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Projects 
•  Assignment 3 will be due in 2 weeks.   

•  You should think about your project.  

•  Project proposals will be due on Nov 5 (1-page summary of what you 
are going to do for your research project).  

•  Brief 5-minute presentations of projects will take place on Nov 19. You 
will have to use slides.  



Approximate Inference 
•  When using probabilistic graphical models, we will be interested in evaluating the 
posterior distribution p(Z|X) of the latent variables Z given the observed data X.  

•  For example, in the EM algorithm, we need to evaluate the expectation of the 
complete-data log-likelihood with respect to the posterior distribution over the latent 
variables.  

•  For more complex models, it may be infeasible to evaluate the posterior 
distribution, or compute expectations with respect to this distribution.   

•  This typically occurs when working with high-dimensional latent spaces, or when 
the posterior distribution has a complex form, for which expectations are not 
analytically tractable (e.g. Boltzmann machines).  

•  We will examine a range of deterministic approximation schemes, some of which 
scale well to large applications.  



Remember: the big challenge is computing the posterior distribution. There are 
several main approaches:  

•  Analytical integration: If we use “conjugate” priors, the posterior distribution can 
be computed analytically (we saw this in case of Bayesian linear regression).  

•  Gaussian (Laplace) approximation: Approximate the posterior distribution 
with a Gaussian. Works well when there is a lot of data compared to the model 
complexity (as posterior is close to Gaussian).  

•  Monte Carlo integration: The dominant current approach is Markov Chain 
Monte Carlo (MCMC) -- simulate a Markov chain that converges to the 
posterior distribution. It can be applied to a wide variety of problems.  

•  Variational approximation: A cleverer way to approximate the posterior. It 
often works much faster, but not as general as MCMC.  

Computational Challenges 



Probabilistic Model 
•  Suppose that we have a fully Bayesian model in which all parameters are given 
prior distributions.  

•  The model may have latent variables and parameters, and we will denote the 
set of all latent variables and parameters by Z.  

•  We will also denote the set of all observed variables by X.  

•  For example, we may be given a set of N i.i.d data points, so that X ={x1,…,xN} 
and Z = {z1,…,zN} (as we saw in previous class).  

•  Our probabilistic model specifies the joint distribution P(X,Z).  

•  Our goal is to find approximate posterior distribution P(Z|X) and the model 
evidence p(X).  



Variational Bound  
•  As in our previous lecture, we can decompose the marginal log-probability as: 

where 

•  Note that parameters are now stochastic variables and are absorbed into Z.  

•  If we allow any possible choice of q(Z), then the maximum of the lower bound 
occurs when:   

•  We can maximize the variational lower bound           with respect to the 
distribution q(Z), which is equivalent to minimizing the KL divergence.  

In this case KL divergence becomes zero.  



Variational Bound  
•  As in our previous lecture, we can decompose the marginal log-probability as: 

•  We will assume that the true posterior distribution is intractable.   

•  We can consider a restricted family of distributions q(Z) and then find the 
member of this family for which KL is minimized.  

•  Our goal is to restrict the family of distributions so that it contains only tractable 
distributions.  

•  At the same time, we want to allow the family to be sufficiently rich and flexible, 
so that it can provide a good approximation to the posterior.  

•  One option is to use parametric distributions q(Z|!), governed by parameters !. 

•  The lower bound then becomes a function of !, and can optimize the lower-
bound to determine the optimal values for the parameters. 



Example 
•   One option is to use parametric distributions q(Z|!), governed by parameters !. 

•  An example, in which the variational distribution is Gaussian, and we optimize 
with respect to its mean and variance.  

The original distribution (yellow), along 
with Laplace (red), and variational 
(green) approximations.  



Mean-Field 
•  We now consider restricting the family of distributions.   

•  Partition the elements of Z into M disjoint groups, denoted by Zi, i=1,…,M.  

•  We assume that the q distribution factorizes with respect to these groups: 

•  Note that we place no restrictions on the functional form of the individual factors 
qi (we will often denote qi(Zi) as simply qi).  

