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Abstract

Markov random fields (MRF’s), or undirected graphical magderovide a pow-
erful framework for modeling complex dependencies amomgloan variables.
Maximum likelihood learning in MRF’s is hard due to the pnese of the global
normalizing constant. In this paper we consider a classoahststic approxima-
tion algorithms of the Robbins-Monro type that use MarkoaintMonte Carlo to

do approximate maximum likelihood learning. We show thatg$CMC opera-

tors based on tempered transitions enables the stochpptim@mation algorithm
to better explore highly multimodal distributions, whicbrsiderably improves
parameter estimates in large, densely-connected MRF's.ré3ults on MNIST

and NORB datasets demonstrate that we can successfultydead generative
models of high-dimensional, richly structured data thatqren well on digit and

object recognition tasks.

1 Introduction

Markov random fields (MRF’s) provide a powerful tool for repenting dependency structure be-
tween random variables. They have been successfully usediwus application domains, includ-
ing machine learning, computer vision, and statisticalgits; The major limitation of MRF’s is
the need to compute the partition function, whose role istormalize the joint distribution over the
set of random variables. Maximum likelihood learning in MRIB often very difficult because of
the hard inference problem induced by the partition fumctigVhen modeling high-dimensional,
richly structured data, the inference problem becomes mumie difficult because the distribution
we need to infer is likely to be highly multimodal [17]. Muttiodality is common in real-world
distributions, such as the distribution of natural imagasyhich an exponentially large number
of possible image configurations have extremely low prdigbbut there are many very different
images that occur with similar probabilities.

To date, there has been very little work addressing the probff efficient learning in large, densely-
connected MRF's that contain millions of parameters. Witfikre exists a substantial literature on
developing approximate learning algorithms for arbitdsfigF's, many of these algorithms are un-
likely to work well when dealing with high-dimensional infsu Methods that are based on replacing
the likelihood term with some tractable approximationghsas pseudo-likelihood [1] or mixtures
of random spanning trees [11], perform very poorly for dénsennected MRF’s with strong de-
pendency structures [3]. When using variational methogsh sis loopy BP [18] and TRBP [16],
learning often gets trapped in poor local optima [5, 13]. MCidased algorithms, including MCMC
maximum likelihood estimators [3, 20] and Contrastive Dience [4], typically suffer from high
variance (or strong bias) in their estimates, and can samstbe painfully slow. The main problem
here is the inability of Markov chains to efficiently explatistributions with many isolated modes.



In this paper we concentrate on the class of stochastic appation algorithms of the Robbins-
Monro type that use MCMC to estimate the model's expecteficgerft statistics, needed for max-
imum likelihood learning. We first show that using this classlgorithms allows us to make very
rapid progress towards finding a fairly good set of paramsetaren for models containing millions
of parameters. Second, we show that using MCMC operatoesibastempered transitions [9] en-
ables the stochastic algorithm to better explore highlytimaldal distributions, which considerably
improves parameter estimates, particularly in large, elgrsonnected MRF’s. Our results on the
MNIST and NORB datasets demonstrate that the stochastio@ppation algorithm together with
tempered transitions can be successfully used to modeldiigbnsional real-world distributions.

2 Maximum Likeihood Learningin MRF’s

Let x XX be a random vector oK variables, where each; takes on values in some discrete
alphabet. Let(x) denote aD-dimensional vector of sufficient statistics, anddet R” be a vector
of canonical parameters. The exponential family assatiaféh sufficient statisticg) consists of
the following parameterized set of probability distrilmunts:
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wherep*(-) denotes the unnormalized probability distribution &) is the partition function.
For example, consider the following binary pairwise MRFv&i a graplG = (V, E) with vertices
V and edged, the probability distribution over a binary random vectoe {0, 1} is given by:

p(x;0) =
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The derivative of the log-likelihood for an observatiogwith respect to parameter vectbcan be
obtained from Eq. 1:

810%(;039) = ¢(x0) = Epxse) [0(x)], ©

where B>[-] denotes an expectation with respect to distributitnExcept for simple models such
as the tree structured graphs exact maximum likelihooadhiegris intractable, because exact com-
putation of the expectation ..\ [-] takes time that is exponential in the treewidth of the gtaph

One approach is to learn model parameters by maximizing $eado-likelihood (PL) [1], which
replaces the likelihood with a tractable product of comuitil probabilities:

K
Per(x0;0) = [ [ plalxo,—k: 6), 4
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wherex, _j denotes an observation vectay with x;, omitted. Pseudo-likelihood provides good
estimates for weak dependence, whén, |x_) ~ p(zx), or when it well approximates the true
likelihood function. For MRF’s with strong dependence stuue, it is unlikely to work well.

Another approach, called the MCMC maximum likelihood estion (MCMC-MLE) [3], has been
shown to sometimes provide considerably better results EHa[3, 20]. The key idea is to use
importance sampling to approximate the model’s partitionction. Consider running a Markov
chain to obtain samples®), x(?), ... x(") from some fixed proposal distributigr{x; ¢)2. These
samples can be used to approximate the log-likelihood fatian observatioxy:
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IFor many interesting models considered in this paper examipatation of E(x;0)[] takes time that is
exponential in the dimensionality of

2We will also assume that(x; 1) # 0 whenevem(x; 6) # 0, V6.



Algorithm 1 Stochastic Approximation Procedure.

1: Given an observatioro. Randomly initialized* andM sample particlegx**, ..., x>},
2: for t =1 : T (number of iterationsdo
for m =1 : M (number of parallel Markov chainsjo
Samplex'™ ™ givenx"™ using transition operatdFy. (x' 1™ «—x"™).
end for
Update:d' ™ = 0' + ar [#(x0) — 3 S0, (x|,
Decreasey;.
: end for

N R w

where we used the approximatiog% =3, 0= O (x ) m LS 0= o) Pro-
vided our Markov chain is ergodic, it can be shown thatd) — L(0) for all 6. It can further be
shown that, under the “usual” regularity conditiong),ifmaximizesL,, (9) andd* maximizesL(0),
thend,, <% 6*. This implies that as the number of samptesdrawn from our proposal distribu-
tions, goes to infinity, MCMC-MLE will converge to the true mimum likelihood estimator. While
this estimator provides nice asymptotic convergence gutegs, it performs very poorly in practice,
particularly when the parameter vectois high-dimensional. In high-dimensional spaces, the-vari
ance of an estimatat,, (6) will be very large, or possibly infinite, unless the propadiatribution
p(x; ) is a near-perfect approximationx; 6). While there have been some attempts to improve
MCMC-MLE by considering a mixture of proposal distribut®[20], they do not fix the problem
when learning MRF’s with millions of parameters.

3 Stochastic Approximation Procedure (SAP)

We now consider a stochastic approximation procedure thed MCMC to estimate the model's
expected sufficient statistics. SAP belongs to the genéass of well-studied stochastic approxi-
mation algorithms of the Robbins-Monro type [19, 12]. Thgoaithm itself dates back to 1988 [19],
but only recently it has been shown to work surprisingly wdien training large MRF’s, including

restricted Boltzmann machines [15] and deep Boltzmann mastj14, 13].

The idea behind learning a parameter veétasing SAP is straightforward. L&ty be our observa-
tion. Then the state and the parameters are updated segjlyenti

Ot = 0" + oy [¢(x0) — ¢(xt+1)} , where xt1 ~ Ty (x"T1 —xP). @)

Given x!, we sample a new staté*! using the transition operatdiy: (x!™! « x?) that leaves
p(-;0') invariant. A new parametet’ ™! is then obtained by replacing the intractable expecta-
tion E,(x.01) [#(x)] with ¢(x**!). In practice, we typically maintain a set df sample points
Xt = {xt1 ..., x"M}, which we will often refer to as sample particles. In thiseabe intractable
model's expectation is replaced by the sample avemgeznj‘f:l (xtT1™). The procedure is
summarized in Algorithm 1.

