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Abstract

We show that matrix completion with trace-
norm regularization can be significantly hurt
when entries of the matrix are sampled non-
uniformly. We introduce a weighted version
of the trace-norm regularizer that works well
also with non-uniform sampling. Our experi-
mental results demonstrate that the weighted
trace-norm regularization indeed yields sig-
nificant gains on the (highly non-uniformly
sampled) Netflix dataset.

1. Introduction

Trace-norm regularization is a popular approach for
matrix completion and collaborative filtering, mo-
tivated both as a convex surrogate to the rank
(Fazel et al., 2001; Candes & Tao, 2009) and in terms
of a regularized infinite factor model with con-
nections to large-margin norm-regularized learning
(Srebro et al., 2005b; Bach, 2008; Abernethy et al.,
2009; Salakhutdinov & Mnih, 2008).

Current theoretical guarantees on using the trace-
norm for matrix completion all assume a uni-
form sampling distribution over entries of the ma-
trix (Srebro & Shraibman, 2005; Candes & Tao, 2009;
Candes & Recht, 2009; Candes & Tao, 2009; Recht,
2009). In a collaborative filtering setting, where rows
of the matrix represent e.g. users and columns rep-
resent e.g. movies, this corresponds to assuming all
users are equally likely to rate movies and all movies
are equally likely to be rated. This of course cannot be
further from the truth, as in any actual collaborative
filtering application, some users are much more active
than others and some movies are rated by many people
while others are much less likely to be rated.

In Section 3 we show, both analytically and through

simulations, that this is not a deficiency of the proof
techniques used to establish the above guarantees. In-
deed, a non-uniform sampling distribution can lead to
a significant deterioration in prediction quality and an
increase in the sample complexity. Under non-uniform
sampling, as many as Ω(n4/3) samples might be needed
for learning even a simple (e.g. orthogonal low rank)
n×n matrix. This is in sharp contrast to the uniform
sampling case, in which Õ(n) samples are enough. It
is important to note that if the rank could be mini-
mized directly, which is in general not computation-
ally tractable, Õ(n) samples would be enough to learn
a low-rank model even under an arbitrary non-uniform
distribution.

In Section 4 we suggest a correction to the trace-
norm regularizer, which we call the weighted trace-
norm, that takes into account the sampling distribu-
tion. This correction is motivated by our analytic anal-
ysis and we discuss how it corrects the problems that
the unweighted trace-norm has with non-uniform sam-
pling. We then show how the weighted trace-norm in-
deed yields a significant improvement on the (highly
non-uniformly sampled) Netflix dataset.

2. Complexity Control in terms of

Matrix Factorizations

Consider the problem of predicting the entries of some
unknown target matrix Y ∈ R

n×m based on a random
subset S of observed entries YS . For example, n and
m may represent the number of users and the number
of movies, and Y may represent a matrix of partially
observed rating values. Predicting elements of Y can
be done by finding a matrix X minimizing the train-
ing error, here measured as a squared error, and some
measure c(X) of complexity. That is, minimizing ei-
ther:

min
X

‖XS − YS‖2
F + λc(X) (1)
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or:
min

c(X)≤C
‖XS − YS‖2

F , (2)

where YS , and similarly XS , denotes the matrix
“masked” by S:

(YS)i,j =

{

Yi,j if (i, j) ∈ S

0 otherwise.
(3)

For now we ignore possible repeated entries in S. We
will also assume that n ≤ m without loss of generality.

The two formulations (1) and (2) are equivalent up
to some (unknown) correspondence between λ and C,
and we will be referring to them interchangeably at
our convenience.

2.1. Low Rank Factorization

A basic measure of complexity is the rank of X , cor-
responding to the minimal dimensionality k such that
X = U⊤V for some U ∈ R

k×n and V ∈ R
k×m.

Directly constraining the rank of X forms one of
the most popular approaches to collaborative filter-
ing. Training such a model amounts to finding the
best rank-k approximation to the observed target ma-
trix Y under the given loss function. However, the
rank is non-convex and hard to minimize. It is also
not clear if a strict dimensionality constraint is most
appropriate for measuring the complexity.