•  This approximation framework, developed in physics, is called mean-field 
theory.  



Factorized Distributions 
•  Among all factorized distributions, we look for a distribution for which the 
variational lower bound is maximized.  

•  Denoting qi(Zi) as simply qI, we have:  

where we denote a new distribution: 



Factorized Distributions 
•  Among all factorized distributions, we look for a distribution for which the 
variational lower bound is maximized.  

•  Denoting qi(Zi) as simply qi, we have:  

where 

•  Here we take an expectation with respect to the q distribution over all variables 
Zi for i≠ j, so that: 



Maximizing Lower Bound 
•  Now suppose that we keep             fixed, and optimize the lower bound with 
respect to all possible forms of the distribution qj(Zj). 

•  Observe: the log of the optimum solution for factor qj is given by: 
-  Considering the log of the joint distribution over all hidden and visible 

variables  
-  Taking the expectation with respect to all other factors {qi} for i ≠ j.     

so the minimum occurs when   

or 

•  This optimization is easily done by recognizing that: 

constant: does not 
depend on q.  



Maximizing Lower Bound 
•  Exponentiating and normalizing, we obtain: 

•  The set of these equations for j=1,…,M represent the set of consistency 
conditions for the maximum of the lower bound subject to factorization constraint.   

•  To obtain a solution, we initialize all of the factors and then cycle through factors, 
replacing each in tern with a revised estimate.  

•  Convergence is guaranteed because the bound is convex with respect to each 
of the individual factors.  



Factroized Gaussian 
•  Consider a problem of approximating a general distribution by a factorized 
distribution.  

•  To get some insight, let us look at the problem of approximating a Gaussian 
distribution using a factorized Gaussian distribution.   

•  Consider a Gaussian distribution over two correlated variables z = (z1,z2). 

•  Let us approximate this distribution using a factorized Gaussian of the form: 



Factroized Gaussian 
•  Remember: 

•  Consider an expression for the optimal factor q1: 

•  Note that we have a quadratic function of z1, and so we can identify q1(z1) as a 
Gaussian distribution:  



Factroized Gaussian 
•  By symmetry, we also obtain: 

•  There are two observations to make: 

-  We did not assume that             is Gaussian, but rather we derived this 
result by optimizing variational bound over all possible distributions.  

-  The solutions are coupled. The optimal              depends on expectation 
computed with respect to    

•  One option is to cycle through the variables in turn and update them until 
convergence.  



Factroized Gaussian 
•  By symmetry, we also obtain: 

•  However, in our case, 

•  The green contours correspond to 1,2, and 3 
standard deviations of the correlated Gaussian. 

•  The red contours correspond to the factorial 
approximation q(z) over the same two variables.  

•  Observe that a factorized variational 
approximation tends to give approximations 
that are too compact.  



Alternative Form of KL Divergence 
•  We have looked at the variational approximation that minimizes KL(q||p).  
•  For comparison, suppose that we were minimizing KL(p||q).  

constant: does not 
depend on q.  •  It is easy to show that:  

•  The optimal factor is given by the marginal distribution of p(Z).  



Comparison of two KLs 
•  Comparison of two the alternative forms for the KL divergence.   

KL(q||p) KL(p||q) 

Approximation is too compact.  Approximation is too spread.  



Comparison of two KLs 
•  The difference between these two approximations can be understood as follows: 

KL(q||p) 

•  There is a large positive contribution to the KL 
divergence from regions of Z space in which:  

-  p(Z) is near zero, 
-  unless q(Z) is also close to zero.  

•  Minimizing KL(q||p) leads to distributions q(Z) that 
avoid regions in which p(Z) is small.  



Comparison of two KLs 
•  Similar arguments apply for the alternative KL divergence: 

KL(p||q) 

•  There is a large positive contribution to the KL 
divergence from regions of Z space in which:  

-  q(Z) is near zero, 
-  unless p(Z) is also close to zero.  

