
Learning Stochastic Feedforward Neural Networks

Yichuan Tang
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada.
tang@cs.toronto.edu

Ruslan Salakhutdinov
Department of Computer Science and Statistics

University of Toronto
Toronto, Ontario, Canada.

rsalakhu@cs.toronto.edu

Abstract

Multilayer perceptrons (MLPs) or neural networks are popular models used for
nonlinear regression and classification tasks. As regressors, MLPs model the
conditional distribution of the predictor variables Y given the input variables X .
However, this predictive distribution is assumed to be unimodal (e.g. Gaussian).
For tasks involving structured prediction, the conditional distribution should be
multi-modal, resulting in one-to-many mappings. By using stochastic hidden vari-
ables rather than deterministic ones, Sigmoid Belief Nets (SBNs) can induce a rich
multimodal distribution in the output space. However, previously proposed learn-
ing algorithms for SBNs are not efficient and unsuitable for modeling real-valued
data. In this paper, we propose a stochastic feedforward network with hidden lay-
ers composed of both deterministic and stochastic variables. A new Generalized
EM training procedure using importance sampling allows us to efficiently learn
complicated conditional distributions. Our model achieves superior performance
on synthetic and facial expressions datasets compared to conditional Restricted
Boltzmann Machines and Mixture Density Networks. In addition, the latent fea-
tures of our model improves classification and can learn to generate colorful tex-
tures of objects.

1 Introduction
Multilayer perceptrons (MLPs) are general purpose function approximators. The outputs of a MLP
can be interpreted as the sufficient statistics of a member of the exponential family (conditioned on
the inputX), thereby inducing a distribution over the output space Y . Since the nonlinear activations
are all deterministic, MLPs model the conditional distribution p(Y |X) with a unimodal assumption
(e.g. an isotropic Gaussian)1.

For many structured prediction problems, we are interested in a conditional distribution p(Y |X)
that is multimodal and may have complicated structure2. One way to model the multi-modality is to
make the hidden variables stochastic. Conditioned on a particular input X , different hidden config-
urations lead to different Y . Sigmoid Belief Nets (SBNs) [3, 2] are models capable of satisfying the
multi-modality requirement. With binary input, hidden, and output variables, they can be viewed
as directed graphical models where the sigmoid function is used to compute the degrees of “belief”
of a child variable given the parent nodes. Inference in such models is generally intractable. The
original paper by Neal [2] proposed a Gibbs sampler which cycles through the hidden nodes one
at a time. This is problematic as Gibbs sampling can be very slow when learning large models
or fitting moderately-sized datasets. In addition, slow mixing of the Gibbs chain would typically
lead to a biased estimation of gradients during learning. A variational learning algorithm based on

1For example, in a MLP with one input, one output and one hidden layer: p(y|x) ∼ N (y|µy, σ
2
y), µy =

σ
(
W2σ(W1x)

)
, σ(a) = 1/(1+ exp(−a)) is the sigmoid function. Note that the Mixture of Density Network

is an exception to the unimodal assumption [1].
2An equivalent problem is learning one-to-many functions from X 7→ Y .

1

x

ysto
ch
a
stic

sto
ch
a
stic

Figure 1: Stochastic Feedforward Neural Networks. Left: Network diagram. Red nodes are stochastic and
binary, while the rest of the hiddens are deterministic sigmoid nodes. Right: motivation as to why multimodal
outputs are needed. Given the top half of the face x, the mouth in y can be different, leading to different
expressions.

the mean-field approximation was proposed in [4] to improve the learning of SBNs. A drawback
of the variational approach is that, similar to Gibbs, it has to cycle through the hidden nodes one
at a time. Moreover, beside the standard mean-field variational parameters, additional parameters
must be introduced to lower-bound an intractable term that shows up in the expected free energy,
making the lower-bound looser. Gaussian fields are used in [5] for inference by making Gaussian
approximations to units’ input, but there is no longer a lower bound on the likelihood.