2.2. Trace-norm Regularization

Lately, methods regularizing the norm of the fac-
torization U⊤V , rather than its dimensionality, have
been advocated and were shown to enjoy con-
siderable empirical success (Rennie & Srebro, 2005;
Salakhutdinov & Mnih, 2008). This is captured by
measuring complexity in terms of the trace-norm of X ,
which can be defined equivalently either as the sum of
the singular values of X , or as (Fazel et al., 2001):

‖X‖tr = min
X=U ′V

1

2
(‖U‖2

F + ‖V ‖2
F). (4)

Note that the dimensionality of U and V in (4) is not
constrained. Beyond the modeling appeal of norm-
based, rather than dimension-based, regularization,
the trace-norm is a convex function of X and so can be
minimized by either local search or more sophisticated
convex optimization techniques.

2.3. Scaling of the Trace-norm

It will be useful for us to consider the scaling of the
trace-norm with the size of the matrix X . This will

allow us, for example, to understand the magnitude of
the bound C we can expect to put on the trace-norm
in the formulation (2).

The rank, as a measure of complexity, does not scale
with the size of the matrix. That is, even very large
matrices can have low rank. Viewing the rank as a
complexity measure corresponding to the number of
underlying factors, if data is explained by e.g. two fac-
tors, then no matter how many rows (“users”) and
columns (“movies”) we consider, the data will still
have rank two.

The trace-norm, however, does inherently scale with
the size of the matrix. To see this, note that the trace-
norm is the ℓ1 norm of the spectrum, while the Frobe-
nius norm is the ℓ2 norm of the spectrum, yielding:

‖X‖F ≤ ‖X‖tr ≤ ‖X‖F

√

rank(X) ≤ n ‖X‖F , (5)

where in the second inequality we used the fact that
the number of non-zero singular values is equal to the
rank. The Frobenius norm certainly increases with the
size of the matrix, since the magnitude of each element
does not decrease when we have more elements, and
so the trace-norm will also increase. The above sug-
gests measuring the trace-norm relative to the Frobe-
nius norm. Without loss of generality, consider each
target entry to be of roughly unit magnitude1, e.g. ±1,
and so in order to fit Y each entry of X must also be
of roughly unit magnitude. This suggests scaling the
trace-norm by

√
nm. More specifically, we study the

trace-norm through the complexity measure:

tc(X) =
‖X‖2

tr

nm
, (6)

which puts the trace-norm on a comparable scale to
the rank. In particular, when each entry of X is, on-
average, of unit magnitude (i.e. has unit variance), in
which case ‖X‖F =

√
nm, we have:

1 ≤ tc(X) ≤ rank(X) ≤ n. (7)

To further understand the trace-norm complexity
control, consider “orthogonal” low-rank matrices
U ∈ R

k×n and V ∈ R
k×m, such that Y = U⊤V and

where the entries of U and V are i.i.d. N (0, 1/
√

k)2.
The matrix Y is then of rank k, with each entry having
zero mean and unit variance (magnitude). Its Frobe-
nius norm is tightly concentrated at ‖Y ‖F =

√
nm.

1Any other constant magnitude will only result in some
constant scaling

2The important issue here is the orthogonality and the
norm uniformity, not the randomness. But we find it easier
to think of the orthogonality in terms of an i.i.d. random
model.



Learning with the Weighted Trace Norm

Since rows of U and V are orthogonal, this is essen-
tially the singular value decomposition, with all k sin-
gular values being equal to

√

nm/k. We thus have
tc(X) = k. And so at least in the orthogonal case,
tc(X) = rank(X).

Another place where we can see that tc(X) plays a
similar role to rank(X) is in the generalization and
sample complexity guarantees that can be obtained
for low-rank and low-trace-norm learning. Such learn-
ing guarantees were mostly discussed in the context of
Lipschitz continuous loss functions (i.e. functions with
a bounded first derivative), rather than the squared
loss. The squared loss has a bounded second derivative
rather than bounded first derivative and so requires
somewhat different technical tools. Nevertheless, the
main thrust of the results is still valid.