•  Minimizing KL(p||q) leads to distributions q(Z) that 
are nonzero in regions where p(Z) is nonzero.  



Approximating Multimodal Distribution 
•  Consider approximating multimodal distribution with a unimodal one. 
•  Blue contours show bimodal distribution p(Z), red contours show a single 
Gaussian distribution that best approximates q(Z) that best approximates p(Z).  

KL(p||q) KL(q||p) KL(q||p) 

•  In practice, the true posterior will often be mutlimodal.  
•  KL(q||p) will tend to find a single mode, whereas KL(p||q) will average across all 
of the modes.  



Alpha-family of Divergences 
•  The two forms of KL are members of the alpha-family divergences:  

•  Observe three points: 

-  KL(p||q) corresponds to the limit ® ! 1.  
-  KL(q||p) corresponds to the limit ® ! -1.  
-  D®(p||q) ¸ 0, for all ®, and D®(p||q)=0 iff q(x) = p(x).   

•  For ® < -1, the divergence is zero-forcing: q(x) will underestimate the 
support of p(x).  

•  Suppose p(x) is fixed and we minimize D®(p||q) with respect to q distribution.  

•  For ® > 1, the divergence is zero-avoiding: q(x) will stretch to cover all of p(x).  

•  For ® = 0, we obtain a symmetric divergence which is related to Hellinger 
Distance: 



Univariate Gaussian 
•  Consider a factorized approximation using a Gaussian distribution over a single 
variable x.  

•  Given a dataset                               we would like to infer posterior distribution 
over the mean µ and precision ¿.  

•  The likelihood term is given:  

•  For this simple problem, the posterior also takes the form of Normal-Gamma 
distribution and hence has a closed form solution.  
•  However, let us consider a variational approximation to the posterior.   

•  The conjugate prior is given by the Normal-Gamma prior: 



Approximating Mean 
•  We now consider a factorized variational approximation to the posterior:  

•  Note that the true posterior does not factorize this way! 
•  Remember: 

•  Hence: 

•  So: Depends on expectation 
with respect to q(¿). 



Approximating Mean 
•  We now consider a factorized variational approximation to the posterior:  

•  As N ! 1, this gives Maximum Likelihood result                   and the precision 
becomes infinite.    



Approximating Precision 
•  We now consider a factorized variational approximation to the posterior:  

•  For optimal solution for the precision factor: 

•  Hence the optimal factor is a Gamma distribution:  
Depends on expectation 
with respect to q(µ). 



Approximating Precision 
•  We now consider a factorized variational approximation to the posterior:  

•  Hence the optimal factor is a Gamma distribution:  

•  As N ! 1, the variational posterior q*(¿) has a mean given by the inverse of the 
maximum likelihood estimator for the variance of the data, and a variance that 
goes to zero.  

•  Note that we did not assume specific functional forms for the optimal q 
distributions. They were derived by optimizing variational bound over all possible 
distributions.  



Iterative Procedure 
•  The optimal distributions for mean and precision terms depend on moments 
evaluated with respect to the other distributions.   

•  One option is to cycle through the mean and precision in turn and update them 
until convergence.  

Green contours represent 
the true posterior, blue 
contours represent 
variational approximation.  

Variational inference for 
the mean and precision.  



Mixture of Gaussians 
•  We will look at the Bayesian mixture of Gaussians model and apply the 
variational inference to approximate the posterior.  

•  Note: Many models, corresponding to much more sophisticated distributions, 
can be solved by straightforward extensions of this analysis.   

•  Remember the Gaussian mixture model: 

•  The log-likelihood takes form: 



Bayesian Mixture of Gaussians 
•  We next introduce priors over parameters ¼, µ, and ¤.  

•  From now on, we assume that each component 
has the same parameter:                   for k=1,…,K.  

•  Note that parameters ®0 can be viewed as the effective 
prior number of observations associated with each 
component in the mixture,  

•  If ®0 is small, the posterior will be influenced primarily by the data, rather than 
by the prior.   



