
Exploiting compositionality to explore a large space of model structures

Roger B. Grosse
Comp. Sci. & AI Lab

MIT
Cambridge, MA 02139

Ruslan Salakhutdinov
Dept. of Statistics

University of Toronto
Toronto, Ontario, Canada

William T. Freeman
Comp. Sci. & AI Lab

MIT
Cambridge, MA 02139

Joshua B. Tenenbaum
Brain and Cognitive Sciences

MIT
Cambridge, MA 02193

Abstract

The recent proliferation of richly structured prob-
abilistic models raises the question of how to au-
tomatically determine an appropriate model for a
dataset. We investigate this question for a space
of matrix decomposition models which can ex-
press a variety of widely used models from unsu-
pervised learning. To enable model selection, we
organize these models into a context-free gram-
mar which generates a wide variety of structures
through the compositional application of a few
simple rules. We use our grammar to generically
and efficiently infer latent components and esti-
mate predictive likelihood for nearly 2500 struc-
tures using a small toolbox of reusable algo-
rithms. Using a greedy search over our gram-
mar, we automatically choose the decomposi-
tion structure from raw data by evaluating only
a small fraction of all models. The proposed
method typically finds the correct structure for
synthetic data and backs off gracefully to sim-
pler models under heavy noise. It learns sen-
sible structures for datasets as diverse as image
patches, motion capture, 20 Questions, and U.S.
Senate votes, all using exactly the same code.

1 Introduction

There has been much interest recently in learning hier-
archical models, which extend simpler models by intro-
ducing additional dependencies between the parameters.
While there have been many advances in modeling par-
ticular kinds of structure, as the desired structure becomes
higher level and more abstract, the correct model becomes
less obvious a priori. We aim to determine an appropri-
ate model structure automatically from the data, in order to
make hierarchical modeling usable by non-experts and to
explore a wider variety of structures than would be possi-
ble by manual engineering.

There has been much work on structure learning in partic-
ular model classes, such as undirected (Lee et al., 2006)
and directed (Teyssier and Koller, 2005) graphical models.
Most such work focuses on determining the particular fac-
torization and/or conditional independence structure within
a fixed model class. Our concern, however, is with identify-
ing the overall form of the model. For instance, suppose we
are interested in modeling the voting patterns of U.S. Sen-
ators. We can imagine several plausible modeling assump-
tions for this domain: e.g., that political views can be sum-
marized by a small number of dimensions, that Senators
cluster into voting blocks, or that votes can be described in
terms of binary attributes. Choosing the correct assump-
tions is crucial for uncovering meaningful structure. Right
now, the choice of modeling assumptions is heavily depen-
dent on the intuition of the human researcher; we are in-
terested in determining appropriate modeling assumptions
automatically.

Many common modeling assumptions, or combinations
thereof, can be expressed by a class of probabilistic mod-
els called matrix decompositions. In a matrix decomposi-
tion model, component matrices are first sampled indepen-
dently from a small set of priors, and then combined using
simple algebraic operations. This expressive model class
can represent a variety of widely used models, including
clustering, co-clustering (Kemp et al., 2006), binary latent
factors (Griffiths and Ghahramani, 2005), and sparse cod-
ing (Olshausen and Field, 1996). Nevertheless, the space
of models is compositional: each model is described re-
cursively in terms of simpler matrix decomposition mod-
els and the operations used to combine them. We propose
to exploit this compositional structure to efficiently and
generically evaluate and perform inference in matrix de-
composition models, and to automatically search through
the space of structures to find one appropriate for a dataset.

A common heuristic researchers use for designing hierar-
chical models is to fit an existing model, look for additional
dependencies in the learned representation, and extend the
model to capture those dependencies. We formalize this
process in terms of a context-free grammar. In particular,

we present a notation for describing matrix decomposition
models as algebraic expressions, and organize the space of
models into a context-free grammar which generates such
expressions. The starting symbol corresponds to a struc-
tureless model where the entries of the input matrix are
modeled as i.i.d. Gaussians. Each production rule corre-
sponds to a simple unsupervised learning model, such as
clustering or dimensionality reduction. These production
rules lie at the heart of our approach: we fit and evaluate a
wide variety of models using a small toolbox of algorithms
corresponding to the production rules, and the production
rules guide our search through the space of structures.

The main contributions of this paper are threefold. First, we
present a unifying framework for matrix decompositions
based on a context-free grammar which generates a wide
variety of structures through the compositional application
of a few simple production rules. Second, we exploit our
grammar to infer the latent components and estimate pre-
dictive likelihood in all of these structures generically and
efficiently using a small toolbox of reusable algorithms cor-
responding to different component matrix priors and pro-
duction rules. Finally, by performing greedy search over
our grammar using predictive likelihood as the criterion,
we can (in practice) typically choose the correct structure
from the data while evaluating only a small fraction of all
possible structures.

Section 3 defines our matrix decomposition formalism, and
Sections 4 and 5 present our generic algorithms for infer-
ring component matrices and evaluating individual struc-
tures, respectively. Section 6 describes how we search our
space of structures. Finally, in Section 7, we evaluate the
structure learning procedure on synthetic data and on real-
world datasets as diverse as image patches, motion capture,
20 Questions, and Senate voting records, all using exactly
the same code. Our procedure learns correct and/or plausi-
ble model structures for a wide variety of synthetic and real
datasets, and gracefully falls back to simpler structures in
high-noise conditions.

