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Abstract
We develop a hierarchical Bayesian model that learns categories from single training exam-
ples. The model transfers acquired knowledge from previously learned categories to a novel
category, in the form of a prior over category means and variances. The model discovers
how to group categories into meaningful super-categories that express different priors for
new classes. Given a single example of a novel category, we can efficiently infer which super-
category the novel category belongs to, and thereby estimate not only the new category’s
mean but also an appropriate similarity metric based on parameters inherited from the
super-category. On MNIST and MSR Cambridge image datasets the model learns useful
representations of novel categories based on just a single training example, and performs
significantly better than simpler hierarchical Bayesian approaches. It can also discover new
categories in a completely unsupervised fashion, given just one or a few examples.

1. Introduction
In typical applications of machine classification algorithms, learning curves are measured in
tens, hundreds or thousands of training examples. For human learners, however, the most
interesting regime occurs when the training data are very sparse. Just a single example
is often sufficient for people to grasp a new category and make meaningful generalizations
to novel instances, if not to classify perfectly (Pinker, 1999). Human categorization often
asymptotes after just three or four examples (Xu and Tenenbaum, 2007; Smith et al., 2002;
Kemp et al., 2006; Perfors and Tenenbaum, 2009). To illustrate, consider learning entirely
novel “alien” objects, as shown in Fig. 1, left panel. Given just three examples of a novel
“tufa” concept (boxed in red), almost all human learners select just the objects boxed
in gray (Schmidt, 2009). Clearly this requires very strong but also appropriately tuned
inductive biases. A hierarchical Bayesian model we describe here takes a step towards this
“one-shot learning” ability by learning abstract knowledge that support transfer of useful
inductive biases from previously learned concepts to novel ones.
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Figure 1: Left: Given only three examples (boxed in red) of a novel “tufa” object, which other
objects are tufas? Most human learners select just the objects boxed in gray, as shown
by Schmidt (2009). Right: Learning a similarity metric for a novel “wildebeest” class
based on one example. The goal is to identify that the new “wildebeest” belongs to the
“animal” super-category, which would allow to transfer an appropriate similarity metric
and thereby generalize informatively from a single example.

At a minimum, categorizing an object requires information about the category’s mean
and variance along each dimension in an appropriate feature space. This is a similarity-based
approach, where the mean represents the category prototype, and the inverse variances (or
precisions) correspond to the dimensional weights in a category-specific similarity metric.
One-shot learning may seem impossible because a single example provides information about
the mean or prototype of the category, but not about the variances or the similarity metric.
Giving equal weight to every dimension in a large a priori-defined feature space, or using
the wrong similarity metric, is likely to be disastrous.

Our model leverages higher-order knowledge abstracted from previously learned cate-
gories to estimate the new category’s prototype as well as an appropriate similarity metric
from just one example. These estimates are also improved as more examples are observed.
To illustrate, consider how human learners seeing one example of an unfamiliar animal, such
as a wildebeest (or gnu), can draw on experience with many examples of “horse”, “cows”,
“sheep”, and more familiar related categories. These similar categories have similar pro-
totypes – horses, cows, and sheep look more like each other than like furniture or vehicles
– but they also have similar variability in their feature-space representations, or similar
similarity metrics: The ways in which horses vary from the “horse” prototype are similar
to the ways in which sheep vary from the “sheep” prototype. We may group these similar
basic-level categories into an “animal” super-category, which captures these classes’ similar
prototypes as well as their similar modes of variation about their respective prototypes, as
show in Fig. 1, right panel. If we can identify the new example of “wildebeest” as belong-
ing to this “animal” super-category, we can transfer an appropriate similarity metric and
thereby generalize informatively even from a single example.

Learning similarity metric over the high-dimensional input spaces has become an im-
portant task in machine learning as well. A number of recent approaches (Weinberger and
Saul, 2009; Babenko et al., 2009; Singh-Miller and Collins, 2009; Goldberger et al., 2004;
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Salakhutdinov and Hinton, 2007; Chopra et al., 2005) have demonstrated that learning a
class-specific similarity metric can provide some insights into how high-dimensional data
is organized and it can significantly improve the performance of algorithms like K-nearest
neighbours that are based on computing distances. Most this work, however, focused on
learning similarity metrics when many labeled examples are available, and did not attempt
to address the one-shot learning problem.