In this paper, we introduce the Stochastic Feedforward Neural Network (SFNN) for modeling con-
ditional distributions p(y|x) over continuous real-valued Y output space. Unlike SBNs, to better
model continuous data, SFNNs have hidden layers with both stochastic and deterministic units. The
left panel of Fig. 1 shows a diagram of SFNNs with multiple hidden layers. Given an input vector x,
different states of the stochastic units can generates different modes in Y . For learning, we present
a novel Monte Carlo variant of the Generalized Expectation Maximization algorithm. Importance
sampling is used for the E-step for inference, while error backpropagation is used by the M-step
to improve a variational lower bound on the data log-likelihood. SFNNs have several attractive
properties, including:
• We can draw samples from the exact model distribution without resorting to MCMC.
• Stochastic units form a distributed code to represent an exponential number of mixture compo-

nents in output space.
• As a directed model, learning does not need to deal with a global partition function.
• Combination of stochastic and deterministic hidden units can be jointly trained using the back-

propagation algorithm, as in standard feed-forward neural networks.

The two main alternative models are Conditional Gaussian Restricted Boltzmann Machines (C-
GRBMs) [6] and Mixture Density Networks (MDNs) [1]. Note that Gaussian Processes [7] and
Gaussian Random Fields [8] are unimodal and therefore incapable of modeling a multimodal Y .
Conditional Random Fields [9] are widely used in NLP and vision, but often assume Y to be dis-
crete rather than continuous. C-GRBMs are popular models used for human motion modeling [6],
structured prediction [10], and as a higher-order potential in image segmentation [11]. While C-
GRBMs have the advantage of exact inference, they are energy based models that define different
partition functions for different input X . Learning also requires Gibbs sampling which is prone to
poor mixing. MDNs use a mixture of Gaussians to represent the output Y . The components’ means,
mixing proportions, and the output variances are all predicted by a MLP conditioned on X . As with
SFNNs, the backpropagation algorithm can be used to train MDNs efficiently. However, the number
of mixture components in the output Y space must be pre-specified and the number of parameters is
linear in the number of mixture components. In contrast, with Nh stochastic hidden nodes, SFNNs
can use its distributed representation to model up to 2Nh mixture components in the output Y .

2 Stochastic Feedforward Neural Networks
SFNNs contain binary stochastic hidden variables h ∈ {0, 1}Nh , where Nh is the number of hidden
nodes. For clarity of presentation, we construct a SFNN from a one-hidden-layer MLP by replacing
the sigmoid nodes with stochastic binary ones. Note that other types stochastic units can also be
used. The conditional distribution of interest, p(y|x), is obtained by marginalizing out the latent
stochastic hidden variables: p(y|x) =

∑
h p(y,h|x). SFNNs are directed graphical models where

the generative process starts from x, flows through h, and then generates output y. Thus, we can
factorize the joint distribution as: p(y,h|x) = p(y|h)p(h|x). To model real-valued y, we have

2

p(y|h) = N (y|W2h+ b2, σ
2
y) and p(h|x) = σ(W1x+ b1), where b is the bias. Since h ∈ {0, 1}Nh

is a vector of Bernoulli random variables, p(y|x) has potentially 2Nh different modes3, one for every
possible binary configurations of h. The fact that h can take on different states in SFNN is the reason
why we can learn one-to-many mappings, which would be impossible with standard MLPs.

The modeling flexibility of SFNN comes with computational costs. Since we have a mixture model
with potentially 2Nh components conditioned on any x, p(y|x) does not have a closed-form expres-
sion. We can use Monte Carlo approximation with M samples for its estimation:

p(y|x) ' 1

M

M∑
m=1

p(y|h(m)), h(m) ∼ p(h|x). (1)

This estimator is unbiased and has relatively low variance. This is because the accuracy of the
estimator does not depend on the dimensionality of h and that p(h|x) is factorial, meaning that we
can draw samples from the exact distribution.