For Lipschitz continuous loss functions, if there is a
low-rank matrix X∗ achieving low average error rel-
ative to Y (e.g. if Y = X∗ + noise), then by min-
imizing the training error subject to a rank con-
straint (a computationally intractable task), |S| =
Õ(rank(X∗)(n + m)) samples are enough in order to
guarantee learning a matrix X whose overall average
error is close to that of X∗ (Srebro et al., 2005a). Sim-
ilarly, if there is a low-trace-norm matrix X∗ achieving
low average error, then minimizing the training error
and the trace-norm (a convex optimization problem),
|S| = Õ(tc(X∗)(n + m)) samples are enough in order
to guarantee learning a matrix X whose overall aver-
age error is close to that of X∗ (Srebro & Shraibman,
2005). In these bounds tc(X) plays precisely the same
role as the rank, up to logarithmic factors.

Without getting into the technical tools required to
rigorously establish the above sample complexity guar-
antees, it is useful to understand them at a more ab-
stract level. In order to understand the guarantees for
low-rank learning, it is enough to consider the number
of parameters in the rank-k factorization X = U⊤V .
It is easy to see that the number of parameters in the
factorization is roughly k(m + n) (perhaps a bit less
due to rotational invariants). And so we would expect
to be able to learn X when we have roughly this many
samples, as is indeed confirmed by the rigorous sample
complexity bounds.

For low-trace-norm learning, consider a sample S of
size |S| ≤ Cn, for some constant C. Taking entries of
Y to be of unit magnitude, we have ‖YS‖F =

√

|S| =√
Cn (Recall that YS is defined to be zero outside S).

From (5) we therefore have: ‖YS‖tr ≤
√

Cn · √n =√
Cn and so tc(YS) ≤ C. That is, we can “shatter”

any sample of size |S| ≤ Cn with tc(X) = C: no mat-
ter what the underlying matrix Y is, we can always

perfectly fit the training data with a low trace-norm
matrix X s.t. tc(X) ≤ C, without generalizing at all
outside S. On the other hand, we must allow matrices
with tc(X) = tc(X∗), otherwise we can’t hope to find
X∗, and so we can only constrain tc(X) ≤ C = tc(X∗).
We therefore cannot expect to learn with less than
ntc(X∗) samples. It turns out that this is essentially
the largest random sample that can be shattered with
tc(X) ≤ C = tc(X∗), and that if we have more than
this many samples we can start learning. For our
purposes here, we will mostly just make use of non-
learnability arguments of this form: if we can shatter
a random sample of size |S| with a matrix X have the
same complexity (e.g. trace-norm) as our target matrix
X∗, we cannot hope to learn without a larger sample.

3. Trace-Norm Under a Non-Uniform

Distribution

In this section, we will analyze trace-norm regularized
learning when the sampling distribution is not uni-
form. That is, when there is some, known or unknown,
non-uniform distribution D over entries of the matrix
Y (i.e. over index pairs (i, j)) and our sample S is
sampled i.i.d. from D. Of course, if D concentrates on
only a small subset of the matrix, we have no hope of
recovering rows and columns of Y on which we have
zero probability of seeing an observation. Instead, our
objective here, as is typically the case in learning un-
der an arbitrary distribution, is to get low average er-
ror with respect to the same distribution D. That is,
we measure generalization performance in terms of the
weighted sum-squared-error:

‖X − Y ‖2
D = E(i,j)∼D

[

(Xij − Yij)
2
]

=
∑

ij

D(i, j)(Xij − Yij)
2. (8)

We first point out that when using the rank for com-
plexity control, i.e. when minimizing the training er-
ror subject to a low-rank constraint, non-uniformity
does not pose a problem. The same generalization and
learning guarantees that can be obtained in the uni-
form case, also hold under an arbitrary distribution
D. In particular, if there is some low-rank X∗ such
that ‖X∗ − Y ‖2

D is small, then Õ(rank(X∗)(n + m))
samples are enough in order to learn (by minimiz-
ing training error subject to a rank constraint) a ma-

trix X with ‖X − Y ‖2
D almost as small as ‖X∗ − Y ‖2

D

(Srebro et al., 2005a)3.

