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Abstract

Markov random fields (MRF’s), or undirected graphical models, provide a pow-
erful framework for modeling complex dependencies among random variables.
Maximum likelihood learning in MRF’s is hard due to the presence of the global
normalizing constant. In this paper we consider a class of stochastic approxima-
tion algorithms of the Robbins-Monro type that use Markov chain Monte Carlo to
do approximate maximum likelihood learning. We show that using MCMC opera-
tors based on tempered transitions enables the stochastic approximation algorithm
to better explore highly multimodal distributions, which considerably improves
parameter estimates in large, densely-connected MRF’s. Our results on MNIST
and NORB datasets demonstrate that we can successfully learn good generative
models of high-dimensional, richly structured data that perform well on digit and
object recognition tasks.

1 Introduction

Markov random fields (MRF’s) provide a powerful tool for representing dependency structure be-
tween random variables. They have been successfully used invarious application domains, includ-
ing machine learning, computer vision, and statistical physics. The major limitation of MRF’s is
the need to compute the partition function, whose role is to normalize the joint distribution over the
set of random variables. Maximum likelihood learning in MRF’s is often very difficult because of
the hard inference problem induced by the partition function. When modeling high-dimensional,
richly structured data, the inference problem becomes muchmore difficult because the distribution
we need to infer is likely to be highly multimodal [17]. Multimodality is common in real-world
distributions, such as the distribution of natural images,in which an exponentially large number
of possible image configurations have extremely low probability, but there are many very different
images that occur with similar probabilities.

To date, there has been very little work addressing the problem of efficient learning in large, densely-
connected MRF’s that contain millions of parameters. Whilethere exists a substantial literature on
developing approximate learning algorithms for arbitraryMRF’s, many of these algorithms are un-
likely to work well when dealing with high-dimensional inputs. Methods that are based on replacing
the likelihood term with some tractable approximations, such as pseudo-likelihood [1] or mixtures
of random spanning trees [11], perform very poorly for densely-connected MRF’s with strong de-
pendency structures [3]. When using variational methods, such as loopy BP [18] and TRBP [16],
learning often gets trapped in poor local optima [5, 13]. MCMC-based algorithms, including MCMC
maximum likelihood estimators [3, 20] and Contrastive Divergence [4], typically suffer from high
variance (or strong bias) in their estimates, and can sometimes be painfully slow. The main problem
here is the inability of Markov chains to efficiently exploredistributions with many isolated modes.
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In this paper we concentrate on the class of stochastic approximation algorithms of the Robbins-
Monro type that use MCMC to estimate the model’s expected sufficient statistics, needed for max-
imum likelihood learning. We first show that using this classof algorithms allows us to make very
rapid progress towards finding a fairly good set of parameters, even for models containing millions
of parameters. Second, we show that using MCMC operators based on tempered transitions [9] en-
ables the stochastic algorithm to better explore highly multimodal distributions, which considerably
improves parameter estimates, particularly in large, densely-connected MRF’s. Our results on the
MNIST and NORB datasets demonstrate that the stochastic approximation algorithm together with
tempered transitions can be successfully used to model high-dimensional real-world distributions.

2 Maximum Likelihood Learning in MRF’s

Let x ∈XK be a random vector onK variables, where eachxi takes on values in some discrete
alphabet. Letφ(x) denote aD-dimensional vector of sufficient statistics, and letθ ∈ RD be a vector
of canonical parameters. The exponential family associated with sufficient statisticsφ consists of
the following parameterized set of probability distributions:

p(x; θ) =
p∗(x)

Z(θ)
=

1

Z(θ)
exp (θ⊤φ(x)), Z(θ) =

∑

x

exp (θ⊤φ(x)), (1)

wherep∗(·) denotes the unnormalized probability distribution andZ(θ) is the partition function.
For example, consider the following binary pairwise MRF. Given a graphG = (V,E) with vertices
V and edgesE, the probability distribution over a binary random vectorx ∈ {0, 1}K is given by:

p(x; θ) =
1

Z(θ)
exp

(
θ⊤φ(x)

)
=

1

Z(θ)
exp




∑

(i,j)∈E

θijxixj +
∑

i∈V

θixi


. (2)

The derivative of the log-likelihood for an observationx0 with respect to parameter vectorθ can be
obtained from Eq. 1:

∂ log p(x0; θ)

∂θ
= φ(x0)− Ep(x;θ)[φ(x)], (3)

where EP [·] denotes an expectation with respect to distributionP . Except for simple models such
as the tree structured graphs exact maximum likelihood learning is intractable, because exact com-
putation of the expectation Ep(x;θ)[·] takes time that is exponential in the treewidth of the graph1.