If y is discrete, it is sufficient for all of the hiddens to be discrete. However, using only discrete
hiddens is suboptimal when modeling real-valued output Y . This is due to the fact that while y is
continuous, there are only a finite number of discrete hidden states, each one (e.g. h′) leads to a
component which is a Gaussian: p(y|h′) = N (y|µ(h′), σ2

y). The mean of a Gaussian component
is a function of the hidden state: µ(h′) = WT

2 h
′ + b2. When x varies, only the probability of

choosing a specific hidden state h′ changes via p(h′|x), not µ(h′). However, if we allow µ(h′) to
be a deterministic function of x as well, we can learn a smoother p(y|x), even when it is desirable
to learn small residual variances σ2

y . This can be accomplished by allowing for both stochastic and
deterministic units in a single SFNN hidden layer, allowing the mean µ(h′,x) to have contributions
from two components, one from the hidden state h′, and another one from defining a deterministic
mapping from x. As we demonstrate in our experimental results, this is crucial for learning good
density models of the real-valued Y .

In SFNNs with only one hidden layer, p(h|x) is a factorial Bernoulli distribution. If p(h|x) has low
entropy, only a few discrete h states out of the 2Nh total states would have any significant probability
mass. We can increase the entropy over the stochastic hidden variables by adding a second hidden
layer. The second hidden layer takes the stochastic and any deterministic hidden nodes of the first
layer as its input. This leads to our proposed SFNN model, shown in Fig. 1.

In our SFNNs, we assume a conditional diagonal Gaussian distribution for the output Y :
log p(y|h,x) ∝ − 1

2

∑
i log σ

2
i − 1

2

∑
i (yi − µ(h,x))2/σ2

i . We note that we can also use any
other parameterized distribution (e.g. Student’s t) for the output variables. This is a win compared
to the Boltzmann Machine family of models, which require the output distribution to be from the
exponential family.

2.1 Learning
We present a Monte Carlo variant of the Generalized EM algorithm [12] for learning SFNNs. Specif-
ically, importance sampling is used during the E-step to approximate the posterior p(h|y,x), while
the Backprop algorithm is used during the M-step to calculate the derivatives of the parameters of
both the stochastic and deterministic nodes. Gradient ascent using the derivatives will guarantee
that the variational lower bound of the model log-likelihood will be improved. The drawback of our
learning algorithm is the requirement of sampling the stochastic nodes M times for every weight
update. However, as we will show in the experimental results, 20 samples is sufficient for learning
good SFNNs.

The requirement of sampling is typical for models capable of structured learning. As a comparison,
energy based models, such as conditional Restricted Boltzmann Machines, require MCMC sampling
per weight update to estimate the gradient of the log-partition function. These MCMC samples do
not converge to the true distribution, resulting in a biased estimate of the gradient.

For clarity, we provide the following derivations for SFNNs with one hidden layer containing only
stochastic nodes4. For any approximating distribution q(h), we can write down the following varia-

3In practice, due to weight sharing, we will not be able to have close to that many modes for a large Nh.
4It is straightforward to extend the model to multiple and hybid hidden layered SFNNs.

3

tional lower-bound on the data log-likelihood:

log p(y|x) = log
∑
h

p(y,h|x) =
∑
h

p(h|y,x) log p(y,h|x)
p(h|y,x)

≥
∑
h

q(h) log
p(y,h|x; θ)

q(h)
, (2)

where q(h) can be any arbitrary distribution. For the tightest lower-bound, q(h) need to be the exact
posterior p(h|y,x). While the posterior p(h|y,x) is hard to compute, the “conditional prior” p(h|x)
is easy (corresponds to a simple feedforward pass). We can therefore set q(h) , p(h|x). However,
this would be a very bad approximation as learning proceeds, since the learning of the likelihood
p(y|h,x) will increase the KL divergence between the conditional prior and the posterior. Instead,
it is critical to use importance sampling with the conditional prior as the proposal distribution.