Bayesian Mixture of Gaussians 
•  We next introduce priors over parameters ¼, µ, and ¤.  

•  We also place Gaussian-Wishart prior: 

•  Typically, we would choose, m0 = 0 (by symmetry), and W0 = I, and  

•  Notice the distinction between latent variables and parameters.  



Bayesian Matrix Factorization 
•  One of the popular matrix factorization model used in collaborative filtering / 
recommender systems.   

•  As pointed before: Many models, corresponding to much more sophisticated 
distributions, can be solved by straightforward extensions of presented analysis.   



Variational Distribution  
•  We can write down the joint distribution over all random variables: 

•  Consider a variational distribution that factorizes 
between the latent variables and model 
parameters: 

•  Remarkably, this is the only assumption we need in order to obtain a tractable 
practical solution to our Bayesian mixture model.  

•  The functional form of the factors will be determined automatically by 
optimization of the variational distribution.  



Variational Distribution  
•  Using our general result, we can obtain the optimal factor for q(Z): 

•  Substituting, we obtain: 

•  Using decomposition of                                                 
and retaining terms that depend on Z: 

where expectations are taken with respect to  



Variational Distribution  
•  Using our general result, we can obtain the optimal factor for q(Z): 

•  So far, we have: 

•  Exponentiating and normalizing, we have: 

•  The optimal solution takes the same function form as the prior p(Z|¼) 
(multinomial), and  

plays the role of 
responsibility.  

•  Note that the optimal solution depends on moments evaluated with respect to 
distributions of other variables. 



Variational Distribution  
•  Using our general result, consider the optimal factor for q(¼,µ,¤): 

•  Substituting, we obtain: 

where expectations are taken with respect to  

•  The result decomposes into a sum of terms 
involving only ¼ and {µk,¤k}, k=1,..,K. 



Variational Distribution  
•  Substituting we obtain: 

•  So the optimal q*(¼) takes form: 

•  Exponentiating, we have a Dirichlet distribution: 

where ® has components:  



Variational Distribution  
•  It will be convenient to define three statistics of the observed dataset with 
respect to the responsibilities: 

Effective number of 
points in component k. 

The mean of 
component k. 

Covariance of 
component k. 

•  These are analogous to quantities evaluated in the maximum likelihood EM for 
the Gaussian mixture models.  



Variational Distribution  
•  Substituting we obtain: 

•  It is easy to verify that optimal q*(µk,¤k) is a Gaussian-
Wishart distribution: 

These update equations 
are quite intuitive.  

But they depend on 
responsibilities! 



Iterative Optimization 
•  The optimization of variational posterior amounts to cycling between two stages, 
analogous to the E and M steps of the maximum likelihood EM.   

•  In the variational E-step, we use the current 
distribution over parameters q(¼,µ,¤) to evaluate 
responsibilities:  

•  In the variational M-step, we use the current distribution 
over latents q(Z), or responsibilities, to compute the 
variational distribution over parameters. 

•  Each step improves (does not decrease) the variational lower bound on the log-
probability of the data.  

•  The variational posterior has the same function form as the corresponding factor 
in the joint distribution.  



Example  
•  Variational Bayesian mixture of K=6 Gaussians. Components whose expected 
mixing coefficients are numerically indistinguishable from zero are not shown. 

Consider a component for which Nk ' 0 and ®0 ' 0. 

If the prior is broad, so that ®0 ! 0, the E[¼k] ! 0, and the 
component plays no role in the model. 

The posterior over latents is given by Dirichlet:  



Variational Lower Bound  
•  It is straightforward to evaluate the variational lower bound for this model. 
•  We can monitor during the re-estimation in order to test for convergence.  

•  It also provides a valuable check on the mathematical updates and software 
implementation.  

•  At each step of the iterative procedure, the variational lower bound should not 
decrease.   

