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Abstract

We show that matrix completion with trace-norm regulai@atcan be signifi-
cantly hurt when entries of the matrix are sampled non-umifg, but that a prop-
erly weighted version of the trace-norm regularizer worledl with non-uniform

sampling. We show that the weighted trace-norm regulaoz@deed yields sig-
nificant gains on the highly non-uniformly sampled Netflixatet.

1 Introduction

Trace-norm regularization is a popular approach for matoimpletion and collaborative filtering,
motivated both as a convex surrogate to the rahkl[7, 6] anering of a regularized infinite factor
model with connections to large-margin norm-regularizeaming [17[ 1] 15].

Current theoretical guarantees on using the trace-nornrmédrix completion assume a uniform
sampling distribution over entries of the matrixI[18/B6['5].1In a collaborative filtering setting,
where rows of the matrix represent e.g. users and colummesept e.g. movies, this corresponds
to assuming all users are equally likely to rate movies ahchaVies are equally likely to be rated.
This of course cannot be further from the truth, as invayiabime users are more active than others
and some movies are rated by many people while others arg rated.

In this paper we show, both analytically and through siniotet, that this is not a deficiency of
the proof techniques used to establish the above guarardtesed, a non-uniform sampling dis-
tribution can lead to a significant deterioration in preidictquality and an increase in the sample
complexity. Under non-uniform sampling, as manyis*/?) samples might be needed for learn-
ing even a simple (e.g. orthogonal low rankx n matrix. This is in sharp contrast to the uniform
sampling case, in which)(n) samples are enough. It is important to note that if the rankdco
be minimized directly, which is in general not computatibn&actable,O(n) samples would be
enough to learn a low-rank model even under an arbitraryuroferm distribution.

Our analysis further suggests a weighted correction tordmetnorm regularizer, that takes into
account the sampling distribution. Although appearingrat fis counter-intuitive, and indeed be-
ing the opposite of a previously suggested weighting [21i weighting is well-motivated by our
analytic analysis and we discuss how it corrects the problénat the unweighted trace-norm has
with non-uniform sampling. We show how the weighted traceam indeed yields a significant
improvement on the highly non-uniformly sampled Netflix akst.

The only other work we are aware of that studies matrix cotigrlaunder non-uniform sampling
is work onexact completion (i.e. when the matrix is assumed toskectly low rank) under power-

law sampling [12]. Other then being limited to one specifistidbution, the requirement of the
matrix being exactly low rank is central to this work, and tiesults cannot be directly applied
in the presence of even small noise. Empirically, the apgrdeads to deterioration in predictive
performance on the Netflix data [12].



2 Complexity Control in terms of Matrix Factorizations

Consider the problem of predicting the entries of some unkntarget matrixy” € R™*™ based

on a random subsét of observed entrie®s. For examplep andm may represent the number of
users and the number of movies, aridnay represent a matrix of partially observed rating values.
Predicting elements of can be done by finding a matriX minimizing the training error, here
measured as a squared error, and some measkineof complexity. That is, minimizing either:

min [ Xs — Ys|[7 + Ae(X) 1)

or. . 2
Xg — Y. 2
C(r)?)lgcl\ s —Ysllg, )

whereYs, and similarlyX g, denotes the matrix “masked” I, where(Ys),; ; =Y ; if (4,5) € S
and0 otherwise. For now we ignore possible repeated entriésand we also assume that< m
without loss of generality. The two formulatiodd (1) abtl é2¢ equivalent up to some (unknown)
correspondence betwegrandC, and we will be referring to them interchangeably.

A basic measure of complexity is the rankXf corresponding to the minimal dimensionalitguch
thatX = U TV for someU € R**™ andV € R¥*™. Directly constraining the rank ok forms
one of the most popular approaches to collaborative filgeritiowever, the rank is non-convex and
hard to minimize. It is also not clear if a strict dimensiatyatonstraint is most appropriate for
measuring the complexity.

Trace-norm Regularization

Lately, methods regularizing therm of the factorizatior/ "V, rather than its dimensionality, have
been advocated and were shown to enjoy considerable eaiiticcesd [14, 15]. This corresponds
to measuring complexity in terms of tiace-norm of X, which can be defined equivalently either
as the sum of the singular valuesXf or as [¥]:

o1 2 2
| Xl = min SN+ VIR, 3)
where the dimensionality df and V" is not constrained. Beyond the modeling appeal of norm-
based, rather than dimension-based, regularizationrahe-norm is a convex function &f and so
can be minimized by either local search or more sophisticed@vex optimization techniques.