Although inspired by human learning, our approach is intended to be broadly useful for
machine classification and AI tasks. To equip a robot with human-like object categorization
abilities, we must be able to learn tens of thousands of different categories, building on (and
not disrupting) representations of old ones (Bart and Ullman, 2005; Biederman, 1995). In
these settings, learning from one or a few labeled examples and performing efficient inference
will be crucial. Our method is designed to scale up in precisely these ways: a nonparametric
prior allows new categories to be formed at any time in either supervised or unsupervised
modes, and conjugate distributions allow most parameters to be integrated out analytically
for very fast inference.

2. Related Prior Work
Hierarchical Bayesian models have previously been proposed (Kemp et al. (2006); Heller
et al. (2009)) to describe how people learn to learn categories from one or a few examples, or
learn similarity metrics, but these approaches were not focused on machine learning settings
– large-scale problems with many categories and high-dimensional natural image data. A
large class of models based on hierarchical Dirichlet processes (Teh et al. (2006)) have also
been used for transfer learning (Sudderth et al. (2008); Canini and Griffiths (2009)). There
are two key difference: First, HDPs typically assume a fixed hierarchy of classes for sharing
parameters, while we learn the hierarchy in an unsupervised fashion. Second, HDPs are
typically given many examples for each category rather than the one-shot learning cases we
consider here. Recently introduced nested Dirichlet processes can also be used for transfer
learning (Rodriguez and Vuppala (2009); Rodriguez et al. (2008)). However, this work
assumes a fixed number of classes (or groups) and did not attempt to address one-shot
learning problem. A recent hierarchical model of Adams et al. (2011) could also be used
for transfer learning tasks. However, this model does not learn hierarchical priors over
covariances, which is crucial for transferring an appropriate similarity metric to new basic-
level categories in order to support learning from few examples. These recently introduced
models are complementary to our approach, and can be combined productively, although
we leave that as a subject for future work.

There are several related approaches in the computer vision community. A hierarchical
topic model for image features (Bart et al. (2008); Sivic et al. (2008)) can discover visual
taxonomies in an unsupervised fashion from large datasets but was not designed for one-
shot learning of new categories. Perhaps closest to our work, Fei-Fei et al. (2006) also gave
a hierarchical Bayesian model for visual categories with a prior on the parameters of new
categories that was induced from other categories. However, they learned a single prior
shared across all categories and the prior was learned only from three categories, chosen by
hand.

More generally, our goal contrasts with and complements that of computer vision efforts
on one-shot learning. We have attempted to minimize any tuning of our approach to
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Figure 2: Left: Hierarchical Bayesian model that assumes a fixed tree hierarchy for sharing pa-
rameters. Right: Generative process of the corresponding nonparametric model.

specifically visual applications. We seek a general-purpose hierarchical Bayesian model
that depends minimally on domain-specific representations but instead learns to perform
one-shot learning by finding more intelligent representations tuned to specific sub-domains
of a task (our “super-categories”).

3. Hierarchical Bayesian Model
Consider observing a set of N i.i.d input feature vectors {x1, ...,xN}, xn ∈ RD. In general,
features will be derived from high-dimensional, highly structured data, such as images of
natural scenes, in which case the feature dimensionality D can be quite large (e.g. 50,000).
For clarity of presentation, let us first assume that our model is presented with a fixed
two-level category hierarchy. In particular, suppose that N objects are partitioned into C
basic-level (or level-1) categories. We represent such partition by a vector zb of length N ,
each entry of which is zbn ∈ {1, ..., C}. We also assume that our C basic-level categories are
partitioned into K super-categories (level-2 categories), which we represent by zs of length
C, with zsc ∈ {1, ...,K}.

For any basic-level category c, the distribution over the observed feature vectors is
assumed to be Gaussian with a category-specific mean µc and a category-specific diagonal
precision matrix, whose entries are {τ cd}Dd=1. The distribution takes the following product
form:

P (xn|zbn = c, θ1) =
D�

d=1

N (xnd |µc
d, 1/τ

c
d), (1)

where N (x|µ, 1/τ) denotes a Gaussian distribution with mean µ and precision τ and
θ1 = {µc, τ c}Cc=1 denotes the level-1 category parameters. We next place a conjugate
Normal-Gamma prior over {µc, τ c}. Let k = zsc , i.e. let the level-1 category c belong
to level-2 category k, where θ2 = {µk, τk, αk}Kk=1 denote the level-2 parameters. Then:

P (µc, τ c|θ2, zs) =
�D

d=1 P (µc
d, τ

c
d |θ2, zs), where for each dimension d we have:

P (µc
d, τ

c
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Our parameterization of the Gamma density is in terms of its shape αk and mean τk

parameters:

Γ(τ |αk, αk/τk) =
(αk/τk)α

k

Γ(αk)
τα

k−1 exp

�
−τ

αk

τk

�
. (3)
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Such a parameterization is more interpretable, since E[τ ] = τk. In particular, from Eq. 2,
we can easily derive that E[µc] = µk and E[τ c] = τk. This gives our model a very intuitive
interpretation: the expected values of the basic level-1 parameters θ1 are given by the
corresponding level-2 parameters θ2. The parameter αk further controls the variability of
τ c around its mean, i.e. Var[τ c] = (τk)2/αk. For the level-2 parameters θ2, we shall assume
the following conjugate priors:

P (µk
d) = N (µk

d|0, 1/τ0), P (αk
d|α0) = Exp(αk

d|α0), P (τkd |θ0) = IG(τkd |a0, b0), (4)

where Exp(x|α) denotes an exponential distribution with rate parameter α, and IG(x|α, β)
denotes an inverse-gamma distribution with shape parameter α and scale parameter β.
We further place a diffuse Gamma prior Γ(1, 1) over the level-3 parameters θ3 = {α0, τ0}.
Throughout our experimental results, we also set a0 = 1 and b0 = 1.

3.1. Modelling the number of super-categories

So far we have assumed that our model is presented with a two-level partition z = {zs, zb}.
If, however, we are not given any level-1 or level-2 category labels, we need to infer the dis-
tribution over the possible category structures. We place a nonparametric two-level nested
Chinese Restaurant Prior (CRP) (Blei et al. (2003, 2010)) over z, which defines a prior over
tree structures and is flexible enough to learn arbitrary hierarchies. The main building block
of the nested CRP is the Chinese restaurant process, a distribution on partition of integers.
Imagine a process by which customers enter a restaurant with an unbounded number of
tables, where the nth customer occupies a table k drawn from:

P (zn = k|z1, ..., zn−1) =

�
nk

n−1+γ nk > 0
γ

n−1+γ k is new
, (5)

where nk is the number of previous customers at table k and γ is the concentration param-
eter.

The Nested CRP, nCRP(γ), extends CRP to nested sequence of partitions, one for each
level of the tree. In this case each observation n is first assigned to the super-category zsn
using Eq. 5. Its assignment to the basic-level category zbn, that is placed under a super-
category zsn, is again recursively drawn from Eq. 5 (for details see Blei et al. (2010)). For
our model, a two-level nested CRP allows flexibility of having a potentially unbounded
number of super-categories as well as an unbounded number of basic-level categories placed
under each super-category. Finally, we also place a Gamma prior Γ(1, 1) over γ. The full
generative model is given in Fig. 2, right panel. Unlike in many conventional hierarchical
Bayesian models, here we infer both the model parameters as well as the hierarchy for
sharing those parameters.

Our model can be readily used in unsupervised or semi-supervised modes, with varying
amounts of label information. Here we focus on two settings. First, we assume basic-
level category labels have been given for all examples in a training set, but no super-
category labels are available. We must infer how to cluster basic categories into super-
categories at the same time as we infer parameter values at all levels of the hierarchy.
The training set includes many examples of familiar basic categories but only one (or few)
example for a novel class. The challenge is to generalize the new class intelligently from this
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one example by inferring which super-category the new class comes from and exploiting
that super-category’s implied priors to estimate the new class’s prototype and similarity
metric most accurately. This training regime reflects natural language acquisition, where
spontaneous category labeling is frequent, almost all spontaneous labeling is at the basic
level (Rosch et al., 1976) yet children’s generalizations are sensitive to higher superordinate
structure (Mandler, 2004), and where new basic-level categories are typically learned with
high accuracy from just one or a few labeled examples. Second, we consider a similar labeled
training set but now the test set consists of many unlabeled examples from an unknown
number of basic-level classes – including both familiar and novel classes. This reflects the
problem of “unsupervised category learning” a child or robot faces in discovering when they
have encountered novel categories, and how to break up new instances into categories in
an intelligent way that exploits knowledge abstracted from a hierarchy of more familiar
categories.

4. Inference
Inferences about model parameters at all levels of hierarchy can be performed by MCMC.
When the tree structure z of the model is not given, the inference process will alternate
between fixing z while sampling the space of model parameters θ and fixing θ while sampling
category assignments.