One important property of this algorithm is that just like MC-MLE, it can be shown to asymp-
totically converge to the maximum likelihood estimagse® In particular, for fully visible discrete
MRF’s, if one uses a Gibbs transition operator and the legrrate is set ta;, = m whereU

is a positive constant, such that> 2K CyC1, thend® 22 9* (see Theorem 4.1 of [19]). Her§
is the dimensionality ok, Cp = max{||¢(x0) — ¢(x)||;x € XX} is the largest magnitude of the
gradient, and’; is the maximum variation ap when one changes the values of a single component
only: € = max{[|¢(x) — o(y)|[ix,y € X*. k€ {1,... K},y_ = x_1}.
The proof of convergence relies on the following simple aeposition. First, letS(9) denote the
true gradient of the log-likelihood functions(¢) = %&xo*‘” = ¢(x0) — Epxs0)[0(x)]. The
parameter update rule then takes the following form:
0 = 0"+ oy [p(x0) — d(x"TH)] = 0"+ S(0") + ap [Epn [0(x)] — d(xT)]
= Ht +Oét5(9t) + €. (8)

30ne necessary condition for almost sure convergence eqtiie learning rate to decrease with time, so
that> 7 . = oo and>_°  af < oo.




Algorithm 2 Tempered Transitions Run.

1: Initialize 8o < 81 < ... < 85 = 1. Given a current state®.
2: for s =S —1: 0 (Forward pass)o
3.  Samplex® givenx*T! usingT (x* «—x*T1).
4: end for

5: Setx’ = x°.
6

7

8

9

: for s=0:5 — 1 (Backward passyo

: Samplex*t! givenx® usingT. (x° T —x*).

: end for

: Accept a new statg® with probability: min |1, [T5_, p* (x,)%s-1 =% p* (is)ﬁs‘f’s*l}.

The first term (rhs. of Eq. 8) is the discretization of the nedy differential equatiofi = S(6). The
algorithm is therefore a perturbation of this discretiaativith the noise terra;. The proof proceeds
by showing that the noise term is not too large. Intuitivakythe learning rate becomes sufficiently
small compared to the mixing rate of the Markov chain, theirckall stay close to the stationary
distribution, even if it is only run for a few MCMC steps perpmeter update. This, in turn, will
ensure that the noise terngoes to zero.

When looking at the behavior of this algorithm in practice, find that initially it makes very rapid
progress towards finding a sensible region in the parampéeres However, as the algorithm be-
gins to capture the multimodality of the data distributitihe Markov chain tends to mix poorly,
producing highly correlated samples for successive paermedates. This often leads to poor pa-
rameter estimates, especially when modeling complex,-tligtensional distributions. The main
problem here is the inability of the Markov chain to efficignéxplore a distribution with many
isolated modes. However, the transition operafigrgx’*! < x*) used in the stochastic approx-
imation algorithm do not necessarily need to be simple Gioblletropolis-Hastings updates to
guarantee almost sure convergence. Instead, we propose tl@MC operators based on tem-
pered transitions [9] that can more efficiently explore highultimodal distributions. In addition,
implementing tempered transitions requires very little@work beyond the implementation of the
Gibbs sampler.

3.1 Tempered Transitions

Suppose that our goal is to sample frpfx; §). We first define a sequence of intermediate proba-
bility distributions: py, ..., ps, with ps = p(x; 8) andpy being more spread out and easier to sample
from thanpg. Constructing a suitable sequence of intermediate préityadistributions will in
general depend on the problem. One general way to definedthigesce is:

ps(x) o pt(x;0)%, )

with “inverse temperaturesly < 1 < ... < Bs = 1 chosen by the user. Foreaeh-1,..,5—1we
define a transition operatdi, (x’ — x) that leave®, invariant. In our implementatioffi; (x’ « x)
is the Gibbs sampling operator. We also need to define a eetrarssition operatdfs (x < x’) that
satisfies the following reversibility condition for atlandx’:

ps(x)Ts (X/HX> = Ts (XHX/)ps (X/>- (10)