2 Related work

There is a long history of attempts to infer model struc-
tures automatically. The field of algorithmic information
theory (Li and Vitanyi, 1997) studies how to represent
data in terms of a short program/input pair which could
have generated it. One prominent example, Solomonoff in-
duction, can learn any computable generative model, but
is itself uncomputable. Minimum message length (Wal-
lace, 2005), minimum description length (Barron et al.,
1998), and Bayesian model comparison (MacKay, 1992)
are frameworks which can, in principle, be used to compare
very different generative models. In practice, they have pri-
marily been used for controlling complexity within a given
model class. By contrast, our aim is to choose from a very

large space of model classes by exploiting shared structure
between the models.

Other work has focused on searching within more restricted
spaces of models, such as undirected (Lee et al., 2006) and
directed (Teyssier and Koller, 2005) graphical models, and
graph embeddings (Kemp and Tenenbaum, 2008). Kemp
and Tenenbaum (2008) model human “domain structure”
learning as selecting between a fixed set of graph struc-
tures. Similarly to this paper, their structures are gener-
ated from a few simple rules; however, whereas their set
of structures is small enough to exhaustively evaluate each
one, we search over a much larger set of structures in a way
that explicitly exploits the recursive nature of the space.
Furthermore, our space of matrix decomposition structures
is especially broad, including many bread-and-butter mod-
els from unsupervised learning, as well as the building
blocks of many hierarchical Bayesian models.

We note that several other researchers have proposed uni-
fying frameworks for unsupervised learning which over-
lap substantially with our own. Roweis and Ghahramani
(1999)’s “generative model for generative models” presents
a lattice showing relationships between different models.
Srebro (2004) and Singh and Gordon (2008) each inter-
preted a variety of unsupervised learning algorithms as fac-
torizing an input matrix into a product of two factors. Ex-
ponential family PCA (Collins et al., 2002; Mohamed et al.,
2008) generalizes low-rank factorizations to other observa-
tion models in the exponential family. Our work differs
from these in that our matrix decomposition formalism is
specifically designed to support efficient generic inference
and structure learning. We defer discussion of particular
matrix decomposition models to Section 3.1, after we have
introduced our formalism.

Our work has several parallels in the field of equation dis-
covery. Langley et al. (1984) built a knowledge discovery
system called BACON which reproduced classical scien-
tific discoveries. BACON followed a greedy search proce-
dure similar to our own: it repeatedly fit statistical mod-
els and looked for additional structure in the learned pa-
rameters. Our work is similar in spirit, but uses matrices
rather than scalars as the building blocks, allowing us to
capture rich structure in high-dimensional spaces. Todor-
ovski and Dzeroski (1997) used a context-free grammar to
define spaces of candidate equations. Our approach differs
in that we explicitly use the grammar to structure posterior
inference and search over model structures.

3 A grammar for matrix decompositions

We first present a notation for describing matrix decompo-
sition models as algebraic expressions, such as MG + G.
Each letter corresponds to a particular distribution over ma-
trices. When the dimensions of all the component matrices
are specified, the algebraic expression defines a generative

model: first sample all of the component matrices indepen-
dently from their corresponding priors, and then evaluate
the expression. The component priors are as follows:

1. Gaussian (G). Entries are independent Gaussians:

uij ∼ Gaussian(0, λ−1
i

λ−1
j

).

This is our most generic component prior, and gives a
way of deferring or ignoring structure.1

2. Multinomial (M). Rows are independent multinomi-
als, with one 1 and the rest 0’s:

π ∼ Dirichlet(α) ui ∼ Multinomial(π).

This is useful for clustering models, where ui deter-
mines the cluster assignment for the ith row.

3. Bernoulli (B). Entries are independent Bernoullis:

πj ∼ Beta(a, b) uij ∼ Bernoulli(πj).

This is useful for binary latent feature models.

4. Integration matrix (C). Entries below the diagonal
are deterministically 1:

uij = 1i≥j .

This is useful for modeling temporal structure, as mul-
tiplying by this matrix has the effect of cumulatively
summing the rows. (Mnemonic: C for “cumulative.”)

We allow expressions consisting of addition, matrix multi-
plication, matrix transpose, elementwise multiplication (◦),
and elementwise exponentiation (exp). Some of the dimen-
sions of the component matrices are determined by the size
of the input matrix; the rest (the latent dimensions) are de-
termined automatically using the techniques of Section 4.

We observe that this notation for matrix decompositions
is recursive: each sub-expression (such as GMT + G
in the above example) is itself a matrix decomposition
model. Furthermore, the semantics is compositional: the
value of each expression depends only on the values of
its sub-expressions and the operations used to combine
them. These observations motivate our decision to define a
space of models using a context-free grammar, a formalism
which is widely used for representing recursive and com-
positional structures such as languages.

1The precision parameters λi and λj are drawn from the dis-
tribution Gamma(a, b). If i indexes a data dimension (i.e. rows
correspond to rows of the input matrix), the λis are tied. This al-
lows the variance parameters to generalize to additional rows. If
i indexes a latent dimension, the λis are all independent draws.
This allows the variances of latent dimensions to be estimated.
The same holds for the λjs.

+! " !#

" + !" + !!

G → GMT +G

!

G → MG+G

Figure 1: A synthetic example showing how an input matrix with
block structure can be co-clustered by fitting the matrix decom-
position structure M(GMT + G) + G. Rows and columns are
sorted for visualization purposes.

The starting symbol in our grammar is G, a structureless
model where the entries are assumed to be independent
Gaussians. Other models (expressions) are generated by
repeatedly applying one of the following production rules:

low-rank approximation G → GG+G (1)
clustering G → MG+G | GMT +G (2)

M → MG+G (3)
linear dynamics G → CG+G | GCT +G (4)

sparsity G → exp(G) ◦G (5)
binary factors G → BG+G | GBT +G (6)

B → BG+G (7)
M → B (8)

For instance, any occurrence of G in a model may be re-
placed by GG + G or MG + G. Repeated application of
these production rules allows us to build hierarchical mod-
els by capturing additional dependencies between variables
which were previously modeled as independent.