One approach is to learn model parameters by maximizing the pseudo-likelihood (PL) [1], which
replaces the likelihood with a tractable product of conditional probabilities:

PPL(x0; θ) =

K∏

k=1

p(xk|x0,−k; θ), (4)

wherex0,−k denotes an observation vectorx0 with xk omitted. Pseudo-likelihood provides good
estimates for weak dependence, whenp(xk|x−k) ≈ p(xk), or when it well approximates the true
likelihood function. For MRF’s with strong dependence structure, it is unlikely to work well.

Another approach, called the MCMC maximum likelihood estimator (MCMC-MLE) [3], has been
shown to sometimes provide considerably better results than PL [3, 20]. The key idea is to use
importance sampling to approximate the model’s partition function. Consider running a Markov
chain to obtain samplesx(1),x(2), ...,x(n) from some fixed proposal distributionp(x;ψ)2. These
samples can be used to approximate the log-likelihood ratiofor an observationx0:

L(θ) = log
p(x0; θ)

p(x0;ψ)
= (θ − ψ)⊤φ(x0)− log

Z(θ)

Z(ψ)
(5)

≈ (θ − ψ)⊤φ(x0)− log
1

n

n∑

i=1

e(θ−ψ)⊤φ(x(i)) = Ln(θ), (6)

1For many interesting models considered in this paper exact computation of Ep(x;θ)[·] takes time that is
exponential in the dimensionality ofx.

2We will also assume thatp(x;ψ) 6= 0 wheneverp(x; θ) 6= 0, ∀θ.
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Algorithm 1 Stochastic Approximation Procedure.

1: Given an observationx0. Randomly initializeθ1 andM sample particles{x1,1, ....,x1,M}.
2: for t = 1 : T (number of iterations)do
3: for m = 1 : M (number of parallel Markov chains)do
4: Samplext+1,m givenx

t,m using transition operatorTθt(xt+1,m←x
t,m).

5: end for
6: Update:θt+1 = θt + αt

h

φ(x0)−
1
M

PM

m=1 φ(xt+1,m)
i

.

7: Decreaseαt.
8: end for

where we used the approximation:Z(θ)
Z(ψ) =

∑
x
e(θ−ψ)⊤φ(x)p(x;ψ) ≈ 1

n

∑n
i=1 e

(θ−ψ)⊤φ(x(i)). Pro-
vided our Markov chain is ergodic, it can be shown thatLn(θ) −→ L(θ) for all θ. It can further be
shown that, under the “usual” regularity conditions, ifθ̂n maximizesLn(θ) andθ∗ maximizesL(θ),
thenθ̂n

a.s.
−−→ θ∗. This implies that as the number of samplesn, drawn from our proposal distribu-

tions, goes to infinity, MCMC-MLE will converge to the true maximum likelihood estimator. While
this estimator provides nice asymptotic convergence guarantees, it performs very poorly in practice,
particularly when the parameter vectorθ is high-dimensional. In high-dimensional spaces, the vari-
ance of an estimatorLn(θ) will be very large, or possibly infinite, unless the proposaldistribution
p(x;ψ) is a near-perfect approximation top(x; θ). While there have been some attempts to improve
MCMC-MLE by considering a mixture of proposal distributions [20], they do not fix the problem
when learning MRF’s with millions of parameters.

3 Stochastic Approximation Procedure (SAP)

We now consider a stochastic approximation procedure that uses MCMC to estimate the model’s
expected sufficient statistics. SAP belongs to the general class of well-studied stochastic approxi-
mation algorithms of the Robbins-Monro type [19, 12]. The algorithm itself dates back to 1988 [19],
but only recently it has been shown to work surprisingly wellwhen training large MRF’s, including
restricted Boltzmann machines [15] and deep Boltzmann machines [14, 13].