Sampling level-1 and level-2 parameters: Given level-2 parameters θ2 and z, the
conditional distribution P (µc, τ c|θ2, z,x) is Normal-Gamma (Eq. 2), which allows us to
easily sample level-1 parameters {µc, τ c}. Given z, θ1, and θ3, the conditional distributions
over the mean µk and precision τk take Gaussian and Inverse-Gamma forms. The only
complicated step involves sampling αk that control the variation of the precision term τ c

around its mean (Eq. 3). The conditional distribution over αk cannot be computed in closed
form and is proportional to:

p(αk|z, θ1, θ3, τk) ∝ (αk/τk)α
knk

Γ(αk)nk
exp

�
−αk

�
α0 + Sk/τk − T k

��
, (6)

where Sk =
�

c:z(c)=k τ
c and T k =

�
c:z(c)=k log(τ

c). For large values of αk the density,
specified by Eq. 6, is similar to a Gamma density (Wiper et al. (2001)). We therefore
use Metropolis-Hastings with a proposal distribution given by the Gamma density. In
particular, we generate a new candidate

α∗ ∼ Q(α∗|αk) with Q(α∗|αk) = Γ(α∗|t, t/αk)

and accept it with M-H rule. In all of our experiments we use t = 3, which gave an
acceptance probability of about 0.6. Sampling level-3 parameters is similar to sampling
level-2 parameters.

Sampling assignments z: Given model parameters θ = {θ1, θ2}, combining the likelihood
term with the nCRP(γ) prior, the posterior over the assignment zn can be calculated as
follows:

p(zn|θ, z−n,x
n) ∝ p(xn|θ, zn)p(zn|z−n), (7)
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where z−n denotes variables z for all observations other than n. We can further exploit
the conjugacy in our hierarchical model when computing the probability of creating a new
basic-level category. Using the fact that Normal-Gamma prior p(µc, τ c) is the conjugate
prior of a normal distribution, we can easily compute the following marginal likelihood:

p(xn|θ2, zn) =

�

µc,τc
p(xn, µc, τ c|θ2, zn) =

�

µc,τc
p(xn|µc, τ c)p(µc, τ c|θ2, zn).

Integrating out basic-level parameters θ1 lets us more efficiently sample over the tree struc-
tures1. When computing the probability of placing xn under a newly created super-category,
its parameters are sampled from the prior.

5. One-shot Learning
One of the key goals of our work is to develop a model that has the ability to generalize
from a single example. Consider observing a single new instance x∗ of a novel category
c∗ 2. Conditioned on the current setting of the level-2 parameters θ2 and our current tree
structure z, we can first infer which super-category the novel category should belong to, i.e.
we can compute the posterior distribution over the assignments z∗c using Eq. 7. We note that
our new category can either be placed under one of the existing super-categories, or create
its own super-category, if it is sufficiently different from all of the existing super-categories.

Given an inferred assignment z∗c and using Eq. 2, we can infer the posterior mean and
precision terms (or similarity metric) {µ∗, τ∗} for our novel category. We can now test the
ability of the HB model to generalize to new instances of a novel category by computing
the conditional probability that a new test input xt belongs to a novel category c∗:

p(c∗|xt) =
p(xt|z∗c)p(z∗c)�
z p(x

t|z)p(z) , (8)

where the prior is given by the nCRP(γ) and the log-likelihood takes form:

log p(xt|c∗) = 1

2

�

d

log(τ∗d )−
1

2

�

d

τ∗d (x
t
d − µ∗

d)
2 + C,

where C is a constant that does not depend on the parameters. Observe that the relative
importance of each feature in determining the similarity is proportional to the category-
specific precision of that feature. Features that are salient, or have higher precision, within
the corresponding category contribute more to the overall similarity of an input.

6. Experimental results
We now present experimental results on the MNIST handwritten digit and MSR Cam-
bridge object recognition image datasets. During the inference step, we run our hierarchical
Bayesian (HB) model for 200 full Gibbs sweeps, which was sufficient to reach convergence

1. In the supervised case, inference in simplified by only considering which super-category each basic-level
category is assigned to.

2. Observing several examples of a new category is treated similarly.
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Table 1: Performance results using the area under the ROC curve (AUROC) on the MNIST dataset.
The Average panel shows results averaged over all 10 categories, using leave-one-out test
format.