3.1 Examples

We now turn to several examples in which our simple com-
ponents and production rules give rise to a rich variety
of models from unsupervised learning. While the model
space is symmetric with respect to rows and columns, for
purposes of exposition, we will adopt the convention that
the rows of the input matrix correspond to data points and
columns corresponds to observed attributes.

We always begin with the model G, which assumes the en-
tries of the matrix are i.i.d. Gaussian. Applying produc-
tions in our grammar allows us to capture additional struc-
ture. For instance, starting with Rule 2(a) gives the model
MG + G, which clusters the rows (data points). In more
detail, the M represents the cluster assignments, the first G
represents the cluster centers, and the second G represents
within-cluster variation. These three matrices are sampled
independently, the assignment matrix is multiplied by the
center matrix, and the within-cluster variation is added to
the result. By applying Rule 2(b), the clustering model can
be extended to co-clustering (Kemp et al., 2006), where the
columns (attributes) form clusters as well. In our frame-
work, this can be represented as M(GMT + G) + G. We

need not stop here: for instance, there may be coherent co-
variation even within individual clusters. One can capture
this variation by applying Rule 3 to get the Bayesian Clus-
tered Tensor Factorization (BCTF) (Sutskever et al., 2009)
model (MG+G)(GMT +G)+G. This process is shown
in cartoon form in Figure 1.

For an example from vision, consider a matrix X , where
each row is a small (e.g. 12 × 12) patch sampled from
an image and vectorized. Image patches can be viewed as
lying near a low-dimensional subspace spanned by the low-
est frequency Fourier coefficients (Bossomaier and Sny-
der, 1986). This can be captured by the low-rank model
GG+G. In a landmark paper, Olshausen and Field (1996)
found that image patches are better modeled as a linear
combination of a small number of components drawn from
a larger dictionary. In other words, X is approximated as
the product WA, where each row of A is a basis function,
and W is a sparse matrix giving the linear reconstruction
coefficients for each patch. By fitting this “sparse coding”
model, they obtained a dictionary of oriented edges simi-
lar to the receptive fields of neurons in the primary visual
cortex. If we apply Rule (5), we obtain a Bayesian ver-
sion of sparse coding, (exp(G) ◦ G)G + G, similar to the
model proposed by Berkes et al. (2008). Intuitively, the
latent Gaussian coefficients are multiplied elementwise by
“scale” variables to give a heavy-tailed distribution. Many
researchers have designed models to capture the depen-
dencies between these scale variables, and such “Gaussian
scale mixture” models represent the state-of-the art for low-
level vision tasks such as denoising (Portilla et al., 2003)
and texture synthesis (Portilla and Simoncelli, 2000). One
such GSM model is that of Karklin and Lewicki (2008),
who fit a low-rank model to the scale variables. By apply-
ing Rule (1) to the sparse coding structure, we can represent
their model in our framework as (exp(GG+G)◦G)G+G.
This model has been successful at capturing higher-level
textural properties of a scene and has properties similar to
complex cells in the primary visual cortex.

Figure 2 gives several additional examples of matrix de-
composition models and highlights the relationships be-
tween them. We emphasize that our goal is not to repro-
duce existing models exactly, but to develop a formalism
powerful enough to express a wide variety of statistical as-
sumptions about the latent factors underlying the data.

We note that many of the above models are not typically
viewed as matrix decomposition structures. Describing
them as such results in a compact notation for defining
them and makes clearer the relationships between the dif-
ferent models. The above examples have in common that
complex models can be derived by incrementally adding
structure to a sequence of simpler models (in a way that
parallels the path researchers took to discover them). This
observation motivates our proposed procedures for infer-
ence and structure learning.

4 Posterior inference of component matrices

Searching over matrix decomposition structures requires a
generic and unified approach for posterior sampling of the
latent matrices. Unfortunately, for most of the structures
we consider, this posterior is complicated and multimodal,
and escaping from local modes requires carefully chosen
special-purpose sampling operators. Engineering such op-
erators for thousands of different models would be undesir-
able.

Fortunately, the compositional nature of our model space
allows us to focus the engineering effort on the relatively
small number of production rules. In particular, observe
that in a realization of the generative process, the value
of an expression depends only on the values of its sub-
expressions. This suggests the following initialization pro-
cedure: when applying a production rule P to a matrix S,
sample from the posterior for P ’s generative model condi-
tioned on it evaluating (exactly) to S. Many of our produc-
tion rules correspond to simple machine learning models
for which researchers have already expended much time
developing efficient inference algorithms:

1. Low rank. To apply the rule G → GG+G, we fit the
probabilistic matrix factorization (Salakhutdinov and
Mnih, 2008) model using block Gibbs sampling over
the two factors. While PMF assumes a fixed latent
dimension, we choose the dimension automatically by
placing a Poisson prior on the dimension and moving
between states of differing dimension using reversible
jump MCMC (Green, 1995).

2. Clustering. To apply the clustering rule to rows:
G → MG + G, or to columns: G → GMT + G,
we perform collapsed Gibbs sampling over the cluster
assignments in a Dirichlet process mixture model.

3. Binary factors. To apply the rule G → BG + G or
G → GBT + G, we perform accelerated collapsed
Gibbs sampling (Doshi-Velez and Ghahramani, 2009)
over the binary variables in a linear-Gaussian In-
dian Buffet Process (Griffiths and Ghahramani, 2005)
model, using split-merge proposals (Meeds et al.,
2006) to escape local modes.

4. Markov chains. The rule G → CG + G is equiv-
alent to estimating the state of a random walk given
noisy observations, which is done using Rauch-Tung-
Striebel (RTS) smoothing.