However, the same does not hold when learning us-

3Actually, this is shown only for Lipschitz continuous
loss functions, and not for the squared-loss, but at the very
least this holds if X is appropriately clipped. Since for-
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A

B

Figure 1. The two submatrices A of size nA = na and B
of size nB = n/2.

ing the trace-norm. To see this, consider an orthog-
onal rank-k square n × n matrix, and a sampling
distribution which is uniform over an nA × nA sub-
matrix A, with nA = na (see Fig. 1). That is, the
row (e.g. “user”) is selected uniformly among the first
nA rows, and the column (e.g. “movie”) is selected
uniformly among the first nA columns. We will use
A to denote the subset of entries in the submatrix,
i.e. A = {(i, j)|1 ≤ i, j ≤ nA}, rather than the matrix
itself, and so we can say that D is uniform on A. For
any sample S, we have:

tc(YS) =
‖YS‖2

tr

n2
≤ ‖YS‖2

F rank(YS)

n2

≤ |S|na

n2
=

|S|
n2−a

, (9)

where we again take the entries in Y to be of unit
magnitude. In the second inequality above we use the
fact that YS is zero outside of A, and so we can bound
the rank of YS by the dimensionality nA = na of A.

Setting a < 1, we see that we can shatter any sam-
ple of size4 kn2−a = ω̃(n) with a matrix X for which
tc(X) < k. When a ≤ 1/2, the total number of
entries in A is less than n, and so Õ(n) observa-
tions are enough in order to memorize YA. But when
1/2 < a < 1, with Õ(n) observations, restricting to
even tc(X) < 1, we can neither learn Y , since we
can shatter YS , nor memorize it. For example, when
a = 2/3 and so nA = n2/3, we need roughly n4/3 to
start learning by constraining tc(X) to a constant —
the same as we would need in order to memorize YA.
This is a factor of n1/3 greater than the sample size
needed to learn a matrix with constant tc(X) in the
uniform case.

The above arguments establish that restricting the
complexity to tc(X) < k might not lead to general-
ization with Õ(kn) samples in the non-uniform case.
But does this mean that we cannot learn a rank-k ma-

mal guarantees are not the focus of this paper, we rather
view this statement only as an indicative statement with-
out stating it rigorously.

4Recall that f(n) = ω̃(g(n)) is the same as g(n) =

õ(f(n)) and means that for all p we have g(n) logp g(n)
f(n)

→ 0.

trix by minimizing the trace-norm using Õ(kn) sam-
ples when the sampling distribution is concentrated
on a small submatrix? Of course this is not the case.
Since the samples are uniform on a small submatrix,
we can just think of the submatrix A as our entire
space. The target matrix still has low rank, even when
restricted to A, and we are back in the uniform sam-
pling scenario. The only issue here is that tc(X) ≤ k,
i.e. ‖X‖tr ≤ n

√
k, is the right constraint in the uni-

form observation scenario. When samples are concen-
trated in nA, we actually need to restrict to a much
smaller trace norm, ‖X‖tr ≤ na

√
k, which will allow

learning with Õ(kna) samples.

It is, however, easy to modify the above example and
construct a sampling distribution under which Ω(n4/3)
samples are required in order to learn even an “or-
thogonal” low-rank matrix, no matter what constraint
is placed on the trace-norm. This is a significantly
large sample complexity than Õ(kn), which is what
we would expect, and what is required for learning by
constraining the rank directly.

To do so, consider another submatrix B of size nB×nB

with nB = n/2, such that the rows and columns of A
and of B do not overlap (Fig. 1). Now, consider a
sampling distribution D which is uniform over A with
probability half, and uniform over B with probability
half. Consider fitting a noisy matrix Y = X∗ + noise
where X∗ is “orthogonal” rank-k. In order to fit on
B, we need to allow a trace-norm of at least ‖X∗

B‖tr =
n
2

√
k, i.e. allow tc(X) = k/4. But as discussed above,

with such a generous constraint on the trace-norm, we
will be able to shatter S ⊂ A whenever |S ∩ A| =
|S|/2 ≤ k/4n2−a. Since there is no overlap in rows
and columns, and so values in the sub-matrices A and
B are independent, shattering S ∩A means we cannot
hope to learn in A. Setting a = 2/3 as before, it seems
that with o(n4/3) samples, we cannot learn in both A
and B: either we constrain to a trace-norm which is
too low to fit X∗

