |µU ,ΛU) =

N∏
i=1

N (ui|µu,Σu),

p(V |µV ,ΛV ) =

M∏
i=1

N (vi|µv,Σv).

Conjugate Gaussian-inverse-Wishart priors on the user and movie

hyperparameters ΘU = {µu,Σu} and ΘV = {µv,Σv}.

Hierarchical Prior.
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Bayesian PMF

Predictive distribution: Consider predicting a rating r∗ij for user i

and query movie j:

p(r∗ij|R) =

∫∫
p(r∗ij|ui, vj)p(U, V,ΘU ,ΘV |R)︸ ︷︷ ︸

Posterior over parameters and hyperparameters

d{U, V }d{ΘU ,ΘV }

Exact evaluation of this predictive distribution is analytically

intractable.

Posterior distribution p(U, V,ΘU ,ΘV |R) is complicated and does not

have a closed form expression.

Need to approximate.
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Bayesian Neural Nets
Regression problem: Given a set of i.i.d observations X = {xn}Nn=1

with corresponding targets D = {tn}Nn=1.

Likelihood:

p(D|X,w) =

N∏
n=1

N (tn|y(xn,w), β2)

The mean is given by the output
of the neural network:

yk(x,w) =

M∑
j=0

w2
kjσ
( D∑
i=0

w1
jixi
)

where σ(x) is the sigmoid function.

Gaussian prior over the network parameters: p(w) = N (0, α2I).
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Bayesian Neural Nets
Likelihood:

p(D|X,w) =

N∏
n=1

N (tn|y(xn,w), β2)

Gaussian prior over parameters:

p(w) = N (0, α2I)

Posterior is analytically intractable:

p(w|D,X) =
p(D|w,X)p(w)∫
p(D|w,X)p(w)dw

Remark: Under certain conditions, Radford Neal (1994) showed, as the number of

hidden units go to infinity, a Gaussian prior over parameters results in a Gaussian

process prior for functions.
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Undirected Models
x is a binary random vector with xi ∈ {+1,−1}:

p(x) =
1

Z
exp

( ∑
(i,j)∈E

θijxixj +
∑
i∈V

θixi
)
.

where Z is known as partition function:

Z =
∑
x

exp
( ∑
(i,j)∈E

θijxixj +
∑
i∈V

θixi
)
.

If x is 100-dimensional, need to sum over 2100 terms.

The sum might decompose (e.g. junction tree). Otherwise we need

to approximate.

Remark: Compare to marginal likelihood.
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Inference

For most situations we will be interested
in evaluating the expectation:

E[f ] =

∫
f(z)p(z)dz

We will use the following notation: p(z) = p̃(z)
Z .

We can evaluate p̃(z) pointwise, but cannot evaluate Z.

• Posterior distribution: P (θ|D) = 1
P (D)P (D|θ)P (θ)

• Markov random fields: P (z) = 1
Z exp(−E(z))
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Laplace Approximation
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Consider:

p(z) =
p̃(z)

Z
(1)

Goal: Find a Gaussian approximation

q(z) which is centered on a mode

of the distribution p(z).

At a stationary point z0 the gradient 5p̃(z) vanishes. Consider a

Taylor expansion of ln p̃(z):

ln p̃(z) ≈ ln p̃(z0)−
1

2
(z− z0)

TA(z− z0)

where A is a Hessian matrix:

A = −55 ln p̃(z)|z=z0
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Laplace Approximation
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Consider:

p(z) =
p̃(z)

Z
(2)

Goal: Find a Gaussian approximation

q(z) which is centered on a mode

of the distribution p(z).

Exponentiating both sides:

p̃(z) ≈ p̃(z0) exp

(
− 1

2
(z− z0)

TA(z− z0)

)
We get a multivariate Gaussian approximation:

q(z) =
|A|1/2

(2π)D/2
exp

(
− 1

2
(z− z0)

TA(z− z0)

)
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Laplace Approximation

Remember p(z) = p̃(z)
Z , where we approximate:

Z =

∫
p̃(z)dz ≈ p̃(z0)

∫
exp

(
− 1

2
(z− z0)

TA(z− z0)

)
= p̃(z0)

(2π)D/2

|A|1/2

Bayesian Inference: P (θ|D) = 1
P (D)P (D|θ)P (θ).

Identify: p̃(θ) = P (D|θ)P (θ) and Z = P (D):

• The posterior is approximately Gaussian around the MAP estimate θMAP

p(θ|D) ≈ |A|1/2

(2π)D/2
exp

(
− 1

2
(θ − θMAP )TA(θ − θMAP )

)
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Laplace Approximation

Remember p(z) = p̃(z)
Z , where we approximate:

Z =

∫
p̃(z)dz ≈ p̃(z0)

∫
exp

(
− 1

2
(z− z0)

TA(z− z0)

)
= p̃(z0)

(2π)D/2

|A|1/2

Bayesian Inference: P (θ|D) = 1
P (D)P (D|θ)P (θ).