Let Q be the expected complete data log-likelihood, which is a lower bound on the log-likelihood
that we wish to maximize:

Q(θ, θold) =
∑
h

p(h|y,x; θold)
p(h|x; θold)

p(h|x; θold) log p(y,h|x; θ) '
1

M

M∑
m=1

w(m) log p(y,h(m)|x; θ),

(3)

where h(m) ∼ p(h|x; θold) andw(m) is the importance weight of them-th sample from the proposal
distribution p(h|x; θold). Using Bayes Theorem, we have

w(m) =
p(h(m)|y,x; θold)
p(h(m)|x; θold)

=
p(y|h(m),x; θold)

p(y|x; θold)
' p(y|h(m); θold)

1
M

∑M
m=1 p(y|h(m); θold)

. (4)

Eq. 1 is used to approximate p(y|x; θold). For convenience, we define the partial objective
of the m-th sample as Q(m) , w(m)

(
log p(y|h(m); θ) + log p(h(m)|x; θ)

)
. We can then ap-

proximate our objective function Q(θ, θold) with M samples from the proposal: Q(θ, θold) '
1
M

∑M
m=1Q

(m)(θ, θold). For our generalized M-step, we seek to perform gradient ascent on Q:

∂Q

∂θ
' 1

M

M∑
m=1

∂Q(m)(θ, θold)

∂θ
=

1

M

M∑
m=1

w(m) ∂

∂θ

{
log p(y|h(m); θ) + log p(h(m)|x; θ)

}
. (5)

The gradient term ∂
∂θ

{
·
}

is computed using error backpropagation of two sub-terms. The first
part, ∂

∂θ

{
log p(y|h(m); θ)

}
, treats y as the targets and h(m) as the input data, while the second part,

∂
∂θ

{
log p(h(m)|x; θ)

}
, treats h(m) as the targets and x as the input data. In SFNNs with a mixture

of deterministic and stochastic units, backprop will additionally propagate error information from
the first part to the second part.

The full gradient is a weighted summation of the M partial derivatives, where the weighting comes
from how well a particular state h(m) can generate the data y. This is intuitively appealing, since
learning adjusts both the “preferred” states’ abilities to generate the data (first part in the braces), as
well as increase their probability of being picked conditioning on x (second part in the braces). The
detailed EM learning algorithm for SFNNs is listed in Alg. 1 of the Supplementary Materials.

2.2 Cooperation during learning
We note that for importance sampling to work well in general, a key requirement is that the proposal
distribution is not small where the true distribution has significant mass. However, things are slightly
different when using importance sampling during learning. Our proposal distribution p(h|x) and the
posterior p(h|y,x) are not fixed but rather governed by the model parameters. Learning adapts these
distribution in a synergistic and cooperative fashion.

Let us hypothesize that at a particular learning iteration, the conditional prior p(h|x) is small in
certain regions where p(h|y,x) is large, which is undesirable for importance sampling. The E-
step will draw M samples and weight them according to Eq. 4. While all samples h(m) will
have very low log-likelihood due to the bad conditional prior, there will be a certain preferred
state ĥ with the largest weight. Learning using Eq. 5 will accomplish two things: (1) it will
adjust the generative weights to allow preferred states to better generate the observed y; (2) it
will make the conditional prior better by making it more likely to predict ĥ given x. Since

4

(a) Dataset A (b) Dataset B (c) Dataset C

Figure 3: Three synthetic datasets of 1-dimensional one-to-many mappings. For any given x, multiple modes
in y exist. Blue stars are the training data, red pluses are exact samples from SFNNs. Best viewed in color.

the generative weights are shared, the fact that ĥ generates y accurately will probably reduce
the likelihood of y under another state h̃. The updated conditional prior tends to be a bet-
ter proposal distribution for the updated model. The cooperative interaction between the condi-
tional prior and posterior during learning provides some robustness to the importance sampler.

Figure 2: KL divergence and log-
likelihoods. Best viewed in color.

Empirically, we can see this effect as learning progress on
Dataset A of Sec. 3.1 in Fig. 2. The plot shows the model log-
likelihood given the training data as learning progresses until
3000 weight updates. 30 importance samples are used during
learning with 2 hidden layers of 5 stochastic nodes. We chose
5 nodes because it is small enough that the true log-likelihood
can be computed using brute-force integration. As learning
progresses, the Monte Carlo approximation is very close to
the true log-likelihood using only 30 samples. As expected,
the KL from the posterior and prior diverges as the generative
weights better models the multi-modalities around x = 0.5.
We also compared the KL divergence between our empirical

weighted importance sampled distribution and true posterior, which converges toward zero. This
demonstrate that the prior distribution have learned to not be small in regions of large posterior. In
other words, this shows that the E-step in the learning of SFNNs is close to exact for this dataset and
model.