•  For the variational mixture of Gaussian model, the lower bound can be 
evaluated as: 

•  The various terms in the bound can be easily evaluated.  



Predictive Density 
•  In general, we will be interested in the predictive density for a new value           
of the observed variable.   
•  We will also have a corresponding latent variable 

•  The predictive density takes form: 

posterior probability over 
parameters conditioned 
on the entire dataset. 

probability of a new 
data point given 
latent component 
and parameters.  

probability of a 
latent component 
that is summed out. 

•  Summing out latent variable we obtain: 



Predictive Density 
•  Predictive density takes form: 

•  We now approximate the true posterior distribution p(¼,µ,¤) 
with its variational approximation q(¼)q(µ,¤).  

•  This gives an approximation: 

•  The integration can now be performed analytically, giving a mixture of 
Student’s t-distribution: 

where                      and the precision is given by: 

•  As N becomes large, the predictive distribution reduces to a mixture of Gaussians. 



Determining the Number of Components 
•  Plot of the variational lower bound (including multimodility factor K!) vs. the 
number K of components.  

•  Maximum likelihood would increase monotonically with K (assuming no singular 
solutions). 

•  For each value of K, the model is 
trained from 100 different random 
starts.  



Induced Factorizations 
•  In our variational mixture of Gaussians model, we assumed a particular 
factorization: 

•  The optimal solutions for various factors exhibit additional factorizations: 

•  We call these induced factorizations.  

•  These additional factorizations can be detected using d-separation.  

•  In a numerical implementation of the variational approach it is important to take 
into account additional factorizations. 



Induced Factorizations 
•  Let us partition the latent variables into A,B,C, and assume the the following 
factorization that would approximate the true posterior: 

•  The solution for q(A,B) takes form: 

•  We now test whether the resulting solution factorizes between A and B: 

•  This will happen iff: 

•  Or if A is independent of B conditioned on C and X. 



Induced Factorizations 
•  In case of Bayesian mixture of Gaussians, we can immediately see that the 
variational posterior over parameters must factorize between ¼ and (µ,¤).  

•  All paths that connecting µ or ¤ must pass 
through one of the nodes zn, all of which are in 
our conditioning set.  



Variational Linear Regression 
•  We now look at the Bayesian linear regression model as another example.  

•  Interating over parameters and hyperparameters is often intractable.  
•  We can find a tractable approximation using variational 
methods.  

where   

•  Bayesian Linear Regression model: 

•  We next place a conjugate Gamma prior over ®: 



Variational Linear Regression 
•  The joint distribution takes form: 

•  Our goal is to find an approximation to the posterior: 

•  Using variational framework, we assume 
approximate posterior factorizes: 

•  Consider distribution over ®: 



Variational Linear Regression 
•  The distribution over ®: 

•  We can easily recognize this as the log of a 
Gamma distribution: 



•  The optimal factor for model parameters takes form: 

•  Hence the distribution q*(w) is Gaussian (due to 
quadratic form): 

Same form when alpha was 
treated as a fixed parameter.  

•  The difference is that fixed ® is replaced by its expectation under the variational 
approximation q(®). 

Variational Linear Regression 



Variational Lower Bound 
•  Once we have identified the optimal q distributions, it is easy to compute: 

•  We can also easily evaluate the variational lower 
bound on the log-probability of the data: 

Expected complete-
data log-likelihood 

Negative entropy of 
approximate q distribution 



Predictive Distribution 
•  We can also easily evaluate the predictive distribution over t given a new input x. 

where the input-dependent variance is given by: 

•  This takes exactly the same form as we considered before 
with fixed ®.  

•  The difference is that fixed ® is replaced by its expectation under the 
variational approximation q(®). 



Predictive Distribution 
•  Plot of the lower bound vs. the order M of the polynomail:  

•  So far we have looked at Bayesian models where we are interested in 
approximating the posterior. The same variational framework can also be 
applied when learning other models, including undirected models with latent 
variables (e.g. Deep Boltzmann Machines).  