Identify: p̃(θ) = P (D|θ)P (θ) and Z = P (D):

• Can approximate Model Evidence:

P (D) =

∫
P (D|θ)P (θ)dθ

• Using Laplace approximation

lnP (D) ≈ lnP (D|θMAP ) + lnP (θMAP ) +
D

2
ln 2π − 1

2
ln |A|︸ ︷︷ ︸

Occam factor: penalize model complexity
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Bayesian Information Criterion

BIC can be obtained from the Laplace approximation:

lnP (D) ≈ lnP (D|θMAP ) + lnP (θMAP ) +
D

2
ln 2π − 1

2
ln |A|

by taking the large sample limit (N →∞) where N is the number of

data points:

lnP (D) ≈ P (D|θMAP )− 1

2
D lnN

• Quick, easy, does not depend on the prior.

• Can use maximum likelihood estimate of θ instead of the MAP estimate

• D denotes the number of “well-determined parameters”

• Danger: Counting parameters can be tricky (e.g. infinite models)
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Variational Inference
Key Idea: Approximate intractable distribution p(θ|D) with simpler, tractable
distribution q(θ).

We can lower bound the marginal likelihood using Jensen’s inequality:

ln p(D) = ln

∫
p(D, θ)dθ = ln

∫
q(θ)

P (D, θ)
q(θ)

dθ

≥
∫
q(θ) ln

p(D, θ)
q(θ)

dθ =

∫
q(θ) ln p(D, θ)dθ +

∫
q(θ) ln

1

q(θ)
dθ︸ ︷︷ ︸

Entropy functional︸ ︷︷ ︸
Variational Lower-Bound

= ln p(D)−KL(q(θ)||p(θ|D)) = L(q)

where KL(q||p) is a Kullback–Leibler divergence. It is a non-symmetric measure of
the difference between two probability distributions q and p.

The goal of variational inference is to maximize the variational lower-bound
w.r.t. approximate q distribution, or minimize KL(q||p).
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Variational Inference
Key Idea: Approximate intractable distribution p(θ|D) with simpler, tractable
distribution q(θ) by minimizing KL(q(θ)||p(θ|D)).

We can choose a fully factorized distribution: q(θ) =
∏D
i=1 qi(θi), also known

as a mean-field approximation.

The variational lower-bound takes form:

L(q) =

∫
q(θ) ln p(D, θ)dθ +

∫
q(θ) ln

1

q(θ)
dθ

=

∫
qj(θj)

[
ln p(D, θ)

∏
i6=j

qi(θi)dθi

]
︸ ︷︷ ︸
Ei6=j[ln p(D, θ)]

dθj +
∑
i

∫
qi(θi) ln

1

q(θi)
dθi

Suppose we keep {qi 6=j} fixed and maximize L(q) w.r.t. all possible forms for the
distribution qj(θj).
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Variational Approximation
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The plot shows the original distribution (yellow),
along with the Laplace (red) and
variational (green) approximations.

By maximizing L(q) w.r.t. all possible forms for the distribution qj(θj) we obtain a
general expression:

q∗j (θj) =
exp(Ei6=j[ln p(D, θ)])∫
exp(Ei6=j[ln p(D, θ)])dθj

Iterative Procedure: Initialize all qj and then iterate through the factors replacing
each in turn with a revised estimate.

Convergence is guaranteed as the bound is convex w.r.t. each of the factors qj (see
Bishop, chapter 10).

23



Inference: Recap

For most situations we will be interested
in evaluating the expectation:

E[f ] =

∫
f(z)p(z)dz

We will use the following notation: p(z) = p̃(z)
Z .

We can evaluate p̃(z) pointwise, but cannot evaluate Z.

• Posterior distribution: P (θ|D) = 1
P (D)P (D|θ)P (θ)

• Markov random fields: P (z) = 1
Z exp(−E(z))
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Simple Monte Carlo
General Idea: Draw independent samples {z1, ..., zn} from

distribution p(z) to approximate expectation:

E[f ] =

∫
f(z)p(z)dz ≈ 1

N

N∑
n=1

f(zn) = f̂

Note that E[f ] = E[f̂ ], so the estimator f̂ has correct mean (unbiased).

The variance:

var[f̂ ] =
1

N
E
[
(f − E[f ])2

]
Remark: The accuracy of the estimator does not depend on

dimensionality of z.
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Simple Monte Carlo
In general: ∫

f(z)p(z)dz ≈ 1

N

N∑
n=1

f(zn), zn ∼ p(z)

Predictive distribution:

P (x∗|D) =

∫
P (x∗|θ,D)P (θ|D)dθ

≈ 1

N

N∑
n=1

P (x∗|θn,D), θn ∼ p(θ|D)

Problem: It is hard to draw exact samples from p(z).
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Basic Sampling Algorithm
How to generate samples from simple non-uniform distributions

assuming we can generate samples from uniform distribution.