Scaling

The rank, as a measure of complexity, does not scale withizbeo§the matrix. That is, even very

large matrices can have low rank. Viewing the rank as a caxitplseasure corresponding to the
number of underlying factors, if data is explained by e.@ tactors, then no matter how many rows
(“users”) and columns (“movies”) we consider, the data wiill have rank two. The trace-norm,

however, does scale with the size of the matrix. To see tbis, that the trace-norm is tlfe norm

of the spectrum, while the Frobenius norm is thenorm of the spectrum, yielding:

1Xle < 1X [l < [1X]lp v/rank(X) < Vi || X - (4)

The Frobenius norm certainly increases with the size of tagir) since the magnitude of each ele-
ment does not decrease when we have more elements, and ssctr@drm will also increase. The
above suggests measuring the trace-norm relative to theeRiws norm. Without loss of generality,
consider each target entry to be of roughly unit magnitudd,so in order to fi” each entry of
X must also be of roughly unit magnitude. This suggests sgdlia trace-norm by/nm. More
specifically, we study the trace-norm through the compjaxitasure:
2
tC(X) _ ||‘XVHII”7 (5)
nm

which puts the trace-norm on a comparable scale to the rargarticular, when each entry &f is,
on-average, of unit magnitude (i.e. has unit variance) we lha< tc(X) < rank(X).

The relationship betweetig(X') and the rank is tight for “orthogonal” low-rank matrice.ilow-
rank matricesX = U "V where the rows of/ and also the rows df are orthogonal and of equal

magnitudes. In order for the entrieslinto have unit magnitude, i.eﬁYH,Q: = nm, we have that rows



in U have normy/n/+/k and rows inl” have normy/m//k, yielding preciselytc(X) = rank(X).
Such an orthogonal low-rank matrix can be obtained, e.gervéntries of/ andV” are zero-mean
i.i.d. Gaussian with variancke/ vk, corresponding to unit-variance entriesn

Generalization Guar antees

Another place where we can see thdtX ) plays a similar role toank(X) is in the generalization
and sample complexity guarantees that can be obtainedvierdok and low-trace-norm learning.
If there is a low-rank matriXX * achieving low average error relativeYo(e.g. ifY = X* + noise),

then by minimizing the training error subject to a rank coaist (a computationally intractable

task),|S| = O(rank(X™*)(n + m)) samples are enough in order to guarantee learning a nitrix
whose overall average error is close to thakdf[{Lé]. Similarly, if there is a low-trace-norm matrix
X* achieving low average error, then minimizing the trainimgpeand the trace-norm (a convex
optimization problem),S| = O(tc(X*)(n 4 m)) samples are enough in order to guarantee learning
a matrix X whose overall average error is close to that’of [18]. In these boundt(X) plays

precisely the same role as the rank, up to logarithmic factor

In order to get some intuitive understanding of low-rankméag guarantees, it is enough to consider
the number of parameters in the rahkactorizationX = U " V. Itis easy to see that the number of
parameters in the factorization is roughiim + n) (perhaps a bit less due to rotational invariants).
We therefore would expect to be able to le&¢nwhen we have roughly this many samples, as is
indeed confirmed by the rigorous sample complexity bounds.

For low-trace-norm learning, consider a sam§lef size|S| < Cn, for some constant'. Taking
entries ofY” to be of unit magnitude, we hay@’s || = /|S| < vV Cn (recall thatYs is defined to

be zero outsid&). From [@) we therefore havéYs ||, < vCn - /n = vVCOn and sotc(Ys) < C.
That is, we can “shatter” any sample of sitd < Cn with tc(X) = C: no matter what the
underlying matrixY” is, we can always perfectly fit the training data with a lonc&anorm matrix
X s.t.tc(X) < C, without generalizing at all outsidg. On the other hand, we must allow matrices
with tc(X') = tc(X*), otherwise we can not hope to fidd*, and so we can only constratit( X ) <

C = tc(X*). We therefore cannot expect to learn with less thaiX*) samples. It turns out that
this is essentially the largest random sample that can hitesbd withtc(X) < C' = tc(X™). If we
have more than this many samples we can start learning.