If T is reversible, ther{s is the same a§;. Many commonly used transition operators, such
as Metropolis—Hastings, are reversible. Non-reversiplerators are usually composed of several
reversible sub-transitions applied in sequefge- Q1...Qk, such as the single component updates
in a Gibbs sampler. The reverse operator can be simply emtstt from the same sub-transitions,

but applied in the reverse ordéf = Qk...Q1.

Given the current state of the Markov chain, tempered transitions apply a sequehtarsition
operatords_; ... ToTy . .. Ts—1 that systematically “move” the sample partiglérom the original
complex distribution to the easily sampled distributiomg ahen back to the original distribution. A
new candidate state is accepted or rejected based on ratios of probabilitiestefinediate states.
Sinceypy is less concentrated thar, the sample particle will have a chance to move around the
state space more easily, and we may hope that the probatttibution of the resulting candidate
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Figure 1:Experimental results on MNIST datas&bp: Toy RBM with 10 hidden units. The x-axis show the
number of Gibbs updates and the y-axis displays the trailoiggprobability in nats.Bottom: Classification
performance of the semi-restricted Boltzmann machinels %0 hidden units on the full MNIST datasets.

state will be much broader than the mode in which the curremt state resides. The procedure
is shown in Algorithm 2. Note that there is no need to complgertormalizing constants of any
intermediate distributions.

Tempered transitions can make major changes to the cutedat which allows the Markov chain
to produce less correlated samples between successivagtaraipdates. This can greatly improve
the accuracy of the estimator, but is also more computdtioespensive. We therefore propose to
alternate between applying a more expensive temperedticsssoperator and the standard Gibbs
updates. We call this algorithm Trans-SAP.

4 Experimental Results

In our experiments we used the MNIST and NORB datasets. Tedspp learning, we subdivided
datasets into minibatches, each containing 100 trainisgs;and updated the parameters after each
minibatch. The number of sample particles used for estirgdkie model's expected sufficient statis-
tics was also set to 100. For the stochastic approximatgorishm, we always apply a single Gibbs
update to the sample particles. In all experiments, thalegrates were set by quickly running a
few preliminary experiments and picking the learning rated worked best on the validation set.
We also use natural logarithms, providing values in nats.

41 MNIST

The MNIST digit dataset contains 60,000 training and 10@80images of ten handwritten digits
(0 to 9), with 28<28 pixels. The dataset was binarized: each pixel value washastically set
to 1 with probability proportional to its pixel intensityrém the training data, a random sample of
10,000 images was set aside for validation.

In our first experiment we trained a small restricted Boltamenachine (RBM). An RBM is a par-
ticular type of Markov random field that has a two-layer am@tture, in which the visible binary
stochastic unitk are connected to hidden binary stochastic uhnjtas shown in Fig. 1. The proba-
bility that the model assigns to a visible vectois:

1



Samples before Samples after
Tempered Transitions Tempered Transitions Model Samples

Figure 2:Left: Sample particles produced by the stochastic approximatigerithm after 100,000 parameter
updatesMiddle: Sample particles after applying a tempered transitions Right: Samples generated from
the current model by randomly initializing all binary sta@nd running the Gibbs sampler for 500,000 steps.
After applying tempered transitions, sample particleklowre like the samples generated from the current
model. The images shown are thi@babilitiesof the visible units given the binary states of the hiddenuni

The model had 10 hidden units. This allowed us to calculaexact value of the partition function
simply by summing out the 784 visible units for each configjoreof the hiddens. For the stochastic
approximation procedure, the total number of parameteatgsdvas 100,000, so the learning took
about 25.6 minutes on a Pentium 4 3.00GHz machine. The tearate was kept fixed at 0.01 for
the first 10,000 parameter updates, and was then annealed(@s00+¢). For comparison, we also
trained the same model using exact maximum likelihood witictly the same learning schedule.