The idea behind learning a parameter vectorθ using SAP is straightforward. Letx0 be our observa-
tion. Then the state and the parameters are updated sequentially:

θt+1 = θt + αt
[
φ(x0)− φ(xt+1)

]
, where xt+1 ∼ Tθt(xt+1←xt). (7)

Given xt, we sample a new statext+1 using the transition operatorTθt(xt+1 ← xt) that leaves
p(·; θt) invariant. A new parameterθt+1 is then obtained by replacing the intractable expecta-
tion Ep(x;θt)[φ(x)] with φ(xt+1). In practice, we typically maintain a set ofM sample points
Xt = {xt,1, ....,xt,M}, which we will often refer to as sample particles. In this case, the intractable
model’s expectation is replaced by the sample average1/M

∑M

m=1 φ(xt+1,m). The procedure is
summarized in Algorithm 1.

One important property of this algorithm is that just like MCMC-MLE, it can be shown to asymp-
totically converge to the maximum likelihood estimatorθ∗.3 In particular, for fully visible discrete
MRF’s, if one uses a Gibbs transition operator and the learning rate is set toαt = 1

(t+1)U , whereU

is a positive constant, such thatU > 2KC0C1, thenθt
a.s.
−−→ θ∗ (see Theorem 4.1 of [19]). HereK

is the dimensionality ofx, C0 = max{||φ(x0) − φ(x)||;x ∈ XK} is the largest magnitude of the
gradient, andC1 is the maximum variation ofφ when one changes the values of a single component
only: C1 = max{||φ(x) − φ(y)||;x,y ∈ XK , k ∈ {1, ...,K},y−k = x−k}.

The proof of convergence relies on the following simple decomposition. First, letS(θ) denote the
true gradient of the log-likelihood function:S(θ) = ∂ log p(x0;θ)

∂θ
= φ(x0) − Ep(x;θ)[φ(x)]. The

parameter update rule then takes the following form:

θt+1 = θt + αt
[
φ(x0)− φ(xt+1)

]
= θt + αtS(θt) + αt

[
Ep(x;θ)[φ(x)] − φ(xt+1)

]

= θt + αtS(θt) + αtǫt. (8)

3One necessary condition for almost sure convergence requires the learning rate to decrease with time, so
that

P

∞

t=0 αt =∞ and
P

∞

t=0 α
2
t <∞.
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Algorithm 2 Tempered Transitions Run.

1: Initializeβ0 < β1 < ... < βS = 1. Given a current statexS .
2: for s = S − 1 : 0 (Forward pass)do
3: Samplexs givenx

s+1 usingTs(x
s←x

s+1).
4: end for
5: Setx̃0 = x

0.
6: for s = 0 : S − 1 (Backward pass)do
7: Samplẽxs+1 givenx̃

s using eTs(x̃
s+1← x̃

s).
8: end for
9: Accept a new statẽxS with probability: min

h

1,
QS

s=1 p
∗(xs)

βs−1−βs p∗(x̃s)
βs−βs−1

i

.

The first term (rhs. of Eq. 8) is the discretization of the ordinary differential equatioṅθ = S(θ). The
algorithm is therefore a perturbation of this discretization with the noise termǫt. The proof proceeds
by showing that the noise term is not too large. Intuitively,as the learning rate becomes sufficiently
small compared to the mixing rate of the Markov chain, the chain will stay close to the stationary
distribution, even if it is only run for a few MCMC steps per parameter update. This, in turn, will
ensure that the noise termǫt goes to zero.

When looking at the behavior of this algorithm in practice, we find that initially it makes very rapid
progress towards finding a sensible region in the parameter space. However, as the algorithm be-
gins to capture the multimodality of the data distribution,the Markov chain tends to mix poorly,
producing highly correlated samples for successive parameter updates. This often leads to poor pa-
rameter estimates, especially when modeling complex, high-dimensional distributions. The main
problem here is the inability of the Markov chain to efficiently explore a distribution with many
isolated modes. However, the transition operatorsTθt(xt+1 ← xt) used in the stochastic approx-
imation algorithm do not necessarily need to be simple Gibbsor Metropolis-Hastings updates to
guarantee almost sure convergence. Instead, we propose to use MCMC operators based on tem-
pered transitions [9] that can more efficiently explore highly multimodal distributions. In addition,
implementing tempered transitions requires very little extra work beyond the implementation of the
Gibbs sampler.