3 Trace-Norm Under a Non-Uniform Distribution

In this section, we analyze trace-norm regularized learmihen the sampling distribution is not
uniform. That is, when there is some, known or unknown, noifieum distributionD over entries
of the matrixY” (i.e. over index pair$i, j)) and our samplé' is sampled i.i.d. fronD. Our objective

is to get low average error with respect to the distributidnThat is, we measure generalization
performance in terms of the weighted sum-squared-error:

IX =Y|p = Eujyenl(Xiy —Vi)?] =D DG, j)(Xi; — Vig)*. (6)
i

We first point out that when using the rank for complexity coht.e. when minimizing the training
error subject to a low-rank constraint, non-uniformity gnet pose a problem. The same generaliza-
tion and learning guarantees that can be obtained in therami€ase, also hold under an arbitrary

distributionD. In particular, if there is some low-ranK* such that/| X* — Y||2D is small, then

O(rank(X*)(n 4+ m)) samples are enough in order to learn (by minimizing traimimgr subject to
a rank constraint) a matriX with || X — Y'||7, almost as small agX* — Y|, [i6].

However, the same does not hold when learning using the-trawwa. To see this, consider an
orthogonal rankk squaren x n matrix, and a sampling distribution which is uniform overanxn 4
sub-matrix4, withn, = n®. Thatis, the row (e.g. “user”) is selected uniformly amolng tirstn 4
rows, and the column (e.g. “movie”) is selected uniformlyaarg the first, 4 columns. We will use
A to denote the subset of entries in the submatrix,A.e= {(i,7)|1 < 4,5 < na}. Forany sample
S, we have:
|||z rank(Ys) _ [S[n® _ |S
F - < | |2 _ | | (7)

<
n2—a’

tC(Ys) =

2
Vsl
2

n n



where we again take the entries¥nto be of unit magnitude. In the second inequality above we
use the fact that’s is zero outside ofd, and so we can bound the rankd by the dimensionality
na = n® of A.

Settinga < 1, we see that we can shatter any sample oflsizé ¢ = &(n) with a matrix X for
whichtc(X) <k. Whena < 1/2, the total number of entries i is less tham. In this case)(n)
observations are enough in order to mem@ize. Butwhenl /2 < a < 1, with O(n) observations,
restricting to evenc(X') < 1, we can neither learl, since we can shattéfs, nor memorize it. For
example, whem = 2/3 and son4 = n*/3, we need roughly.*/? to start learning by constraining

tc(X) to a constant — the same as we would need in order to memgsiz&his is a factor of!/3
greater than the sample size needed to learn a matrix witstaottc(X ) in the uniform case.

The above arguments establish that restricting the corntplextc(X) < k& might not lead to gen-
eralization withO(kn) samples in the non-uniform case. But does this mean that aeotéearn a
rank+ matrix by minimizing the trace-norm usin@(kn) samples when the sampling distribution
is concentrated on a small submatrix? Of course this is rotéise. Since the samples are uniform
on a small submatrix, we can just think of the submatrix A asemtire space. The target matrix
still has low rank, even when restricted to A, and we are badké uniform sampling scenario.
The only issue here is that(X) < k, i.e. | X||, < nVk, is the right constraint in the uniform
observation scenario. When samples are concentrateg,iwe actually need to restrict to a much
smaller trace norm|| X ||, < n*v/k, which will allow learning withO(kn®) samples.

We can, however, modify the example and construct a samglstgbution under whiclf(n?*/3)
samples are required in order to learn even an “orthogonel-rank matrix, no matter what con-
straint is placed on the trace-norm. This is a significaratgé sample complexity tha@(kn),
which is what we would expect, and what is required for laagriiy constraining the rank directly.