Define: h(y) =
∫ y
−∞ p(ŷ)dŷ

Sample: z ∼ U [0, 1].

Then: y = h−1(z) is a sample from p(y).

Problem: Computing cumulative h(y) is just as hard!
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Rejection Sampling
Sampling from target distribution p(z) = p̃(z)/Zp is difficult.

Suppose we have an easy-to-sample proposal distribution q(z), such

that kq(z) ≥ p̃(z), ∀z.

Sample z0 from q(z).

Sample u0 from Uniform[0, kq(z0)]

The pair (z0, u0) has uniform distribution

under the curve of kq(z).

If u0 > p̃(z0), the sample is rejected.
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Rejection Sampling

Probability that a sample is accepted is:

p(accept) =

∫
p̃(z)

kq(z)
q(z)dz

=
1

k

∫
p̃(z)dz

The fraction of accepted samples depends on the ratio of the area

under p̃(z) and kq(z).

Hard to find appropriate q(z) with optimal k.

Useful technique in one or two dimensions. Typically applied as a

subroutine in more advanced algorithms.
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Importance Sampling
Suppose we have an easy-to-sample proposal distribution q(z), such

that q(z) > 0 if p(z) > 0.

E[f ] =

∫
f(z)p(z)dz

=

∫
f(z)

p(z)

q(z)
q(z)dz

≈ 1

N

∑
n

p(zn)

q(zn)
f(zn), zn ∼ q(z)

The quantities wn = p(zn)/q(zn) are known as importance weights.
Unlike rejection sampling, all samples are retained.

But wait: we cannot compute p(z), only p̃(z).
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Importance Sampling
Let our proposal be of the form q(z) = q̃(z)/Zq:

E[f ] =

∫
f(z)p(z)dz =

∫
f(z)

p(z)

q(z)
q(z)dz =

Zq
Zp

∫
f(z)

p̃(z)

q̃(z)
q(z)dz

≈ Zq
Zp

1

N

∑
n

p̃(zn)

q̃(zn)
f(zn) =

Zq
Zp

1

N

∑
n

wnf(zn), zn ∼ q(z)

But we can use the same importance weights to approximate
Zp
Zq :

Zp
Zq

=
1

Zq

∫
p̃(z)dz =

∫
p̃(z)

q̃(z)
q(z)dz ≈ 1

N

∑
n

p̃(zn)

q̃(zn)
=

1

N

∑
n

wn

Hence:

E[f ] ≈ 1

N

∑
n

wn∑
nw

n
f(zn) Consistent but biased.
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Problems
If our proposal distribution q(z) poorly matches our target distribution

p(z) then:

• Rejection Sampling: almost always rejects

• Importance Sampling: has large, possibly infinite, variance

(unreliable estimator).

For high-dimensional problems, finding good proposal distributions is

very hard. What can we do?

Markov Chain Monte Carlo.
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Markov Chains
A first-order Markov chain: a series of random variables {z1, ..., zN}
such that the following conditional independence property holds for

n ∈ {z1, ..., zN−1}:

p(zn+1|z1, ..., zn) = p(zn+1|zn)

We can specify Markov chain:

• probability distribution for initial state p(z1).

• conditional probability for subsequent states in the form of transition

probabilities T (zn+1←zn) ≡ p(zn+1|zn).

Remark: T (zn+1←zn) is sometimes called a transition kernel.
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Markov Chains
A marginal probability of a particular state can be computed as:

p(zn+1) =
∑
zn

T (zn+1←zn)p(zn)

A distribution π(z) is said to be invariant or stationary with respect

to a Markov chain if each step in the chain leaves π(z) invariant:

π(z) =
∑
z′

T (z←z′)π(z′)

A given Markov chain may have many stationary distributions. For

example: T (z←z′) = I{z = z′} is the identity transformation. Then

any distribution is invariant.
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Detailed Balance
A sufficient (but not necessary) condition for ensuring that π(z) is

invariant is to choose a transition kernel that satisfies a detailed
balance property:

π(z′)T (z←z′) = π(z)T (z′←z)

A transition kernel that satisfies detailed balance will leave that

distribution invariant:∑
z′

π(z′)T (z←z′) =
∑
z′

π(z)T (z′←z)

= π(z)
∑
z′

T (z′←z) = π(z)

A Markov chain that satisfies detailed balance is said to be reversible.
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Recap
We want to sample from target distribution π(z) = π̃(z)/Z
(e.g. posterior distribution).

Obtaining independent samples is difficult.