3 Experiments
We first demonstrate the effectiveness of SFNN on synthetic one dimensional one-to-many map-
ping data. We then use SFNNs to model face images with varying facial expressions and emotions.
SFNNs outperform other competing density models by a large margin. We also demonstrate the use-
fulness of latent features learned by SFNNs for expression classification. Finally, we train SFNNs
on a dataset with in-depth head rotations, a database with colored objects, and a image segmen-
tation database. By drawing samples from these trained SFNNs, we obtain qualitative results and
insights into the modeling capacity of SFNNs. We provide computation times for learning in the
Supplementary Materials.

3.1 Synthetic datasets
As a proof of concept, we used three one dimensional one-to-many mapping datasets, shown in
Fig. 3. Our goal is to model p(y|x). Dataset A was used by [1] to evaluate the performance of the
Mixture Density Networks (MDNs). Dataset B has a large number of tight modes conditioned on
any given x, which is useful for testing a model’s ability to learn many modes and a small residual
variance. Dataset C is used for testing whether a model can learn modes that are far apart from
each other. We randomly split the data into a training, validation, and a test set. We report the
average test set log-probability averaged over 5 folds for different models in Table 1. The method
called ‘Gaussian’ is a 2D Gaussian estimated on (x, y) jointly, and we report log p(y|x) which
can be obtained easily in closed-form. For Conditional Gaussian Restricted Boltzmann Machine
(C-GRBM) we used 25-step Contrastive Divergence [13] (CD-25) to estimate the gradient of the
log partition function. We used Annealed Importance Sampling [14, 15] with 50,000 intermediate
temperatures to estimate the partition function. SBN is a Sigmoid Belief Net with three hidden
stochastic binary layers between the input and the output layer. It is trained in the same way as
SFNN, but there are no deterministic units. Finally, SFNN has four hidden layers with the inner

5

two being hybrid stochastic/deterministic layers (See Fig. 1). We used 30 importance samples to
approximate the posterior during the E-step. All other hyper-parameters for all of the models were
chosen to maximize the validation performance.

Gaussian MDN C-GRBM SBN SFNN
A 0.078±0.02 1.05±0.02 0.57±0.01 0.79±0.03 1.04±0.03
B -2.40±0.07 -1.58±0.11 -2.14±0.04 -1.33±0.10 -0.98±0.06
C 0.37±0.07 2.03±0.05 1.36±0.05 1.74±0.08 2.21±0.16
Table 1: Average test log-probability density on synthetic 1D
datasets.

Table 1 reveals that SFNNs consis-
tently outperform all other methods.
Fig. 3 further shows samples drawn
from SFNNs as red ‘pluses’. Note that
SFNNs can learn small residual vari-
ances to accurately model Dataset B.
Comparing SBNs to SFNNs, it is clear

that having deterministic hidden nodes is a big win for modeling continuous y.

3.2 Modeling Facial Expression
Conditioned on a subject’s face with neutral expression, the distribution of all possible emotions or
expressions of this particular individual is multimodal in pixel space. We learn SFNNs to model
facial expressions in the Toronto Face Database [16]. The Toronto Face Database consist of 4000
images of 900 individuals with 7 different expressions. Of the 900 subjects, there are 124 with 10 or
more images per subject, which we used as our data. We randomly selected 100 subjects with 1385
total images for training, while 24 subjects with a total of 344 images were selected as the test set.