To do so, consider another submatBxof sizeng x np with ng = n/2, such
that the rows and columns ef and B do not overlap (see figure). Now, consider
a sampling distributiorD which is uniform overA with probability half, and uni- B
form overB with probability half. Consider fitting a noisy matrik = X* +noise
where X* is “orthogonal” rankk. In order to fit onB, we need to allow a trace-
norm of at leasl{ X3 ||, = 2 V%, i.e. allowtc(X) = k/4. But as discussed above;
with such a generous constraint on the trace-norm, we wilhlile to shattelS ¢ A whenever
|S N A| = |S|/2 < kn?~%/4. Since there is no overlap in rows and columns, and so vatuti
sub-matricest andB are independent, shatteriSgh A means we cannot hope to learndn Setting
a=2/3 as before, witho(n*/3) samples, we cannot learn ihand B jointly: either we constrain to
atrace-norm which is too low to fiX';; (we under-fit onB), or we allow a trace-norm which is high
enough to overfit’sH 4. In any case, we will make errors on at least half the mag3fbf

Empirical Example

Let us consider a simple simulation experiment that wilphes illustrates this phenomenon. Con-
sider a simple synthetic example, where we usgd= 300 andng = 4700, with an orthogonal
rank-2 matrixX* andY = X* + A/(0, 1) (in case of repeated entries, the noise is independent for
each appearance in the sample). The training sample sizelsaset td.5|=140,000.

The three curves of Fifll 1 measure the excess (test) [ekfor X*H% =X - Y||%— |y — X*||%
of the learned model, as well as the error contribution frdrand from B, as a function of the
constraint ortc(X ), for the sampling distribution discussed above and a spesafinple size. As
can be seen, although it is possible to consti&if ) so as to achieve squared-error of less than
on B, this constraint is too lax foA and allows for over-fitting. Constrainirtg(.X ) so as to avoid
overfitting A (achieving almost zero excess test error), leads to a simbadit on B.

'Recall thatf (n) = &(g(n)) iff for all p, Lrlos=atr) —, g,
2The algorithm saw all (or most) entries of the matrix and dustsneed to predict any unobserved entries.
More accurately, if we do allow high enough trace-norm td3fitand|S| = o(n*/?), then the “cost” of

overfittingYsn 4 is negligible compared to the cost of fittidgy; . For large enough, we would be tempted to
very slightly deteriorate the fit aK; in order to “free up” enough trace-norm and completely ové&fdi, 4.
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Figure 1: Left: Mean squared error (MSE) of the learned model as a functidgheoconstraint ortc(X)
(left), tc,q(X) (middle). Right: The solid curves show the optimum of the mean squared ehjectve
@ (unweighted trace-norm), as a function of the reguédian parameteA. The dashed curves display a
weighted trace-norm. The black (middle) curve is the oV@&E error, the red (bottom) curve measures only
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Penalty Formulation

Until now we discussed learning by constraining the tragemi.e. using the formulatiofl(2). It is
also insightful to consider the penalty vield (1), i.e. leagiby minimizing

n}%nHyS—XsHiHIIXHU- ®

First observe that the characterizati@h (3) allows us todgose|| X ||, = | Xaly + [ XBly
where w.l.0.g. we take all columns éf andV outsideA and B to be zero. Since we also have
[Ys — Xsl|2 = |[Yans — Xans|lZ + |Yans — X5nsl|Z, we can decompose the training objective
@) as:

2 2 2
1Ys — Xsllg + M Xy = ([Yans — Xanslle + M Xally) + (IYBns — Xensll + A XB|ly)
= (||YAnS - XAHSH?: + Ang tCA(XA)) + (HYBnS - XBmS|||2: + Anpy/ tCB(XB)) ., 9

wheretcs (X4) = ||XA||t2r/n?4 (and similarlytcs (X)) refers to the complexity measute-)
measured relative to the size df (similarly B). We see that the training objective decomposes
to objectives overd and B. Each one of these corresponds to a trace-norm regulaezedihg
problem, under a uniform sampling distribution (in the esponding submatrix) of a noisy low-rank
“orthogonal” matrix, and can therefor be learned wiX(kn 4) andO(kn ) samples respectively.
In other words(kn) samples should be enough to learn both insidend insideB.