3.1 Tempered Transitions

Suppose that our goal is to sample fromp(x; θ). We first define a sequence of intermediate proba-
bility distributions:p0, ..., pS , with pS = p(x; θ) andp0 being more spread out and easier to sample
from thanpS . Constructing a suitable sequence of intermediate probability distributions will in
general depend on the problem. One general way to define this sequence is:

ps(x) ∝ p∗(x; θ)βs , (9)

with “inverse temperatures”β0 < β1 < ... < βS = 1 chosen by the user. For eachs = 1, .., S−1 we
define a transition operatorTs(x′←x) that leavesps invariant. In our implementationTs(x′←x)

is the Gibbs sampling operator. We also need to define a reverse transition operator̃Ts(x←x′) that
satisfies the following reversibility condition for allx andx′:

ps(x)Ts(x
′←x) = T̃s(x←x′)ps(x

′). (10)

If Ts is reversible, theñTs is the same asTs. Many commonly used transition operators, such
as Metropolis–Hastings, are reversible. Non-reversible operators are usually composed of several
reversible sub-transitions applied in sequenceTs = Q1...QK , such as the single component updates
in a Gibbs sampler. The reverse operator can be simply constructed from the same sub-transitions,
but applied in the reverse order̃Ts = QK ...Q1.

Given the current statex of the Markov chain, tempered transitions apply a sequence of transition
operatorsTS−1 . . . T0T̃0 . . . T̃S−1 that systematically “move” the sample particlex from the original
complex distribution to the easily sampled distribution, and then back to the original distribution. A
new candidate statẽx is accepted or rejected based on ratios of probabilities of intermediate states.
Sincep0 is less concentrated thanpS , the sample particle will have a chance to move around the
state space more easily, and we may hope that the probabilitydistribution of the resulting candidate
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Figure 1:Experimental results on MNIST dataset.Top: Toy RBM with 10 hidden units. The x-axis show the
number of Gibbs updates and the y-axis displays the traininglog-probability in nats.Bottom: Classification
performance of the semi-restricted Boltzmann machines with 500 hidden units on the full MNIST datasets.

state will be much broader than the mode in which the current start state resides. The procedure
is shown in Algorithm 2. Note that there is no need to compute the normalizing constants of any
intermediate distributions.

Tempered transitions can make major changes to the current state, which allows the Markov chain
to produce less correlated samples between successive parameter updates. This can greatly improve
the accuracy of the estimator, but is also more computationally expensive. We therefore propose to
alternate between applying a more expensive tempered transitions operator and the standard Gibbs
updates. We call this algorithm Trans-SAP.

4 Experimental Results

In our experiments we used the MNIST and NORB datasets. To speed-up learning, we subdivided
datasets into minibatches, each containing 100 training cases, and updated the parameters after each
minibatch. The number of sample particles used for estimating the model’s expected sufficient statis-
tics was also set to 100. For the stochastic approximation algorithm, we always apply a single Gibbs
update to the sample particles. In all experiments, the learning rates were set by quickly running a
few preliminary experiments and picking the learning ratesthat worked best on the validation set.
We also use natural logarithms, providing values in nats.

4.1 MNIST

The MNIST digit dataset contains 60,000 training and 10,000test images of ten handwritten digits
(0 to 9), with 28×28 pixels. The dataset was binarized: each pixel value was stochastically set
to 1 with probability proportional to its pixel intensity. From the training data, a random sample of
10,000 images was set aside for validation.

In our first experiment we trained a small restricted Boltzmann machine (RBM). An RBM is a par-
ticular type of Markov random field that has a two-layer architecture, in which the visible binary
stochastic unitsx are connected to hidden binary stochastic unitsh, as shown in Fig. 1. The proba-
bility that the model assigns to a visible vectorx is:

P (x; θ) =
1

Z(θ)

∑

h

exp




∑

i,j

θijxihj +
∑

i

θixi +
∑

j

θjhj



. (11)
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Samples before
Tempered Transitions

Samples after
Tempered Transitions Model Samples

Figure 2:Left: Sample particles produced by the stochastic approximationalgorithm after 100,000 parameter
updates.Middle: Sample particles after applying a tempered transitions run. Right: Samples generated from
the current model by randomly initializing all binary states and running the Gibbs sampler for 500,000 steps.
After applying tempered transitions, sample particles look more like the samples generated from the current
model. The images shown are theprobabilitiesof the visible units given the binary states of the hidden units.