Model
Category: Digit 9 Category: Digit 6 Average

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex
HB 0.81 0.85 0.88 0.90 0.85 0.89 0.92 0.97 0.85 0.88 0.90 0.93
HB-Flat 0.71 0.77 0.84 0.90 0.73 0.79 0.88 0.97 0.74 0.79 0.86 0.93
HB-Var 0.72 0.81 0.86 0.90 0.72 0.83 0.90 0.97 0.75 0.82 0.89 0.93
Euclidean 0.70 0.73 0.76 0.80 0.74 0.77 0.82 0.86 0.72 0.76 0.80 0.83
Oracle 0.87 0.89 0.90 0.90 0.95 0.96 0.96 0.97 0.90 0.92 0.92 0.93
MLE 0.69 0.75 0.83 0.90 0.72 0.78 0.87 0.97 0.71 0.77 0.84 0.93

and obtain good performance. We normalize input vectors to zero mean and scale the entire
input by a single number to make the average feature variance be one.

In all of our experiments, we compare performance of the HB model to the following four
alternative methods for one-shot learning. The first model, “Euclidean”, uses a Euclidean
metric, i.e. all precision terms are set to one and are never updated. The second model,
that we call “HB-Flat”, always uses a single super-category. When presented with a single
example of a new category, HB-Flat will inherit a similarity metric that is shared by all
existing categories, as done in Fei-Fei et al. (2006). Our third model, called “HB-Var”,
is similar in spirit to the approach of Heller et al. (2009) and is based on clustering only
covariance matrices without taking into account the means of the super-categories. Our
last model, “MLE”, ignores hierarchical Bayes altogether and estimates a category-specific
mean and precision from sample averages. If a category contains only one example, the
model uses the Euclidean metric. Finally, we also compare to the “Oracle” model that
is the same as our HB model, but always uses the correct, instead of inferred, similarity
metric.

6.1. MNIST dataset

The MNIST dataset contains 60,000 training and 10,000 test images of ten handwritten
digits (zero to nine), with 28×28 pixels. For our experiments, we randomly choose 1000
training and 1000 test images (100 images per class). We work directly in the pixel space
because all handwritten digits were already properly aligned. In addition, working in the
pixel space allows us to better visualize the kind of transfer of similarity metrics our model
is performing. Fig. 3, left panel, shows a typical partition over the basic level categories,
along with corresponding mean and similarity metrics, that our model discovers.

We first study the ability of the HB model to generalize from a single training example
of handwritten digit “nine”. To this end, we trained the HB model on 900 images (100
images of each of zero-to-eight categories), while withholding all images that belong to
category “nine”. Given a single new instance of a novel “nine” category our model is able
to discover that the new category is more like categories that contain images of seven and
four, and hence this novel category can inherit the mean and the similarity metric, shared
by categories “seven” and “four”.

Table 1 further quantifies performance using the area under the ROC curve (AUROC)
for classifying 1000 test images as belonging to the ”nine” vs. all other categories. (an
area of 0.5 corresponds to the classifier that makes random predictions). The HB model
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Figure 3: Left: MNIST Dataset: A typical partition over the 10 categories discovered by the HB
model. Top panels display means and bottom panels display variances (white encodes
larger values). Right: MSRDataset: A typical partition over the 24 categories discovered
by the HB model.

Table 2: Performance results using the area under the ROC curve (AUROC) on the MSR dataset.
The Average panel shows results averaged over all 24 categories, using leave-one-out test
format.

Model
Category: Cow Category: Flower Average

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex
HB 0.77 0.81 0.84 0.89 0.71 0.75 0.78 0.81 0.76 0.80 0.84 0.87
HB-Flat 0.62 0.69 0.80 0.89 0.59 0.64 0.75 0.81 0.65 0.71 0.78 0.87
HB-Var 0.61 0.73 0.83 0.89 0.60 0.68 0.77 0.81 0.64 0.74 0.81 0.87
Euclidean 0.59 0.61 0.63 0.66 0.55 0.59 0.61 0.64 0.63 0.66 0.69 0.71
Oracle 0.83 0.84 0.87 0.89 0.77 0.79 0.80 0.81 0.82 0.84 0.86 0.87
MLE 0.58 0.64 0.78 0.89 0.55 0.62 0.72 0.81 0.62 0.67 0.77 0.87

achieves an AUROC of 0.81, considerably outperforming HB-Flat, HB-Var, Euclidean, and
MLE that achieve an AUROC of 0.71, 0.72, 0.70, and 0.69 respectively. Moreover, with
just four examples, the HB model is able to achieve performance close to that of the Oracle
model. This is in sharp contrast to HB-Flat, MLE and Euclidean models, that even with
four examples perform far worse.