However, the regularization tradeoff paramet@ompounds the two problems. When the objective
is expressed in terms od(-), as in [®), the regularization tradeoff is scaled diffeleit each part

of the training objective. WithO(kn) samples, it is possible to learn itiwith some setting of,
and it is possible to learn iB with some other setting of, but from the discussion above we learn
that no single value of will allow learning in bothA and B. Either\ is too high yielding too strict
regularization inB, so learning om3 is not possible, perhaps since it is scaledilpy > n 4. Or A

is too small and does not provide enough regularizatiaf.in

Returning to our simulation experiment, the solid curvesigf [, right panel, show the excess
test error for the minimizer of the training objecti¥é (93, afunction of the regularization tradeoff
parameter\. Note that these are essentially the same curves as didpiayeg. [, except the
path of regularized solutions is now parameterized\brather than by the bound dn(X). Not
surprisingly, we see the same phenomena: different valugsiee required for optimal learning on
A and onB. Forcing the sama on both parts of the training objectiVd (9) yields a detexiion in
the generalization performance.

4 Weighted Trace Norm

The decompositio]9) and the discussion in the previousosesuggests weighting the trace-norm
by the frequency of rows and columns. For a sampling digiobuD, denote byp(i) the row
marginal, i.e. the probability of observing rawand similarly denote by(j) the column marginal.
We propose using the following weighted version of the tracem as a regularizer:

15Xy = Idiagy7) Xding /@)l = min 2 (S p) U+ 3" a). Vi) (10)
i J
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where diag,/p) is a diagonal matrix with,/p(i) on its diagonal (similarly diag/q)). The corre-
sponding normalized complexity measure is giveridyy(X ) = ||X||tr . Note that for a uniform

distribution we have thdt,,(X) = tc(X). Furthermore, it |s easy to venfy that for an “orthogonal”
rank+ matrix X we havetc,,(X) = k for any sampling distribution.

Equipped with the weighted trace-norm as a regularizerusetevisit the problematic sampling
distribution studied in the previous Section. In order taHe “orthogonal” rank-kX *, we need a

weighted trace-norm ofX ™|, ;) = V/1Cpg(X = k. How large a samplé N A can we now

shatter using such a weighted trace-norm? We can shatten@les#f || Ysnall, < vVk. We can
calculate:

Ysalle(p,gy = Ysnally /(2na) < VIS Alna/(2na) = /|S[/(8na). (11)

That is, we can shatter a sample of size ufplio= 8kn 4 < 8kn. The calculation fo3 is identical.
It seems that now, with a fixed constraint on the weightecetraarm, we have enough capacity to
both fit X*, and withO(kn) samples, avoid overfitting oA.

Returning to the penalization viefd (2) we can again decomjpius training objective as:

Vs = XslI2 + M Xl = 12)

(HYAmS — Xans|2 + 2\/2v/tca(Xa ) (HYBmS — XpnsllZ +M/2/tcs (X5 )

avoiding the scaling by the block sizes which we encounter¢d).

Returning to the synthetic experiments of Hify. 1 (right parend comparing{9) witH{12), we see
that introducing the weighting corresponds to a relativencie ofn 4 /np in the correspondence of
the regularization tradeoff parameters usedAcand for B. This corresponds to a shift dfg =2

in the log-domain used in the figure. Shifting the solid redt{®m) curve by this amount ylelds
the dashed red (bottom) curve. The solid blue (top) curvethediashed red (bottom) curve thus
represent the excess error Bhand onA when the weighted trace norm is used, i.e. the training
objective [IP) is minimized. The dashed black (middle) etisithe overall excess error when using
this training objective. As can be seen, the weighting alithe excess errors ohand onB much
better, and yields a lower overall error. The weighted tnagem achieves the lowest MSE of 0.4301
with correspondingh = 0.11. This is compared to the lowest MSE of 0.4981 with= 0.80,
achieved by the unweighted trace-norm.

Itis also interesting to observe that the weighted tracearmutperforms its unweighted counterpart
for a wide range of regularization parametarg [0.01;0.6]. This may also suggest that in prac-

tice, particularly when working with large and imbalancedasets, it may be easier to search for
regularization parameters using weighted trace-norm.