• Set up a Markov chain with transition kernel T (z′←z) that leaves

our target distribution π(z) invariant.

• If the chain is ergodic, i.e. it is possible to go from every state to

any other state (not necessarily in one move), then the chain will

converge to this unique invariant distribution π(z).

• We obtain dependent samples drawn approximately from π(z) by

simulating a Markov chain for some time.

Ergodicity: There exists K, for any starting z, TK(z′←z) > 0 for all π(z′) > 0.
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Metropolis-Hasting Algorithm
A Markov chain transition operator from current state z to a new

state z′ is defined as follows:

• A new ’candidate’ state z∗ is proposed according to some proposal

distribution q(z∗|z), e.g. N (z, σ2).

• A candidate state x∗ is accepted with probability:

min

(
1,
π̃(z∗)

π̃(z)

q(z|z∗)
q(z∗|z)

)

• If accepted, set z′ = z∗. Otherwise z′ = z, or the next state is the

copy of the current state.

Note: no need to know normalizing constant Z.
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Metropolis-Hasting Algorithm
We can show that M-H transition kernel leaves π(z) invariant by
showing that it satisfies detailed balance:

π(z)T (z′←z) = π(z)q(z′|z) min

(
1,
π(z′)

π(z)

q(z|z′)
q(z′|z)

)
= min (π(z)q(z′|z), π(z′)q(z|z′))

= π(z′) min

(
π(z)

π(z′)

)q(z′|z)
q(z|z′)

, 1

)
= π(z′)T (z←z′)

Note that whether the chain is ergodic will depend on the particulars

of π and proposal distribution q.
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Metropolis-Hasting Algorithm
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Using Metropolis algorithm to sample

from Gaussian distribution with

proposal q(z′|z) = N (z, 0.04).

accepted (green), rejected (red).
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Choice of Proposal

Proposal distribution:

q(z′|z) = N (z, ρ2).

ρ large - many rejections

ρ small - chain moves too slowly

The specific choice of proposal can greatly affect the performance of

the algorithm.
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Gibbs Sampler
Consider sampling from p(z1, ..., zN).

Initialize zi, i = 1, ..., N

For t=1,...,T

Sample zt+1
1 ∼ p(z1|zt2, ..., ztN)

Sample zt+1
2 ∼ p(z2|zt+1

1 , xt3, ..., z
t
N)

· · ·
Sample zt+1

N ∼ p(zN |zt+1
1 , ..., zt+1

N−1)

Gibbs sampler is a particular instance of M-H algorithm with proposals

p(zn|zi6=n) → accept with probability 1. Apply a series (component-

wise) of these operators.
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Gibbs Sampler
Applicability of the Gibbs sampler depends on how easy it is to sample

from conditional probabilities p(zn|zi6=n).

• For discrete random variables with a few discrete settings:

p(zn|zi 6=n) =
p(zn, zi6=n)∑
zn
p(zn, zi6=n)

The sum can be computed analytically.

• For continuous random variables:

p(zn|zi 6=n) =
p(zn, zi6=n)∫
p(zn, zi6=n)dzn

The integral is univariate and is often analytically tractable or

amenable to standard sampling methods.
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Bayesian PMF
Remember predictive distribution?: Consider predicting a rating

r∗ij for user i and query movie j:

p(r∗ij|R) =

∫∫
p(r∗ij|ui, vj)p(U, V,ΘU ,ΘV |R)︸ ︷︷ ︸

Posterior over parameters and hyperparameters

d{U, V }d{ΘU ,ΘV }

Use Monte Carlo approximation:

p(r∗ij|R) ≈ 1

N

N∑
n=1

p(r∗ij|u
(n)
i , v

(n)
j ).

The samples (uni , v
n
j ) are generated by running a Gibbs sampler, whose

stationary distribution is the posterior distribution of interest.
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Bayesian PMF
Monte Carlo approximation:

p(r∗ij|R) ≈ 1

N

N∑
n=1

p(r∗ij|u
(n)
i , v

(n)
j ).

The conditional distributions over the user and movie feature vectors

are Gaussians → easy to sample from:

p(ui|R, V,ΘU , α) = N
(
ui|µ∗i ,Σ∗i

)
p(vj|R,U,ΘU , α) = N

(
vj|µ∗j ,Σ∗j

)
The conditional distributions over hyperparameters also have closed

form distributions → easy to sample from.

Netflix dataset – Bayesian PMF can handle over 100 million ratings.
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MCMC: Main Problems
Main problems of MCMC:

• Hard to diagnose convergence (burning in).

• Sampling from isolated modes.

More advanced MCMC methods for sampling in distributions with

isolated modes:

• Parallel tempering

• Simulated tempering

• Tempered transitions

Hamiltonian Monte Carlo methods (make use of gradient information).

Nested Sampling, Coupling from the Past, many others.
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