B (we under-fit on B), or we allow
a trace-norm which is high enough to overfit YS∩A.
Either way, we will make errors on at least half the
mass of D.5

Figure 2, left panel, precisely illustrates this phe-
nomenon on a simulation experiment. For this syn-
thetic example, we used nA = 300 and nB = 4700,

5To make the above argument more precise, we should
note that if we do allow high enough trace-norm to fit B,
and |S| = o(n4/3), then the “cost” of overfitting YS∩A is
negligible compared to the cost of fitting X∗

B . For large
enough n, we would be tempted to very slightly deteriorate
the fit of X∗

B in order to “free up” enough trace-norm and
completely overfit YS∩A.
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Figure 2. Mean squared error (MSE) of the learned model as a function of the constraint on tc(X) (left) and tcpq(X)
(right). The black (middle) curve is the overall MSE error, the red (bottom) curve measures only the contribution from
A, and the blue (top) curve measures only the contribution from B.

with an orthogonal rank-2 matrix X∗ and Y = X∗ +
N (0, 1) (in case of repeated entries, the noise is in-
dependent for each appearance in the sample). The
training sample size was also set to |S|=140,000.

The three curves of Fig. 2 measure the excess (test)

error ‖X − X∗‖2
D = ‖X − Y ‖2

D − ‖Y − X∗‖2
D of the

learned model, as well as the error contribution from A
and from B, as a function of the constraint on tc(X),
for the sampling distribution discussed above and a
specific sample size. As can be seen, although it is
possible to constrain tc(X) so as to achieve squared-
error of less than 0.8 on B, this constraint is too lax
for A and allows for over-fitting. Constraining tc(X) so
as to avoid overfitting A (achieving almost zero excess
test error), leads to a suboptimal fit on B.

Until now we discussed learning by constraining the
trace-norm, i.e. using the formulation (2). It is also
insightful to consider the penalty view (1), i.e. learning
by minimizing

min
X

‖YS − XS‖2
F + λ ‖X‖tr . (10)

First observe that the characterization (4) allows us
to decompose ‖X‖tr = ‖XA‖tr + ‖XB‖tr, where
w.l.o.g. we take all columns of U and V outside A
and B to be zero. Since we also have ‖YS − XS‖2

F =

‖YA∩S − XA∩S‖2
F + ‖YB∩S − XB∩S‖2

F, we can decom-
pose the training objective (10) as:

‖YS − XS‖2
F + λ ‖X‖tr

= (‖YA∩S − XA∩S‖2
F + λ ‖XA‖tr)

+ (‖YB∩S − XB∩S‖2
F + λ ‖XB‖tr)

=
(

‖YA∩S − XA∩S‖2
F + λnA

√

tcA(XA)
)

+
(

‖YB∩S − XB∩S‖2
F + λnB

√

tcB(XB)
)

, (11)

where tcA(XA) = ‖XA‖2
tr /n2

A (and similarly tcB(XB))
refers to the complexity measure tc(·) measured rela-
tive to the size of A (similarly B). We see that the
training objective decomposes to a trace-norm regular-
ized problem in A and a trace-norm regularized prob-
lem in B. Each one of these problems is a trace-norm
regularized learning problem, under a uniform sam-
pling distribution (in the corresponding submatrix) of
a noisy low-rank “orthogonal” matrix, and can there-
for be learned with Õ(knA) and Õ(knB) samples re-
spectively. In other words, Õ(kn) samples should be
enough to learn both inside A and inside B.

However, the regularization tradeoff parameter λ com-
pounds the two problems. When the objective is ex-
pressed in terms of tc(·), as in (11), the regularization
tradeoff is scaled differently in each part of the train-
ing objective. With Õ(kn) samples, it is possible to
learn in A with some setting of λ, and it is possible
to learn in B with some other setting of λ, but from
the discussion above we learn that no single value of
λ will allow learning in both A and B. Either λ is too
high yielding too strict regularization in B, so learn-
ing on B is not possible, perhaps since it is scaled by
nB ≫ nA. Or λ is too small and does not provide
enough regularization in A.