The remaining production rules begin with a random de-
composition of S. While some of these algorithms in-
volve fitting Bayesian nonparametric models, once the di-
mensionality is chosen, the model is converted to a finite
model of fixed dimensionality (as defined in section 3). The

no structure

clustering

co-­clustering

(e.g. Kemp et al., 2006) binary features

(Griffiths and

Ghahramani, 2005)

sparse coding

(e.g. Olshausen and Field, 1996)

low-­rank approximation

(Salakhutdinov and

Mnih, 2008)

Bayesian clustered tensor factorization

(Sutskever et al., 2009)

binary matrix factorization

(Meeds et al., 2006)

random walk

linear dynamical system

dependent gaussian scale mixture

(e.g. Karklin and Lewicki, 2005)

...
...

......

Figure 2: Examples of existing machine learning models which fall under our framework. Arrows represent models reachable using a
single production rule. Only a small fraction of the 2496 models reachable within 3 steps are shown, and not all possible arrows are
shown.

smart initialization step is followed by generic Gibbs sam-
pling over the entire model. We note that our initialization
procedure generalizes “tricks of the trade” whereby com-
plex models are initialized from simpler ones (Kemp et al.,
2006; Miller et al., 2009).

In addition to simplifying the engineering, this procedure
allows us to reuse computations between different struc-
tures. Most of the computation time is in the initialization
steps. Each of these steps only needs to be run once on the
full matrix, specifically when the first production rule is ap-
plied. Subsequent initialization steps are performed on the
component matrices, which are considerably smaller. This
allows a large number of high level structures to be fit for a
fraction of the cost of fitting them from scratch.

5 Scoring candidate structures

Performing model selection requires a criterion for scoring
individual structures which is informative yet tractable. To
motivate our method, we first discuss two popular choices:
marginal likelihood of the input matrix and entrywise mean
squared error (MSE). Marginal likelihood, the probability
of the data with all the latent variables integrated out, is
widely used in Bayesian model selection. Unfortunately,
this requires integrating out all of the latent component ma-
trices, whose posterior distribution is highly complex and
multimodal. While elegant solutions exist for particular
models, estimating the data marginal likelihood generically
is still extremely difficult. At the other extreme, one can
hold out a subset of the entries of the matrix and compute
the mean squared error for predicting these entries. MSE
is easier to implement, but we found that it was unable to
distinguish many of the the more complex structures in our
grammar.

As a compromise between these two approaches, we chose
to evaluate predictive likelihood of held-out rows and

columns. That is, for each row (or column) x of the matrix,
we evaluate p(x|XO), where XO denotes an “observed”
sub-matrix. Like marginal likelihood, this tests the model’s
ability to predict entire rows or columns. However, it can
be efficiently approximated in our class of models using
a small but carefully chosen toolbox corresponding to the
component matrix priors in our grammar. We discuss the
case of held-out rows; columns are handled analogously.

First, by expanding out the products in the expression, we
can write the decomposition uniquely in the form

X = U1V1 + · · ·+ UnVn + E, (1)

where E is an i.i.d. Gaussian “noise” matrix and the Ui’s
are any of the following: (1) a component matrix G, M ,
or B, (2) some number of Cs followed by G, (3) a Gaus-
sian scale mixture. The held-out row x can therefore be
represented as:

x = V T

1 u1 + · · ·+ V T

n un + e. (2)

The predictive likelihood is given by:

p(x|XO) =

�
p(UO, V |XO)p(u|UO)p(x|u, V) dUO du dV

(3)

where UO is shorthand for (UO1, . . . , UOn) and u is short-
hand for (u1, . . . , un).

In order to evaluate this integral, we generate samples from
the posterior p(UO, V |X) using the techniques described
in Section 4, and compute the sample average of

ppred(x) �
�

p(u|UO)p(x|u, V) du (4)

If the term Ui is a Markov chain, the predictive distribu-
tion p(ui|UO) can be computed using Rauch-Tung-Striebel
smoothing; in the other cases, u and UO are related only

through the hyperparameters of the component prior. Ei-
ther way, each term p(ui|UO) can be summarized as a
Gaussian, multinomial, Bernoulli, or Gaussian scale mix-
ture distribution.

It remains to marginalize out the latent representation u of
the held-out row. While this can be done exactly in some
simple models, it is intractable in general (for instance, if
u is Bernoulli or a Gaussian scale mixture). It is important
that the approximation to the integral be a lower bound, be-
cause otherwise an overly optimistic model could be cho-
sen even when it is completely inappropriate.

Our approach is a hybrid of variational and sampling tech-
niques. We first lower bound the integral (4) in an approx-
imate model p̃ where the Gaussian scale mixture compo-
nents are approximated as Gaussians. This is done using
using the variational Bayes bound

log p̃pred(x) ≥ Eq[log p̃pred(x, u)] +H(q).

The approximating distribution q(u) is such that all
of the discrete components are independent, while the
Gaussian components are marginalized out. The ratio
ppred(x)/p̃pred(x) is then estimated using annealed im-
portance sampling (AIS) (Neal, 2001). Because AIS is an
unbiased estimator which always takes positive values, by
Markov’s inequality we can regard it as a stochastic lower
bound. Therefore, this small toolbox of techniques allows
us to (stochastically) lower bound the predictive likelihood
across a wide variety of matrix decomposition models.

6 Search over structures

We aim to find a matrix decomposition structure which is a
good match to a dataset, as measured by the predictive like-
lihood criterion of Section 5. Since the space of models is
large and inference in many of the models is expensive, we
wish to avoid exhaustively evaluating every model. Instead,
we adopt a greedy search procedure inspired by the process
of scientific discovery. In particular, consider a common
heuristic researchers use to build probabilistic models: we
begin with a model which has already been applied to a
problem, look for additional dependencies not captured by
the model, and refine the model to account for those depen-
dencies.