For each subject, we take the average of their face images as x (mean face), and learn to model this
subject’s varying expressions y. Both x and y are grayscale and downsampled to a resolution of
48×48. We trained a SFNN with 4 hidden layers of size 128 on these facial expression images. The
second and third “hybrid” hidden layers contained 32 stochastic binary and 96 deterministic hidden
nodes, while the first and the fourth hidden layers consisted of only deterministic sigmoids. We refer
to this model as SFNN2. We also tested the same model but with only one hybrid hidden layer, that
we call SFNN1. We used mini-batches of size 100 and and 30 importance samples for the E-step.
A total of 2500 weight updates were performed. Weights were randomly initialized with standard
deviation of 0.1, and the residual variance σ2

y was initialized to the variance of y.

For comparisons with other models, we trained a Mixture of Factor Analyzers (MFA) [17], Mixture
Density Networks (MDN), and Conditional Gaussian Restricted Boltzmann Machines (C-GRBM)
on this task. For the Mixture of Factor Analyzers model, we trained a mixture with 100 components,
one for each training individual. Given a new test face xtest, we first find the training x̂ which
is closest in Euclidean distance. We then take the parameters of the x̂’s FA component, while
replacing the FA’s mean with xtest. Mixture Density Networks is trained using code provided by
the NETLAB package [18]. The number of Gaussian mixture components and the number of hidden
nodes were selected using a validation set. Optimization is performed using the scaled conjugate
gradient algorithm until convergence. For C-GRBMs, we used CD-25 for training. The optimal
number of hidden units, selected via validation, was 1024. A population sparsity objective on the
hidden activations was also part of the objective [19]. The residual diagonal covariance matrix is
also learned. Optimization used stochastic gradient descent with mini-batches of 100 samples each.

MFA MDN C-GRBM SFNN1 SFNN2
Nats 1406±52 1321±16 1146±113 1488±18 1534±27
Time 10 secs. 6 mins. 158 mins. 112 secs. 113 secs.

Table 2: Average test log-probability and total training time on
facial expression images. Note that for continuous data, these
are probability densities and can be positive.

Table 2 displays the average log-
probabilities along with standard er-
rors of the 344 test images. We also
recorded the total training time of each
algorithm, although this depends on the
number of weight updates and whether
or not GPUs are used (see the Sup-
plementary Materials for more details).

For MFA and MDN, the log-probabilities were computed exactly. For SFNNs, we used Eq. 1 with
1000 samples. We can see that SFNNs substantially outperform all other models. Having two hy-
brid hidden layers (SFNN2) improves model performance over SFNN1, which has only one hybrid
hidden layer.

Qualitatively, Fig. 4 shows samples drawn from the trained models. The leftmost column are the
mean faces of 3 test subjects, followed by 7 samples from the distribution p(y|x). For C-GRBM,
samples are generated from a Gibbs chain, where each successive image is taken after 1000 steps.
For the other 2 models, displayed samples are exact. MFAs overfit on the training set, generating

6

(a) Conditional Gaussian RBM. (b) MFA. (c) SFNN.

Figure 4: Samples generated from various models.

(a) (b) (c)
Figure 5: Plots demonstrate how hyperparameters affect the evaluation and learning of SFNNs.

samples with significant artifacts. Samples produced by C-GRBMs suffer from poor mixing and
get stuck at a local mode. SFNN samples show that the model was able to capture a combination
of mutli-modality and preserved much of the identity of the test subjects. We also note that SFNN
generated faces are not simple memorization of the training data. This is validated by its superior
performance on the test set in Table 2.

We further explored how different hyperparameters (e.g. # of stochastic layers, # of Monte Carlo
samples) can affect the learning and evaluation of SFNNs. We used face images and SFNN2 for
these experiments. First, we wanted to know the number of M in Eq. 1 needed to give a reasonable
estimate of the log-probabilities. Fig. 5(a) shows the estimates of the log-probability as a function of
the number of samples. We can see that having about 500 samples is reasonable, but more samples
provides a slightly better estimate. The general shape of the plot is similar for all other datasets
and SFNN models. When M is small, we typically underestimate the true log-probabilities. While
500 or more samples are needed for accurate model evaluation, only 20 or 30 samples are sufficient
for learning good models (as shown in Fig. 5(b). This is because while M = 20 gives suboptimal
approximation to the true posterior, learning still improves the variational lower-bound. In fact, we
can see that the difference between using 30 and 200 samples during learning results in only about 20
nats of the final average test log-probability. In Fig. 5(c), we varied the number of binary stochastic
hidden variables in the 2 inner hybrid layers. We did not observe significant improvements beyond
more than 32 nodes. With more hidden nodes, over-fitting can also be a problem.