Returning to our simulation experiment, the solid
curves of Fig. 3 show the excess test error for the
minimizer of the training objective (11), as a func-
tion of the regularization tradeoff parameter λ. Note
that these are essentially the same curves as displayed
in Fig. 2, except the path of regularized solutions is
now parameterized by λ rather than by the bound on
tc(X). Not surprisingly we see the same phenomena:
different values of λ are required for optimal learning
on A and on B. Forcing the same λ on both parts of
the training objective (11) yields a deterioration in the
generalization performance.
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Figure 3. The solid curves show the optimum of the mean
squared error objective (11) (unweighted trace-norm), as
a function of the regularization parameter λ. The dashed
curves display a weighted trace-norm.

4. Weighted Trace Norm

The decomposition (11) and the discussion in the pre-
vious section suggests weighting the trace-norm by the
frequency of rows and columns. For a sampling distri-
bution D, denote by p(i) the row marginal, i.e. the
probability of observing row i, and similarly denote
by q(j) the column marginal. We propose using the
weighted version of the trace-norm as a regularizer:

‖X‖tr(p,q) = ‖diag(
√

p)Xdiag(
√

q)‖tr

= min
X=U ′V

1

2
(
∑

i

p(i) ‖Ui‖2
+

∑

j

q(j), ‖Vj‖2
) (12)

where diag(
√

p) is a diagonal matrix with
√

p(i) on
its diagonal (similarly diag(

√
q)). The corresponding

normalized complexity measure is given by tcp,q(X) =

‖X‖2
tr(p,q). Note that for a uniform distribution we

have that tcp,q(X) = tc(X). Furthermore, it is easy
to verify that for an “orthogonal” rank-k matrix X we
have tcp,q(X) = k for any sampling distribution.

Equipped with the weighted trace-norm as a regular-
izer, let us revisit the problematic sampling distri-
bution studied in the previous Section. In order to
fit the “orthogonal” rank-k X∗, we need a weighted
trace-norm of ‖X∗‖tr(p,q) =

√

tcp,q(X) =
√

k. How
large a sample S ∩ A can we now shatter using such
a weighted trace-norm? We can shatter a sample
if ‖YS∩A‖tr ≤

√
k. In order to calculate ‖YS∩A‖tr,

recall that for (i, j) ∈ A we have p(i) = q(j) =
1/(2nA). We can now calculate: ‖YS∩A‖tr(p,q) =
∥

∥

∥

√

1/(2nA)YS∩A

√

1/(2nA)
∥

∥

∥

tr
= ‖YS∩A‖tr /(2nA) ≤

√

|S ∩ A|nA/(2nA) =
√

|S|/(8nA). That is, we can
shatter a sample of size up to |S| = 8knA < 8kn.
The calculation for B is identical. It seems that now,
with a fixed constraint on the weighted trace-norm, we
have enough capacity to both fit X∗, and with Õ(kn)
samples, avoid overfitting on A.

Returning to the penalization view (2) we can again
decompose the training objective:

min
X

‖YS − XS‖2
F + λ ‖X‖tr(p,q) , (13)

as:

‖YS − XS‖2
F + λ ‖X‖tr(p,q)

= (‖YA∩S − XA∩S‖2
F + λ ‖XA‖tr(p,q))

+ (‖YB∩S − XB∩S‖2
F + λ ‖XB‖tr(p,q))

=
(

‖YA∩S − XA∩S‖2
F + λ/2

√

tcA(XA)
)

+
(

‖YB∩S − XB∩S‖2
F + λ/2

√

tcB(XB)
)

(14)

avoiding the scaling by the block sizes which we en-
countered in (11).

Returning to the synthetic experiments of Fig. 3, and
comparing (11) with (14), we see that introducing the
weighting corresponds to a relative change of nA/nB

in the correspondence of the regularization tradeoff pa-
rameters used for A and for B. This corresponds to
a shift of log nA

nB
in the log-domain used in the figure.