In our approach, refining a model corresponds to apply-
ing one of the productions. This suggests the following
greedy search procedure, which iteratively “expands” the
best-scoring unexpanded models by applying all possible
production rules and scoring the resulting models. In par-
ticular we first expand the structureless model G. Then, in
each step, we expand the K best-performing models from
the previous step by applying all possible productions. We
then score all the resulting models. The procedure stops
when no model achieves sufficient improvement over the

best model from the previous step. We refer to the models
reached in i productions as the Level i models; for instance,
GG+G is a Level 1 model and (MG+G)G+G is a Level
2 model.

The effectiveness of this search procedure depends whether
the score of a simple structure is a strong indicator of the
best score which can be obtained from the structures de-
rived from it. In our experiments, the scores of the sim-
pler structures turned out to be a powerful heuristic: while
our experiments used K = 3, in most all cases, the cor-
rect (or best-scoring) structure would have been found with
a purely greedy search (K = 1). This results in enor-
mous savings because of the compositional nature of our
search space: while the number of possible structures (up
to a given level) grows quickly in the number of production
rules, the number of structures evaluated by this search pro-
cedure is merely linear.

The search procedure returns a high-scoring structure for
each level in our grammar. There remains a question of
when to stop. Choosing between structures of differing
complexity imposes a tradeoff between goodness of fit and
other factors such as interpretability and tractability of in-
ference, and inevitably the choice is somewhat subjective.
In practice, a user may wish to run our procedure up to
a fixed level and analyze the sequence of models chosen,
as well as the predictive likelihood improvement at each
level. However, for the purposes of evaluating our system,
we need it to return a single answer. In all of our experi-
ments, we adopt the following arbitrary but consistent cri-
terion: prefer the higher level structure if its predictive log-
likelihood score improves on the previous level by at least
one nat per row and column.2

7 Experiments

7.1 Synthetic data

We first validated our structure learning procedure on syn-
thetic data where the correct model was known. We gen-
erated matrices of size 200 × 200 from all of the models
in Figure 2, with 10 latent dimensions. The noise variance
σ2 was varied from 0.1 to 10, while the signal variance was
fixed at 1.3 The structures selected by our procedure are
shown in Table 1.

2More precisely, if Si−Si−1

N+D > 1, where Si is the total pre-
dictive log-likelihood for the level i model summed over all rows
and columns, and N and D are the numbers of rows and columns,
respectively. We chose to normalize by N+D because the predic-
tive likelihood improvements between more abstract models tend
to grow with the number of rows and columns in the input matrix,
rather than the number of entries.

3Our grammar generates expressions of the form · · ·+G. We
consider this final G term to be the “noise” and the rest to be the
“signal,” even though the models and algorithms do not distin-
guish the two.

— Increasing noise −→
σ
2 = 0.1 σ

2 = 1 σ
2 = 3 σ

2 = 10
low-rank GG + G GG + G GG + G 1G

clustering MG + G MG + G MG + G MG + G

binary latent features 1 (BG + G)G + G BG + G BG + G BG + G

co-clustering M(GM
T + G) + G M(GM

T + G) + G M(GM
T + G) + G 1GM

T + G

binary matrix factorization 1 (BG + G)(GB
T + G) + G (BG + G)BT + G 2GG + G 2GG + G

BCTF (MG + G)(GM
T + G) + G (MG + G)(GM

T + G) + G 2GM
T + G 3G

sparse coding (exp(G) ◦ G)G + G (exp(G) ◦ G)G + G (exp(G) ◦ G)G + G 2G

dependent GSM 1 (exp(G) ◦ G)G + G 1 (exp(G) ◦ G)G + G 1 (exp(G) ◦ G)G + G 3BG + G

random walk CG + G CG + G CG + G 1G

linear dynamical system (CG + G)G + G (CG + G)G + G (CG + G)G + G 2BG + G

Table 1: The structures learned from 200× 200 matrices generated from various distributions, with signal variance 1 and noise variance
σ2. Incorrect structures are marked with a 1, 2, or 3, depending how many decisions would need to be changed to find the correct
structure. We observe that our approach typically finds the correct answer in low noise settings and backs off to simpler models in high
noise settings.

We observe that seven of the ten structures were identi-
fied perfectly in both trials where the noise variance was
no larger than the data variance (σ2 ≤ 1). When σ2 = 0.1,
the system incorrectly chose (BG+G)G+G for the binary
latent feature data, rather than BG+G. Similarly, it chose
(BG+G)(GBT +G)+G rather than (BG+G)BT +G
for binary matrix factorization. In both cases, the sampler
learned an incorrect set of binary features, and the addi-
tional flexibility of the more complex model compensated
for this. This phenomenon, where more structured models
compensate for algorithmic failures in simpler models, has
also been noted in the context of deep learning (Salakhut-
dinov and Murray, 2008).

Our system also did not succeed in learning the dependent
Gaussian scale mixture structure (exp(GG+G)◦G)G+G
from synthetic data, instead generally falling back to the
simpler sparse coding model (exp(G) ◦ G)G + G. For
σ2 = 0.1 the correct structure was in fact the highest scor-
ing structure, but did not cross our threshold of 1 nat im-
provement over the previous level. We note that in every
case, there were nearly 2500 incorrect structures to choose
from, so it is notable that the correct model structure can be
recovered most of the time.