Finally, Fig. O, right panel, also suggests that the optistaft might actually be smaller than
na/npg. We can consider a smaller shift by using the partially-\&gg trace-norm:

_ H a/2 : a/2 _ (y (y
X 0 = | liaglp/2) X liaglg )tr—XmUH;VQZP 017+ 3 a6y V1)

and the corresponding normalized complexity meagffeX ) = ||X||tr(pa/n1,a go fmi—a)-

Other Weightings and Bayesian Per spective

The weighted trace-norm motivated by the analysis herda@wit 1) implies that the frequent users
(equivalently movies) get regularized much stronger tiharare users (equivalently movies). This
might at first seem quite counter-intuitive as the naturabhéng might seem to be the opposite.
Indeed, Weimeet al. [21] speculated that with a uniform weighting (= 0) frequent users are
regularized too heavily compared to infrequent users, argliggested regularizing frequent users
(and movies) with a lower weight, correspondingite= —1. Although this might seem natural, we
saw here that the reverse is actually true — the Weknak. weighting (v = —1) would only make
things worse. Indeed, given the analysis here, Weieh@f. actually observed a deterioration in
prediction quality when using their weighting. This is atlemonstrated in the experiments on the
Netflix data in Sectiof6.



The weighted regularization motivated here (with= 1) is also quite unusual from Bayesian per-
spective. The trace-norm can be viewed as a negative-logfpr the Probabilistic Matrix Factor-
ization modell[15], where entries &f, V are taken to be i.i.d. Gaussian. The two termgbf (8) can
then be interpreted as a log-likelihood and log-prior, andimizing (@) corresponds to finding the
MAP parameters. Introducing weighting (with= 1) effectively states that the effect of the prior
becomestronger as we observe more data. Yet, our analysis strongly sudugsit non-uniform
setting, such “unorthodox” regularization is crucial feh&ving good generalization performance.

5 Practical Implementation

When dealing with large datasets, such as the Netflix dadanibst practical way to fit trace-norm
regularized models is through stochastic gradient deqi&nf@]. Letn, = >, 5;; andm; =

>, Si; denote the number of observed ratings for usand moviej respectively. The training
objective using a partially-weighted trace-ndroh 10 can bigen as:

> (-0 e 5 (ML o+ L2 e ) ),

= n; m
{i.jres

whereU € RF*™ andV € R*¥*™, We can optimize this objective using stochastic gradiestdnt
by picking one training paifi, j) at random at each iteration, and taking a step in the dinectio
opposite the gradient of the term corresponding to the ch@se).

Note that even though the objecti¥€](13) as a functiotf @ndV is non-convex, there are no non-
global local minima if we sek to be large enough, i.é. > min(n,m) [d]. However, in practice
using very large values df becomes computationally expensive. Instead, we congidecdted
trace-norm minimization by restricting to smaller values. In the next section we demonstrate
that even when using truncated trace-norm, its weightediaersignificantly improves model's
prediction performance.

In our experiments, we also replace unknown gef@) and columny(j) marginals in[IB) by their
empirical estimate$(i) = ni/|s| andg(j) = ™/|s|. This results in the following objective:

> (- uTv) 4 g (e 0 g ) ) (13
{i,j}es

Settinga = 1, corresponding to the weighted trace-nofnd (10), resulésdohastic gradient updates
that do not involve the row and column counts at all and ar@imessense the simplest. Strangely,
and likely originating as a “bug” in calculating the stoctiagradients by one of the participants,
these steps match the stochastic training used by manytimaets on the Netflix dataset, without
explicitly considering the weighted trace-northl[8, f.9,.15]

6 Experimental results

We tested the weighted trace-norm on the Netflix datasetwikithe largest publicly available col-
laborative filtering dataset. The training set contains, 480,507 ratings from 480,189 anonymous
users on 17,770 movie titles. Netflix also provides qualificaset, containing 1,408,395 ratings,
out of which we set aside 100,000 ratings for validation. Thelification set” pairs were selected
by Netflix from the most recent ratings for a subset of thesideue to the special selection scheme,
ratings from users with few ratings are overrepresenteddaémialification set, relative to the train-
ing set. To be able to report results where the train and &@spbng distributions are the same, we
also created a “test set” by randomly selecting and remol@tj000 ratings from the training set.
All ratings were normalized to be zero-mean by subtractitg Bhe dataset is very imbalanced: it
includes users with over 10,000 ratings as well as users atied fewer than 5 movies.