Shifting the solid red (bottom) curve by this amount
yields the dashed red (bottom) curve. The solid blue
(top) curve and the dashed red (bottom) curve thus
represent the excess error on B and on A when the
weighted trace norm is used, i.e. the training objec-
tive (14) is minimized (except for an overall scaling
in λ). The dashed black (middle) curve is the over-
all excess error when using this training objective. As
can be seen, the weighting aligns the excess errors on A
and on B much better, and yields a lower overall error.
The weighted trace-norm achieves the lowest MSE of
0.4301 with corresponding λ = 0.11. This is compared
to the lowest MSE of 0.4981 with λ = 0.80, achieved
by the unweighted trace-norm. It is also interesting to
observe that the weighted trace-norm outperforms its
unweighted counterpart for a wide range of regulariza-
tion parameters λ ∈ [0.01; 0.6]. This may also suggest
that in practice, particularly when working with large
and imbalanced datasets, it may be easier to search for
regularization parameters using weighted trace-norm.
Fig. 2, right panel, further shows the test error as a
function on the constraint tcp,q(X).

Finally, Fig. 3 also suggests that the optimal shift is
actually smaller than nA/nB. We consider a smaller
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shift by using the partially-weighted trace-norm:

‖X‖tr(p,q,α) =
∥

∥

∥
diag(pα/2)Xdiag(qα/2)

∥

∥

∥

tr

= min
X=U⊤V

1

2
(
∑

i

p(i)α ‖Ui‖2
+

∑

j

q(j)α ‖Vj‖2
) (15)

And he corresponding normalized complexity measure
tcp,q,α(X) = ‖X‖2

tr( pα

n1−α , qα

m1−α ).

5. Practical Implementation

When dealing with large datasets, such as the Netflix
data, the most practical way to fit trace-norm regu-
larized models is through stochastic gradient descent
(Salakhutdinov & Mnih, 2008; Koren, 2008).

Let ni =
∑

j Sij and mj =
∑

i Sij denote the num-
ber of observed ratings for user i and movie j respec-
tively. The training objective (over the index pairs
(i, j)) using partially-weighted trace-norm (Eq. 12)
can be written as:

∑

{i,j}∈S

(

(

Yij − U⊤
i Vj

)2
+ (16)

+
λ

2

(

p(i)α

ni
‖Ui‖2

+
q(j)α

mj
‖Vj‖2

))

,

where U ∈ R
k×n and V ∈ R

k×m. We can optimize this
objective using stochastic gradient descent by picking
one training pair (i, j) at random at each iteration, and
taking a step in the direction opposite the gradient of
the term corresponding to the chosen (i, j).

Note that even though the objective (16) as a func-
tion of U and V is non-convex, there are no non-
global local minima if we set k to be large enough,
i.e. k > min(n, m) (Burer & Monteiro, 2005). How-
ever, fitting orthogonal models in practice with very
large values of k becomes computationally expensive.
Instead, we consider truncated trace-norm minimiza-
tion by restricting k to smaller values. In the next sec-
tion we demonstrate that even when using truncated
trace-norm, its weighted version significantly improves
model’s prediction performance.

In all of our experiments, we also replace unknown
row p(i) and column q(j) marginals in (16) by their
empirical estimates p̂(i) = ni/|S| and q̂(j) = mj/|S|.
This results in the following objective:

∑

{i,j}∈S

(

(

Yij − U⊤
i Vj

)2
+ (17)

+
λ

2|S|

(

nα−1
i ‖Ui‖2 + mα−1

j ‖Vj‖2

))

.

Table 1. Model performance using Root Mean Squared Er-
ror (RMSE) on the Netflix qualification set and the test set,
that was randomly subsampled from the training data.

RMSE RMSE
α k Test Qual k Test Qual
1 30 0.7607 0.9105 100 0.7412 0.9071

0.9 30 0.7573 0.9091 100 0.7389 0.9062
0.75 30 0.7723 0.9128 100 0.7491 0.9098
0.5 30 0.7823 0.9159 100 0.7613 0.9127
0 30 0.7889 0.9235 100 0.7667 0.9203

Setting α = 1, corresponding to the weighted trace-
norm (12), results in stochastic gradient updates that
do not involve the row and column counts at all
and are in some sense the simplest. Strangely, and
likely originating as a “bug” in calculating the stochas-
tic gradients by one of the participants, these are
the actual SGD steps used by many practitioners on
the Netflix dataset (Koren, 2008; Takács et al., 2009;
Salakhutdinov & Mnih, 2008).