In general, when the noise variance was much larger than
the signal variance, the system gracefully fell back to sim-
pler models, such as GMT +G instead of the BCTF model
(MG+G)(GMT +G) +G (see Section 3.1). At the ex-
treme, in the maximum noise condition, it chose the struc-
tureless model G much of the time. Overall, our procedure
reliably learned most of the model structures in low-noise
settings (impressive considering the extremely large space
of possible wrong answers) and gracefully fell back to sim-
pler models when necessary.

7.2 Real-world data

Next, we evaluated our system on several real-world
datasets. We first consider two domains, motion capture
and image statistics, where the core statistical assumptions
are widely agreed upon, and verify that our learned struc-
tures are consistent with these assumptions. We then turn

to domains where the correct structure is more ambiguous
and analyze the representations our system learns.

In general, we do not expect every real-world dataset to
have a unique best structure. In cases where the predictive
likelihood score differences between multiple top-scoring
models were not statistically significant, we report the set
of top-scoring models and analyze what they have in com-
mon.

Motion capture. We first consider a human motion capture
dataset (Hsu et al., 2005; Taylor et al., 2007) consisting of
a person walking in a variety of styles. Each row of the
matrix gives the person’s orientation and displacement in
one frame, as well as various joint angles. We used 200
frames (6.7 seconds), and 45 state variables. In the first
step, the system chose the Markov chain model CG + G,
which assumes that the components of the state evolve con-
tinuously but independently over time. Since a person’s
different joint angles are clearly correlated, the system next
captured these correlations with the model C(GG+G)+G.
This is slightly different from the popular linear dynamical
system model (CG + G)G + G, but it is more physically
correct in the sense that the LDS assumes the deviations of
the observations from the low-dimensional subspace must
be independent in different time steps, while our learned
structure captures the temporal continuity in the deviations.

Natural image patches. We tested the system on the
Sparsenet dataset of Olshausen and Field (1996), which
consists of 10 images of natural scenes which were blurred
and whitened. The rows of the input matrix corresponded
to 1,000 patches of size 12×12. In the first stage, the model
learned the low-rank representation GG + G, and in the
second stage, it sparsified the linear reconstruction coeffi-
cients to give the sparse coding model (exp(G)◦G)G+G.
In the third round, it modeled the dependencies between
the scale variables by recursively giving them a low-rank
representation, giving a dependent Gaussian scale mixture
(GSM) model (exp(GG + G) ◦ G)G + G reminiscent
of Karklin and Lewicki (2008). A closely related model,
(exp(GBT + G) ◦ G)G + G, also achieved a score not
significantly lower. Both of these structures resulted in a

Level 1 Level 2 Level 3
Motion capture CG+G C(GG+G) +G —
Image patches GG+G (exp(G) ◦G)G+G (exp(GG+G) ◦G)G+G
20 Questions MG+G M(GG+G) +G —
Senate votes GMT +G (MG+G)MT +G —

Table 2: The best performing models at each level of our grammar for real-world datasets. These correspond to plausible structures for
the datasets, as discussed in the text.

rank-one factorization of the scale matrix, similar to the ra-
dial Gaussianization model of Lyu and Simoncelli (2009)
for neighboring wavelet coefficients.

Dependent GSM models (see Section 3.1) are the state-of-
the-art for a variety of image processing tasks, so it is in-
teresting that this structure can be learned merely from the
raw data. We note that a single pass through the gram-
mar reproduces an analogous sequence of models to those
discovered by the image statistics research community as
discussed in Section 3.1.

20 Questions. We now consider a dataset collected by
Pomerleau et al. (2009) of Mechanical Turk users’ re-
sponses to 218 questions from the 20 Questions game about
1000 concrete nouns (e.g. animals, foods, tools). The sys-
tem began by clustering the entities using the flat clustering
model MG + G. In the second stage, it found low-rank
structure in the matrix of cluster centers, resulting in the
model M(GG+G)+G. No third-level structure achieved
more than 1 nat improvement beyond this. The low-rank
representation had 8 dimensions, where the largest vari-
ance dimension corresponded to living vs. nonliving and
the second largest corresponded to large vs. small. The 39
clusters, the 20 largest of which are shown in Figure 3, cor-
respond to semantically meaningful categories.

We note that two other models expressing similar assump-
tions, M(GBT +G)+G and (MG+G)G+G, achieved
scores only slightly lower. What these models have in
common is a clustering of entities (but not questions) cou-
pled with low-rank structure between entities and ques-
tions. The learned clusters and dimensions are qualitatively
similar in each case.

Senate voting records. Finally, we consider a dataset of
roll call votes from the 111th United States Senate (2009-
2010). Rows correspond to Senators, and the columns cor-
respond to all 696 votes, most of which were on proce-
dural motions and amendments to bills. Yea votes were
mapped to 1, Nay and Present were mapped to -1, and ab-
sences were treated as unobserved. In the first two stages,
our procedure clustered the votes and Senators, giving the
clustering model GMT + G and the co-clustering model
(MG+G)MT +G, respectively. Senators clustered along
party lines, as did most of the votes, according to the party
of the proposer. The learned representations are all visual-
ized in Figure 4.

In the third stage, one of the best performing models was
Bayesian clustered tensor factorization (BCTF) (see sec-
tion 3.1), where Senators and votes are each clustered in-
side a low-rank representation.4 This low-rank represen-
tation was rank 5, with one dominant dimension corre-
sponding to the liberal-conservative axis. The BCTF model
makes it clearer that the clusters of Senators and votes are
not independent, but can be seen as occupying different
points in a low-dimensional representation. This model im-
proved on the previous level by less than our 1 nat cutoff.5
The models in this sequence increasingly highlight the po-
larization of the Senate.