Perhaps surprisingly, SAP makes very rapid progress tawde maximum likelihood solution,
even though the model contains 8634 free parameters. Theatog of Fig. 1 further shows that
combining regular Gibbs updates with tempered transitpyosides a more accurate estimator. We
applied tempered transitions only during the last 50,00b&kteps, alternating between 200 Gibbs
updates and a single tempered transitions run that usegisspaced uniformly from 1 to 0.9.
The acceptance rate for the tempered transitions was ak#uT6 be fair, we compared different
algorithms based on the total number of Gibbs steps. For f&®meters were updated after each
Gibbs step (see Algorithm 1), whereas for Trans-SAP, patenmievere updated after each Gibbs
update but not during the tempered transitions'ritience Trans-SAP took slightly less computer
time compared to the plain SAP. Pseudo-likelihood and MCM&ximum likelihood estimators
perform quite poorly, even for this small toy problem.

In our second experiment, we trained a larger semi-restti@oltzmann machine that contained
705,622 parameters. In contrast to RBM’s, the visible uinitthis model form a fully connected
pairwise binary MRF (see Fig. 1, bottom left panel). The mdue 500 hidden units and was
trained to model the joint probability distribution oveettigit images and labels. The total number
of Gibbs updates was set to 200,000, so the learning tookt 4!90b hours. The learning rate was
kept fixed at 0.05 for the first 50,000 parameter updates, asden decreased 830 /(2000 + ¢).

The bottom panel of Fig. 1 shows classification performancéhe full MNIST test set. As ex-
pected, SAP makes very rapid progress towards finding a geiidg of the parameter values.
Using tempered transitions further improves classificefierformance. As in our previous exper-
iment, tempered transitions were only applied during tis¢ 100,000 Gibbs updates, alternating
between 1000 Gibbs updates and a single tempered tramsitionthat used 5008’s spaced uni-
formly from 1 to 0.9. The acceptance rate was about 0.7. Adming was complete, in addition
to classification performance, we also estimated the ladpadility that both models assigned to
the test data. To estimate the models’ partition functimresused Annealed Importance Sampling
[10, 13] — a technique that is very similar to tempered tri@mss. The plain stochastic approxi-
mation algorithm achieved an average test log-probalufigg7.12 per image, whereas Trans-SAP
achieved a considerably better average test log-probabili85.91.

“This reduced the total number of parameter updates #@im000 to 50, 000 + 50, 000 2/3 = 83, 333.
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Figure 3:Results on the NORB datas¢teft: Random samples from the training set. Samples generated fro
the two RBM models, trained using SAP withl{ddle) and without Right) tempered transitions. Samples
were generated by running the Gibbs sampler for 100,008 step

To get an intuitive picture of how tempered transitions aperwe looked at the sample particles
before and after applying a tempered transitions run. Eigushows sample particles after 100,000
parameter updates. Observe that the particles look likeetiddnandwritten digits. However, a run of
tempered transitions reveals that the current model is webalanced, with more probability mass
placed on images of four. To further test whether the “réfeel§ particles were representative of
the current model, we generated samples from the currenehiydrandomly initializing binary
states of the visible and hidden units, and running the Gdalmspler for 500,000 steps. Clearly,
the refreshed particles look more like the samples gerefeden the true model. This in turn al-
lows Trans-SAP to better estimate the model's expectedgiitistatistics, which greatly facilitates
learning a better generative model.

42 NORB

Results on MNIST show that the stochastic approximationrittym works well on the relatively
simple task of handwritten digit recognition. In this seatiwe present results on a considerably
more difficult dataset. NORB [6] contains images of 50 défer3D toy objects with 10 objects in
each of five generic classes: planes, cars, trucks, aniaradshumans. The training set contains
24,300 stereo image pairs of 25 objects, whereas the tesbetins 24,300 stereo pairs of the
remaining, different 25 objects. The goal is to classifyteabject into its generic class. From the
training data, 4,300 cases were set aside for validation.