6. Experimental results

We evaluated various models on the Netflix dataset,
which is the largest publicly available collaborative fil-
tering dataset. The training set contains 100,480,507
ratings from 480,189 randomly-chosen, anonymous
users on 17,770 movie titles. As part of the training
data, Netflix also provides qualification set, contain-
ing 1,408,395 ratings. The pairs were selected from
the most recent ratings for a subset of the users in the
training dataset. Due to the special selection scheme,
ratings from users with few ratings are overrepresented
in the qualification set, relative to the training set. To
avoid the issue of dealing with different training and
test distributions, we also created our own validation
and test sets, each containing 100,000 ratings that were
randomly selected from the training set. As a base-
line, Netflix provided the test score of its own system
trained on the same data, which is 0.9514.

This dataset is interesting for several reasons. First,
it is very large, and very sparse (98.8% sparse). Sec-
ond, the dataset is very imbalanced with highly non-
uniform samples. It includes users with over 10,000
ratings as well as users who rated fewer than 5 movies.

6.1. Results

In our first experiment, for various values of α, we fit
parameters U and V using stochastic gradient descent
as in (17) with k = 30. Both U and V were randomly
initialized for all models and regularization parameters
λ were chosen by cross-validation.

Performance results of the weighted trace-norm regu-
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larization for various values of α are shown in table 1.
Observe that that the weighted trace-norm (α = 1)
achieved a RMSE of 0.9105 on the Netflix qualification
set, significantly outperforming its unweighted coun-
terpart with α = 0, that achieved a RMSE of 0.9235.
This large performance gap is striking. It clearly sug-
gests that the weighting is quite important. Table 1
further reveals that the weighted trace-norm (α = 1)
is not optimal. Surprisingly, partially weighted trace-
norm with α = 0.9 achieved a RMSE of 0.9091, slightly
outperforming the weighted matrix factorization. Per-
formance results on the artificially created test set are
similar to the results on the qualification set. Note
also that the large gap in generalization performance
between the test and the qualification sets is due to
the Netflix’s special qualification selection scheme.

In our second experiment, we fitted much larger mod-
els with k = 100. As expected, the weighted trace-
norm regularization (α = 1) attained a RMSE 0.9071,
significantly improving upon the unweighted model’s
RMSE of 0.9203. Again, this large performance gap
strongly suggests that the weighting can yield signif-
icant performance boost, particularly when dealing
with very imbalanced data, such as the Netflix dataset.

In all of our experiments, we also empirically ob-
served that for a wide range of regularization parame-
ters λ, optimizing the weighted trace-norm almost al-
ways yielded better predictions on both the test and
the Netflix qualification sets than optimizing the un-
weighted trace-norm. This confirms our previous re-
sults on the synthetic experiment and strongly sug-
gests that it may be far easier to search for regulariza-
tion parameters using the weighted trace-norm.

7. Discussion

In this paper we showed both analytically and empir-
ically that under non-uniform sampling, trace-norm
regularization can lead to significant performance de-
terioration and an increase in sample complexity. Mo-
tivated by our analytic analysis, we further suggested
a corrected version of the trace-norm, called weighted
trace-norm, that does take into account the non-
uniform sampling distribution. Our results on both
synthetic and highly imbalanced Netflix datasets fur-
ther demonstrate that the weighted trace-norm yields
significant improvements in prediction quality. It is
interesting to note that setting α = 1 in the weighted
trace-norm objective (12) implies that the frequent
users (movies) get regularized much stronger than
the rare users (movies). From Bayesian perspective,
such regularization is quite unusual, since it effectively
states that the effect of the prior becomes stronger as

we observe more data. Yet, our analysis and empirical
results strongly suggest that in non-uniform setting,
such “unorthodox” regularization is crucial for achiev-
ing good generalization performance.

Although theoretical guarantees are not the focus
of this work, we hope that the weighted trace-
norm, and the discussions in Sections 3 and 4, will
be helpful in deriving theoretical learning guaran-
tees for non-uniform sampling distributions, both
in the form of generalization error bounds as in
(Srebro & Shraibman, 2005), and generalizing the
compressed-sensing inspired work on recovery of noisy
low-rank matrices as in (Candes & Plan, 2009; Recht,
2009).
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