3.2.1 Expression Classification
The internal hidden representations learned by SFNNs are also useful for classification of facial
expressions. For each {x,y} image pair, there are 7 possible expression types: neutral, angry,
happy, sad, surprised, fear, and disgust. As baselines, we used regularized linear softmax classifiers
and multilayer perceptron classifier taking pixels as input. The mean of every pixel across all cases
was set to 0 and standard deviation was set to 1.0. We then append the learned hidden features of
SFNNs and C-GRBMs to the image pixels and re-train the same classifiers. The results are shown in
the first row of Table 3. Adding hidden features from the SFNN trained in an unsupervised manner
(without expression labels) improves accuracy for both linear and nonlinear classifiers.

(a) Random noise

(b) Block occlusion
Figure 6: Left: Noisy test images y. Posterior infer-
ence in SFNN finds Ep(h|x,y)[h]. Right: generated y
images from the expected hidden activations.

Linear C-GRBM SFNN MLP SFNN
+Linear +Linear +MLP

clean 80.0% 81.4% 82.4% 83.2% 83.8 %
10% noise 78.9% 79.7% 80.8% 82.0% 81.7 %
50% noise 72.4% 74.3% 71.8% 79.1% 78.5%
75% noise 52.6% 58.1% 59.8% 71.9% 73.1%
10% occl. 76.2% 79.5% 80.1% 80.3% 81.5%
50% occl. 54.1% 59.9% 62.5% 58.5% 63.4%
75% occl. 28.2% 33.9% 37.5% 33.2% 39.2%

Table 3: Recognition accuracy over 5 folds. Bold
numbers indicate that the difference in accuracy is
statistically significant than the competitor mod-
els, for both linear and nonlinear classifiers.

7

(a) Generated Objects (b) Generated Horses

Figure 7: Samples generated from a SFNN after training on object and horse databases. Conditioned on a
given foreground mask, the appearance is multimodal (different color and texture). Best viewed in color.

SFNNs are also useful when dealing with noise. As a generative model of y, it is somewhat robust
to noisy and occluded pixels. For example, the left panels of Fig. 6, show corrupted test images
y. Using the importance sampler described in Sec. 2.1, we can compute the expected values of the
binary stochastic hidden variables given the corrupted test y images5. In the right panels of Fig. 6,
we show the corresponding generated y from the inferred average hidden states. After this denoising
process, we can then feed the denoised y and E[h] to the classifiers. This compares favorably to
simply filling in the missing pixels with the average of that pixel from the training set. Classification
accuracies under noise are also presented in Table 3. For example 10% noise means that 10 percent
of the pixels of both x and y are corrupted, selected randomly. 50% occlusion means that a square
block with 50% of the original area is randomly positioned in both x and y. Gains in recognition
performance from using SFNN are particularly pronounced when dealing with large amounts of
random noise and occlusions.

3.3 Additional Qualitative Experiments

Not only are SFNNs capable of modeling facial expressions of aligned face images, they can also
model complex real-valued conditional distributions. Here, we present some qualitative samples
drawn from SFNNs trained on more complicated distributions (an additional example on rotated
faces is presented in the Supplementary Materials).

We trained SFNNs to generate colorful images of common objects from the Amsterdam Library of
Objects database [20], conditioned on the foreground masks. This is a database of 1000 everyday
objects under various lighting, rotations, and viewpoints. Every object also comes with a foreground
segmentation mask. For every object, we selected the image under frontal lighting without any rota-
tions, and trained a SFNN conditioned on the foreground mask. Our goal is to model the appearance
(color and texture) of these objects. Of the 1000 objects, there are many objects with similar fore-
ground masks (e.g. round or rectangular). Conditioned on the test foreground masks, Fig. 7(a)
shows random samples from the learned SFNN model. We also tested on the Weizmann segmenta-
tion database [21] of horses, learning a conditional distribution of horse appearances conditioned on
the segmentation mask. The results are shown in Fig. 7(b).