8 Discussion

We have presented an effective and practical method for
automatically determining the model structure in a partic-
ular space of models, matrix decompositions, by exploit-
ing compositionality. However, we believe our approach
can be extended beyond the particular space of models
presented here. Most straightforwardly, additional compo-
nents can be added to capture other motifs of probabilistic
modeling, such as tree embeddings and low-dimensional
embeddings. More generally, it should be fruitful to in-
vestigate other model classes with compositional structure,
such as tensor decompositions.

In either case, exploiting the structure of the model space
becomes increasingly essential. For instance, the number
of models reachable in 3 steps is cubic in the number of
production rules, whereas the complexity of the greedy
search is linear. For tensors, the situation is even more over-
whelming: even if we restrict our attention to analogues of
GG+G, a wide variety of provably distinct generalizations
have been identified, including the widely used Tucker3
and PARAFAC decompositions (Kolda and Bader, 2007).

4The other models whose scores were not significantly differ-
ent were: (MG+G)MT+BG+G, (MG+G)MT+GMT+G,
G(GMT +G) +GMT +G, and (BG+G)(GMT +G) +G.
All of these models include the clustering structure but account
for additional variability within clusters.

5BCTF results in a more compact representation than the co-
clustering model, but our predictive likelihood criterion doesn’t
reward this except insofar as overfitting hurts a model’s ability to
generalize to new rows and columns. We speculate that a fully
Bayesian approach using marginal likelihood may lead to more
compact structures.

1. Miscellaneous. key, chain, powder, aspirin, umbrella, quarter, cord, sunglasses, toothbrush, brush
2. Clothing. coat, dress, pants, shirt, skirt, backpack, tshirt, quilt, carpet, pillow, clothing, slipper, uniform
3. Artificial foods. pizza, soup, meat, breakfast, stew, lunch, gum, bread, fries, coffee, meatballs, yoke
4. Machines. bell, telephone, watch, typewriter, lock, channel, tuba, phone, fan, ipod, flute, aquarium
5. Natural foods. carrot, celery, corn, lettuce, artichoke, pickle, walnut, mushroom, beet, acorn
6. Buildings. apartment, barn, church, house, chapel, store, library, camp, school, skyscraper
7. Printed things. card, notebook, ticket, note, napkin, money, journal, menu, letter, mail, bible
8. Body parts. arm, eye, foot, hand, leg, chin, shoulder, lip, teeth, toe, eyebrow, feet, hair, thigh
9. Containers. bottle, cup, glass, spoon, pipe, gallon, pan, straw, bin, clipboard, carton, fork
10. Outdoor places. trail, island, earth, yard, town, harbour, river, planet, pond, lawn, ocean
11. Tools. knife, chisel, hammer, pliers, saw, screwdriver, screw, dagger, spear, hoe, needle
12. Stuff. speck, gravel, soil, tear, bubble, slush, rust, fat, garbage, crumb, eyelash
13. Furniture. bed, chair, desk, dresser, table, sofa, seat, ladder, mattress, handrail, bench, locker
14. Liquids. wax, honey, pint, disinfectant, gas, drink, milk, water, cola, paste, lemonade, lotion
15. Structural features. bumper, cast, fence, billboard, guardrail, axle, deck, dumpster, windshield
16. Non-solid things. surf, fire, lightning, sky, steam, cloud, dance, wind, breeze, tornado, sunshine
17. Transportation. airplane, car, train, truck, jet, sedan, submarine, jeep, boat, tractor, rocket
18. Herbivores. cow, horse, lamb, camel, pig, hog, calf, elephant, cattle, giraffe, yak, goat
19. Internal organs. rib, lung, vein, stomach, heart, brain, smile, blood, lap, nerve, lips, wink
20. Carnivores. bear, walrus, shark, crocodile, dolphin, hippo, gorilla, hyena, rhinocerous

Figure 3: (left) The 20 largest clusters discovered by our Level 2 model M(GG + G) + G for the 20 Questions dataset. Each line
gives our interpretation, followed by random items from the cluster. (right) Visualizations of the Level 1 representation MG + G
and the Level 2 representation M(GG + G) + G. Rows = entities, columns = questions. 250 rows and 150 columns were selected at
random from the original matrix. Rows and columns are sorted first by cluster, then by the highest variance dimension of the low-rank
representation (if applicable). Clusters were sorted by the same dimension as well. Blue = cluster boundaries.

(a) Level 1: GMT + G (b) Level 2: (MG + G)MT + G (c) Level 3: (MG + G)(GMT + G) + G

Figure 4: Visualization of the representations learned from the Senate voting data. Rows = Senators, columns = votes. 200 columns were
selected at random from the original matrix. Black = yes, white = no, gray = absence. Blue = cluster boundaries. Rows and columns are
sorted first by cluster (if applicable), then by the highest variance dimension of the low-rank representation (if applicable). Clusters are
sorted by the same dimension as well. The models in the sequence increasingly reflect the polarization of the Senate.

What is the significance of the grammar being context-
free? While it imposes no restriction on the models them-
selves, it has the effect that the grammar “overgenerates”
model structures. Our grammar licenses some nonsensical
models: for instance, G(MG+G) +G, which attempts to
cluster dimensions of a latent space which is defined only
up to affine transformation. Reassuringly, we have never
observed such models being selected by our search proce-
dure — a useful sanity check on the output of the algorithm.
The only drawback is that the system wastes some time
evaluating meaningless models. Just as context-free gram-
mars for English can be augmented with attributes to en-
force contextual restrictions such as agreement, our gram-
mar could be similarly extended to rule out unidentifiable
models. Such extensions may become important if our ap-
proach is applied to a much larger space of models.