6.2. MSR Cambridge Dataset

We now present results on a considerably more difficult MSR Cambridge dataset3, that
contains images of 24 different categories. Fig. 3, right panel, shows 24 basic-level categories
along with a typical partition that our model discovers. We use a simple “texture-of-
textures” framework for constructing image features (DeBonet and Viola (1997)).

We first tested the ability of our model to generalize from a single image of a cow.
Similar to the experiments on the MNIST dataset, we first train the HB model on images
corresponding to 23 categories, while withholding all images of cows. In general, our model
is able to discover that the new “cow” category is more like the “sheep” category, as opposed
to categories that contain images of cars, or forks, or buildings. This allows the new “cow”
category inherit sheep’s similarity metric.

Table 2 show that the HB model, based on a single example of cow, achieves an AUROC
of 0.77. This is compared to an AUROC of only 0.62, 0.61, 0.59, and 0.58 achieved by the
HB-Flat, HB-Var, Euclidean, and MLE models. Similar to the results on the MNIST
dataset, the HB model with just one example performs comparably the HB-Flat and MLE

3. Available at http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Figure 4: Retrieval results based on observing a single example of cow. Top five most similar images
were retrieved from the test set, containing 360 images corresponding to 24 categories.
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Figure 5: Unsupervised category discovery. Left: Six representative test images, sorted by the
posterior probability of forming a novel category. Right: When presented with 18 un-
labeled test images, the model correctly places nine “familiar” images in nine different
basic-level categories, while also correctly forming three novel basic-level categories with
three examples each.

models that make use of four examples. Fig. 4 further displays retrieval results based on a
single image of a cow. As expected, the HB model performs much better compared to the
Euclidean model that does not learn a similarity metric.

6.3. Unsupervised Category Discovery

Another key advantage of the hierarchical nonparametric Bayesian model is its ability to
infer category structure in an unsupervised fashion, discovering novel categories at both
levels 1 and 2 of the hierarchy. We explored the HB model’s category discovery ability by
training on labeled examples of 21 basic-level MSR categories, leaving out clouds, trees,
and chimneys. We then provided six test images: one in each of the three unseen categories
and one in each of three familiar basic-level categories (car, airplane, bench). For each
test image, using Eq. 8, we can easily compute the posterior probability of forming a new
basic-level category. Figure 5, left panel, shows six representative test images, sorted by
the posterior probability of forming a novel category. The model correctly identifies the
car, the airplane and the bench as belonging to familiar categories, and places much higher
probability on forming novel categories for the other images. With only one unlabeled
example of these novel classes, the model still prefers two of them in familiar categories:
the “tree” is interpreted as an atypical example of “countryside” while the “chimney” is
classified as an atypical “building”.

The model, however, can correctly discover novel categories given only a little more
unlabeled data. With 18 unlabeled test images (see Fig. 5), after running a Gibbs sampler
for 100 steps, the model correctly places nine “familiar” images in nine different basic-level
categories, while also correctly forming three novel basic-level categories with three examples
each. Most interestingly, these new basic-level categories are placed at the appropriate level
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of the category hierarchy: the novel “tree” category is correctly placed under the super-
category containing “leaves” and “countrysides”; the novel “chimney” category is placed
together with “buildings” and “doors”; while “clouds” category is placed in its own super-
category – all consistent with the hierarchy we originally found from a fully labeled training
set (see Fig. 3). Other models we tried for this unsupervised task perform much worse; they
confuse “chimneys” with “cows” and “trees” with “countrysides”.

7. Conclusions
In this paper we developed a hierarchical nonparametric Bayesian model for learning a novel
category based on a single training example. Our experimental results further demonstrate
that our model is able to effectively transfer appropriate similarity metric from the previ-
ously learned categories to a novel category based on observing a single example. There are
several key advantages to our model. First, due to efficient Gibbs moves that can exploit
conjugacy, the model can be efficiently trained. Many of the Gibbs updates can be run
in parallel, which will allow our model to potentially handle a large number of basic-level
categories. Second, the model is able to discover meaningful super-categories and be able
to form coherent novel categories. Finally, given a single example of a novel category, the
model is able to quickly infer which super-category the new basic-level ategory should be-
long to. This in turns allows us to efficiently infer the appropriate similarity metric for this
novel category.
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