The model had 10 hidden units. This allowed us to calculate the exact value of the partition function
simply by summing out the 784 visible units for each configuration of the hiddens. For the stochastic
approximation procedure, the total number of parameter updates was 100,000, so the learning took
about 25.6 minutes on a Pentium 4 3.00GHz machine. The learning rate was kept fixed at 0.01 for
the first 10,000 parameter updates, and was then annealed as10/(1000+t). For comparison, we also
trained the same model using exact maximum likelihood with exactly the same learning schedule.

Perhaps surprisingly, SAP makes very rapid progress towards the maximum likelihood solution,
even though the model contains 8634 free parameters. The toppanel of Fig. 1 further shows that
combining regular Gibbs updates with tempered transitionsprovides a more accurate estimator. We
applied tempered transitions only during the last 50,000 Gibbs steps, alternating between 200 Gibbs
updates and a single tempered transitions run that used 50β’s spaced uniformly from 1 to 0.9.
The acceptance rate for the tempered transitions was about 0.8. To be fair, we compared different
algorithms based on the total number of Gibbs steps. For SAP,parameters were updated after each
Gibbs step (see Algorithm 1), whereas for Trans-SAP, parameters were updated after each Gibbs
update but not during the tempered transitions run4. Hence Trans-SAP took slightly less computer
time compared to the plain SAP. Pseudo-likelihood and MCMC maximum likelihood estimators
perform quite poorly, even for this small toy problem.

In our second experiment, we trained a larger semi-restricted Boltzmann machine that contained
705,622 parameters. In contrast to RBM’s, the visible unitsin this model form a fully connected
pairwise binary MRF (see Fig. 1, bottom left panel). The model had 500 hidden units and was
trained to model the joint probability distribution over the digit images and labels. The total number
of Gibbs updates was set to 200,000, so the learning took about 19.5 hours. The learning rate was
kept fixed at 0.05 for the first 50,000 parameter updates, and was then decreased as100/(2000+ t).

The bottom panel of Fig. 1 shows classification performance on the full MNIST test set. As ex-
pected, SAP makes very rapid progress towards finding a good setting of the parameter values.
Using tempered transitions further improves classification performance. As in our previous exper-
iment, tempered transitions were only applied during the last 100,000 Gibbs updates, alternating
between 1000 Gibbs updates and a single tempered transitions run that used 500β’s spaced uni-
formly from 1 to 0.9. The acceptance rate was about 0.7. Afterlearning was complete, in addition
to classification performance, we also estimated the log-probability that both models assigned to
the test data. To estimate the models’ partition functions,we used Annealed Importance Sampling
[10, 13] – a technique that is very similar to tempered transitions. The plain stochastic approxi-
mation algorithm achieved an average test log-probabilityof -87.12 per image, whereas Trans-SAP
achieved a considerably better average test log-probability of -85.91.

4This reduced the total number of parameter updates from100, 000 to 50, 000 + 50, 000 ∗ 2/3 = 83, 333.

6



Training Samples
Model trained with

Tempered Transitions
Model trained without
Tempered Transitions

Figure 3:Results on the NORB dataset.Left: Random samples from the training set. Samples generated from
the two RBM models, trained using SAP with (Middle) and without (Right) tempered transitions. Samples
were generated by running the Gibbs sampler for 100,000 steps.

To get an intuitive picture of how tempered transitions operate, we looked at the sample particles
before and after applying a tempered transitions run. Figure 2 shows sample particles after 100,000
parameter updates. Observe that the particles look like thereal handwritten digits. However, a run of
tempered transitions reveals that the current model is veryunbalanced, with more probability mass
placed on images of four. To further test whether the “refreshed” particles were representative of
the current model, we generated samples from the current model by randomly initializing binary
states of the visible and hidden units, and running the Gibbssampler for 500,000 steps. Clearly,
the refreshed particles look more like the samples generated from the true model. This in turn al-
lows Trans-SAP to better estimate the model’s expected sufficient statistics, which greatly facilitates
learning a better generative model.