For various values af, we learned a factorizatidii ' V with & = 30 and withk = 100 dimensions
(factors) using stochastic gradient descent ag1h (13).eBoh value ofx andk we selected the
regularization tradeoft by minimizing the error on the 100,000 qualification set eplas set aside
for validation. Results on both the Netflix qualification aatl on the test set we created are reported
in Table[1. Recall that the sampling distribution of the ttest” matches that of the training data,
while the qualification set is sampled differently, expiamthe large difference in generalization
between the two.



Table 1: Root Mean Squared Error (RMSE) on the Netflix qualificationasel on a test set that was held out
from the training data, for training by minimizing{[13). Weport)/|.S| minimizing the error on the validation
set (held out from the qualification set), qualification agstterrors using this tradeoff, ancf(X) at the
optimum. Last row: training by regularizing the max-norm.

& k M]S| tc*(X) Test Qual | k M/[S] tc*(X) Test Qual

1 30 0.05 434  0.7607 0.9105100 0.08 547  0.7412 0.9071
0.9 30 0.07 4.27 0.7573  0.9091 100 0.1 5.23 0.7389 0.9062
075 |30 0.2 504 0.7723 0.9128100 0.3 6.24  0.7491 0.9098
0.5 30 0.5 7.32 0.7823 0.9159 100 0.8 9.65 0.7613 0.9127

0 30 25 10.36  0.7889 0.9235100 3.0 21.23  0.7667 0.9203

-1 30 450 11.41  0.7913 0.9256100 700 23.31 0.7713 0.9221

X7 30 mc(X) =506 0.7692 009131 100 mc(X)=5.77 0.7432 0.9092

max

For bothk = 30 andk = 100, the weighted trace-norna(= 1) significantly outperformed the
unweighted trace-norma(= 0). Interestingly, the optimal weighting (setting @f was a bit lower
then, but very close tav = 1. For completeness, we also evaluated the weighting suemést
Weimeret al. [21], corresponding tav = —1. Unsurprising, given our analysis, this seemingly
intuitive weighting hurts predictive performance.

For bothk = 30 andk = 100, we also observed that for the weighted trace-natm=( 1) good
generalization is possible with a wide rangeokettings, while for the unweighted trace-norm
(a = 0), the results were much more sensitive to the setting dfhis confirms our previous results
on the synthetic experiment and strongly suggests thatjitoedar easier to search for regularization
parameters using the weighted trace-norm.

Comparison with the Max-Norm

We also compared the predictive performance on Netflix tdipt®ns based on max-norm regular-
ization. The max-norm is defined as:

1
X e = i 5 (mawx [T + maue | V). (14)
Similarly to the rank, but unlike the trace-norm, geneulian and learning guarantees based on the
max-norm hold also under an arbitrary, non-uniform, sangptistribution. Specifically, defining
me(X) = ||X||r2nax (no normalization is necessary her@\mc(X )(n +m)) samples are enough for
generalization w.r.t. any sampling distribution (justlithe rank)I[118]. This suggests that perhaps the
max-norm can be used as an alternative factorization-aegation in the presence of non-uniform
sampling. Indeed, as evident in Table 1, max-norm basedaegation does perform much better
then the unweighted trace-norm. The differences betweemdx-norm and the weighted trace-
norm are small, but it seems that using the weighted tracerislightly but consistently better.

7 Summary

In this paper we showed both analytically and empiricalbttinder non-uniform sampling, trace-
norm regularization can lead to significant performanceri@tation and an increase in sample
complexity. Our analytic analysis suggests a non-inteitixeighting for the trace-norm in order to
correct the problem. Our results on both synthetic and ohitjtdy imbalanced Netflix datasets fur-
ther demonstrate that the weighted trace-norm yieldsfsgnit improvements in prediction quality.

In terms of optimization, we focused on stochastic gradiescent,both since it is a simple and
practical method for very large-scale trace-norm optitize]15,[8], and since the weighting was
originally stumbled upon through this opt|m|zat|on a a However, most recently proposed
methods for trace-norm optimization (e.g. [3] Ib[9, E%m’mz]n also be easily modified for the
weighted trace-norm.

We hope that the weighted trace-norm, and the discussio8edtiond3 anfll4, will be helpful
in deriving theoretical learning guarantees for arbitraop-uniform sampling distributions, both in
the form of generalization error bounds ag'id [18], and galigng the compressed-sensing inspired
work on recovery of noisy low-rank matrices aslih[[4, 13].
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