Each image has 9696 pixels with integer greyscale values in the range [0,288 further reduced
the dimensionality of each image from 9216 down to 4488 bygikirger pixels around the edges of
the imagé. We also augmented the training data with additiamdhbeleddata by applying simple
pixel translations, creating a total of 1,166,400 trainimgtances. To deal with raw pixel data, we
followed the approach of [8] by first learning a GaussiarabjrRBM with 4000 hidden units, and
then treating the the activities of its hidden layer as “poepssed” data. The model was trained
using contrastive divergence learning for 500 epochs. &amked low-level RBM effectively acts
as a preprocessor that transforms greyscale images in@difiensional binary vectors, which we
use as the input for training our models.

We proceeded to training an RBM with 4000 hidden units usiimgly representations learned
by the preprocessor modéleThe RBM, containing over 16 million parameters, was trdiirea
completely unsupervised way. The total number of Gibbs tgzda&as set to 400,000. The learn-
ing rate was kept fixed at 0.01 for the first 100,000 paramgidates, and was then annealed as
100/(1000 + ¢). Similar to the previous experiments, tempered transtivare applied during the
last 200,000 Gibbs updates, alternating between 1000 Gipthates and a single tempered transi-
tions run that used 1008s spaced uniformly from 1 to 0.9.

>The dimensionality of each training vector, representisteaeo pair, was 24488 = 8976.
®The resulting model is effectively a Deep Belief Networkiwivo hidden layers.



Figure 3 shows samples generated from two models, trained gtochastic approximation with
and without tempered transitions. Both models were abledmla lot of regularities in this high-
dimensional, highly-structured data, including variobgeat classes, different viewpoints and light-
ing conditions. The plain stochastic approximation aldpon produced a very unbalanced model
with a large fraction of the model’s probability mass placedmages of humans. Using tempered
transitions allowed us to learn a better and more balancedrgéve model, including the light-
ing effects. Indeed, the plain SAP achieved a test log-fitibaof -611.08 per image, whereas
Trans-SAP achieved a test log-probability of -598.58.

We also tested the classification performance of both mcileigly by fitting a logistic regression
model to the labeled data (using only the 24300 labeleditrgiexamples without any translations)
using the top-level hidden activities as inputs. The modehed by SAP achieved an error rate
of 8.7%, whereas the model trained using Trans-SAP redingedrtor rate down to 8.4%. This is
compared to 11.6% achieved by SVM’s, 22.5% achieved by tiagiegression applied directly in
the pixel space, and 18.4% achieved by K-nearest neighbprs [

5 Conclusions

We have presented a class of stochastic approximationithiger of the Robbins-Monro type that

can be used to efficiently learn parameters in large dersmiprected MRF’s. Using MCMC oper-

ators based on tempered transitions allows the stochggiioximation algorithm to better explore

highly multimodal distributions, which in turn allows us lEarn good generative models of hand-
written digits and 3D objects in a reasonable amount of cdargime.

In this paper we have concentrated only on using temperesitian operators. There exist a variety
of other methods for sampling from distributions with masglated modes, including simulated
tempering [7] and parallel tempering [3], all of which canibeorporated into SAP. In particular,
the concurrent work of [2] employs parallel tempering tdghes to imrpove mixing in RBM’s.
There are, however, several advantages of using tempeesittons over other existing methods.
First, tempered transitions do not require specifying axtyaevariables, such as the approximate
values of normalizing constants of intermediate distidng, which are needed for the simulated
tempering method. Second, tempered transitions have modasory requirements, unlike, for
example, parallel tempering, since the acceptance rulbe&aomputed on the fly as the intermediate
states are generated. Finally, the implementation of teetpgansitions requires almost no extra
work beyond implementing the Gibbs sampler, and can beydagiigrated into existing code.
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