4.2 NORB

Results on MNIST show that the stochastic approximation algorithm works well on the relatively
simple task of handwritten digit recognition. In this section we present results on a considerably
more difficult dataset. NORB [6] contains images of 50 different 3D toy objects with 10 objects in
each of five generic classes: planes, cars, trucks, animals,and humans. The training set contains
24,300 stereo image pairs of 25 objects, whereas the test setcontains 24,300 stereo pairs of the
remaining, different 25 objects. The goal is to classify each object into its generic class. From the
training data, 4,300 cases were set aside for validation.

Each image has 96×96 pixels with integer greyscale values in the range [0,255]. We further reduced
the dimensionality of each image from 9216 down to 4488 by using larger pixels around the edges of
the image5. We also augmented the training data with additionalunlabeleddata by applying simple
pixel translations, creating a total of 1,166,400 traininginstances. To deal with raw pixel data, we
followed the approach of [8] by first learning a Gaussian-binary RBM with 4000 hidden units, and
then treating the the activities of its hidden layer as “preprocessed” data. The model was trained
using contrastive divergence learning for 500 epochs. The learned low-level RBM effectively acts
as a preprocessor that transforms greyscale images into 4000-dimensional binary vectors, which we
use as the input for training our models.

We proceeded to training an RBM with 4000 hidden units using binary representations learned
by the preprocessor module6. The RBM, containing over 16 million parameters, was trained in a
completely unsupervised way. The total number of Gibbs updates was set to 400,000. The learn-
ing rate was kept fixed at 0.01 for the first 100,000 parameter updates, and was then annealed as
100/(1000 + t). Similar to the previous experiments, tempered transitions were applied during the
last 200,000 Gibbs updates, alternating between 1000 Gibbsupdates and a single tempered transi-
tions run that used 1000β’s spaced uniformly from 1 to 0.9.

5The dimensionality of each training vector, representing astereo pair, was 2×4488 = 8976.
6The resulting model is effectively a Deep Belief Network with two hidden layers.
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Figure 3 shows samples generated from two models, trained using stochastic approximation with
and without tempered transitions. Both models were able to learn a lot of regularities in this high-
dimensional, highly-structured data, including various object classes, different viewpoints and light-
ing conditions. The plain stochastic approximation algorithm produced a very unbalanced model
with a large fraction of the model’s probability mass placedon images of humans. Using tempered
transitions allowed us to learn a better and more balanced generative model, including the light-
ing effects. Indeed, the plain SAP achieved a test log-probability of -611.08 per image, whereas
Trans-SAP achieved a test log-probability of -598.58.

We also tested the classification performance of both modelssimply by fitting a logistic regression
model to the labeled data (using only the 24300 labeled training examples without any translations)
using the top-level hidden activities as inputs. The model trained by SAP achieved an error rate
of 8.7%, whereas the model trained using Trans-SAP reduced the error rate down to 8.4%. This is
compared to 11.6% achieved by SVM’s, 22.5% achieved by logistic regression applied directly in
the pixel space, and 18.4% achieved by K-nearest neighbors [6].

5 Conclusions

We have presented a class of stochastic approximation algorithms of the Robbins-Monro type that
can be used to efficiently learn parameters in large densely-connected MRF’s. Using MCMC oper-
ators based on tempered transitions allows the stochastic approximation algorithm to better explore
highly multimodal distributions, which in turn allows us tolearn good generative models of hand-
written digits and 3D objects in a reasonable amount of computer time.

In this paper we have concentrated only on using tempered transition operators. There exist a variety
of other methods for sampling from distributions with many isolated modes, including simulated
tempering [7] and parallel tempering [3], all of which can beincorporated into SAP. In particular,
the concurrent work of [2] employs parallel tempering techniques to imrpove mixing in RBM’s.
There are, however, several advantages of using tempered transitions over other existing methods.
First, tempered transitions do not require specifying any extra variables, such as the approximate
values of normalizing constants of intermediate distributions, which are needed for the simulated
tempering method. Second, tempered transitions have modest memory requirements, unlike, for
example, parallel tempering, since the acceptance rule canbe computed on the fly as the intermediate
states are generated. Finally, the implementation of tempered transitions requires almost no extra
work beyond implementing the Gibbs sampler, and can be easily integrated into existing code.
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