Our context-free grammar formalism unifies a wide vari-
ety of matrix decomposition models in terms of composi-
tional application of a few production rules. We exploited
this compositional structure to efficiently and generically

sample from and evaluate a wide variety of latent variable
models, both continuous and discrete, flat and hierarchi-
cal. Greedy search over our grammar allows us to select a
model structure from raw data by evaluating only a small
fraction of all models. This search procedure was effec-
tive at recovering the correct structure for synthetic data
and sensible structures for real-world data. More generally,
we believe this paper is a proof-of-concept for the practi-
cality of selecting complex model structures in a composi-
tional manner. Since many model spaces other than matrix
factorizations are compositional in nature, we hope to spur
additional research on automatically searching large, com-
positional spaces of models.

Acknowledgments

This work was partly funded by the ARO grant W911NF-08-1-
0242 and by an NDSEG fellowship to RBG.

References
A. Barron, J. Rissanen, and B. Yu. The minimum description

length principle in coding and modeling. Transactions on In-
formation Theory, 1998.

P. Berkes, R. Turner, and M. Sahani. On sparsity and overcom-
pleteness in image models. In Advances in Neural Information
Processing Systems, 2008.

T. Bossomaier and A. W. Snyder. Why spatial frequency process-
ing in the visual cortex? Vision Research, 26(8):1307–1309,
1986.

M. Collins, S. Dasgupta, and R. Schapire. A generalization of
principal component analysis to the exponential family. In
Neural Information Processing Systems, 2002.

Finale Doshi-Velez and Zoubin Ghahramani. Accelerated sam-
pling for the Indian buffet process. In Int’l. Conf. on Machine
Learning, 2009.

P. J. Green. Reversible jump Markov chain Monte Carlo compu-
tation and Bayesian model determination. Biometrika, 1995.

T. Griffiths and Z. Ghahramani. Infinite latent feature models and
the indian buffet process. Technical report, Gatsby Computa-
tional Neuroscience Unit, 2005.

E. Hsu, K. Pulli, and J. Popovic. Style translations for human
motion. In ACM Transactions on Graphics, 2005.

Y. Karklin and M. S. Lewicki. Emergence of complex cell prop-
erties by learning to generalize in natural scenes. Nature, 457:
83–86, January 2008.

Charles Kemp and Joshua B. Tenenbaum. The discovery of struc-
tural form. PNAS, 2008.

Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths,
Takeshi Yamada, and Naonori Ueda. Learning systems of con-
cepts with an infinite relational model. In AAAI, pages 381–
388, 2006.

T. G. Kolda and B. W. Bader. Tensor decompositions and appli-
cations. SIAM Review, 2007.

Pat Langley, Herbert A. Simon, and Gary L. Bradshaw. Heuris-
tics for empirical discovery. In Knowledge Based Learning
Systems. Springer-Verlag, London, UK, 1984.

S. Lee, V. Ganapathi, and D. Koller. Efficient structure learning
of Markov networks using L1-regularization. In NIPS, 2006.

M. Li and P. Vitanyi. An introduction to Kolmogorov complexity
and its applications. Springer, 1997.

S. Lyu and E. P. Simoncelli. Nonlinear extraction of indepen-
dent components of natural images using radial Gaussianiza-
tion. Neural Computation, 21(6):1485–1519, 2009.

DJC MacKay. Bayesian interpolation. Neural Computation,
1992.

E. Meeds, Z. Ghahramani, R. Neal, and S. T. Roweis. Modelling
dyadic data with binary latent factors. In NIPS, volume 20,
pages 1002–1009, 2006.

K. T. Miller, T. L. Griffiths, and M. I. Jordan. Nonparametric
latent feature models for link prediction. In Advances in Neural
Information Processing Systems, 2009.

S. Mohamed, K. Heller, and Z. Ghahramani. Bayesian exponen-
tial family PCA. In NIPS, 2008.

R. M. Neal. Annealed importance sampling. Statistics and Com-
puting, 11(2):125–139, April 2001.

B. A. Olshausen and D. J. Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural
images. Nature, 381:607–9, June 1996.

D. Pomerleau, G. E. Hinton, M. Palatucci, and T. M. Mitchell.
Zero-shot learning with semantic output codes. In NIPS, 2009.

J. Portilla and E. P. Simoncelli. A parametric texture model based
on joint statistics of complex wavelet coefficients. Interna-
tional Journal of Computer Vision, 40(1):49–71, 2000.

J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Im-
age denoising using scale mixtures of Gaussians in the wavelet
domain. IEEE Transactions on Signal Processing, 12(11):
1338–1351, 2003.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear
gaussian models. In Neural Computation, volume 11, pages
305–345, 1999.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix fac-
torization. In Advances in Neural Information Processing Sys-
tems, 2008.

Ruslan Salakhutdinov and Iain Murray. On the quantitative anal-
ysis of deep belief networks. In Int’l. Conf. on Machine Learn-
ing, 2008.

Ajit P. Singh and Geoffrey J. Gordon. A unified view of matrix
factorizations. In European Conference on Machine Learning,
2008.

N. Srebro. Learning with matrix factorizations. PhD thesis, MIT,
2004.

I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. Modelling
relational data using Bayesian clustered tensor factorization. In
NIPS, pages 1821–1828. 2009.

Graham W. Taylor, Geoffrey E. Hinton, and Sam Roweis. Mod-
eling human motion using binary latent variables. In NIPS,
2007.

M. Teyssier and D. Koller. Ordering-based search: a simple and
effective algorithm for learning Bayesian networks. In UAI,
2005.

Ljupco Todorovski and Saso Dzeroski. Declarative bias in equa-
tion discovery. In Int’l. Conf. on Machine Learning, 1997.

C.S. Wallace. Statistical and inductive inference by minimum
message length. Springer, 2005.