4 Discussions
In this paper we introduced a novel model with hybrid stochastic and deterministic hidden nodes.
We have also proposed an efficient learning algorithm that allows us to learn rich multi-modal condi-
tional distributions, supported by quantitative and qualitative empirical results. The major drawback
of SFNNs is that inference is not trivial and M samples are needed for the importance sampler.
While this is sufficiently fast for our experiments we can potentially accelerate inference by learning
a separate recognition network to perform inference in one feedforward pass. These techniques have
previously been used by [22, 23] with success.

5For this task we assume that we have knowledge of which pixels is corrupted.

8

References
[1] C. M. Bishop. Mixture density networks. Technical Report NCRG/94/004, Aston University, 1994.

[2] R. M. Neal. Connectionist learning of belief networks. volume 56, pages 71–113, July 1992.

[3] R. M. Neal. Learning stochastic feedforward networks. Technical report, University of Toronto, 1990.

[4] Lawrence K. Saul, Tommi Jaakkola, and Michael I. Jordan. Mean field theory for sigmoid belief networks.
Journal of Artificial Intelligence Research, 4:61–76, 1996.

[5] David Barber and Peter Sollich. Gaussian fields for approximate inference in layered sigmoid belief
networks. In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors, NIPS, pages 393–399. The
MIT Press, 1999.

[6] G. Taylor, G. E. Hinton, and S. Roweis. Modeling human motion using binary latent variables. In NIPS,
2006.

[7] Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

[8] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications, volume 104 of Mono-
graphs on Statistics and Applied Probability. Chapman & Hall, London, 2005.

[9] John Lafferty. Conditional random fields: Probabilistic models for segmenting and labeling sequence
data. pages 282–289. Morgan Kaufmann, 2001.

[10] Volodymyr Mnih, Hugo Larochelle, and Geoffrey Hinton. Conditional restricted boltzmann machines for
structured output prediction. In Proceedings of the International Conference on Uncertainty in Artificial
Intelligence, 2011.

[11] Yujia Li, Daniel Tarlow, and Richard Zemel. Exploring compositional high order pattern potentials for
structured output learning. In Proceedings of International Conference on Computer Vision and Pattern
Recognition, 2013.

[12] R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental, sparse and other
variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355–368. 1998.

[13] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,
14:1771–1800, 2002.

[14] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125–139, 2001.

[15] R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In Proceedings of
the Intl. Conf. on Machine Learning, volume 25, 2008.

[16] J.M. Susskind. The Toronto Face Database. Technical report, 2011. http://aclab.ca/users/josh/TFD.html.

[17] Zoubin Ghahramani and G. E. Hinton. The EM algorithm for mixtures of factor analyzers. Technical
Report CRG-TR-96-1, University of Toronto, 1996.

[18] Ian Nabney. NETLAB: algorithms for pattern recognitions. Advances in pattern recognition. Springer-
Verlag, 2002.

[19] V. Nair and G. E. Hinton. 3-D object recognition with deep belief nets. In NIPS 22, 2009.

[20] J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders. The amsterdam library of object images.
International Journal of Computer Vision, 61(1), January 2005.

[21] Eran Borenstein and Shimon Ullman. Class-specific, top-down segmentation. In In ECCV, pages 109–
124, 2002.

[22] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for unsupervised neural
networks. Science, 268(5214):1158–1161, 1995.

[23] R. Salakhutdinov and H. Larochelle. Efficient learning of deep boltzmann machines. AISTATS, 2010.

9

	Introduction
	Stochastic Feedforward Neural Networks
	Learning
	Cooperation during learning

	Experiments
	Synthetic datasets
	Modeling Facial Expression
	Expression Classification

	Additional Qualitative Experiments

	Discussions

