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ABSTRACT

We show how to learn a deep graphical model of the word-count
vectors obtained from a large set of documents. The valuéseof
latent variables in the deepest layer are easy to infer avel @i
much better representation of each document than Laterda/@eam
Analysis. When the deepest layer is forced to use a small auofb
binary variables (e.g32), the graphical model performs “semantic
hashing”: Documents are mapped to memory addresses in such a
way that semantically similar documents are located athyead-
dresses. Documents similar to a query document can therubd fo
by simply accessing all the addresses that differ by onlyaliiés
from the address of the query document. This way of extenitlieg
efficiency of hash-coding to approximate matching is mucefa
than locality sensitive hashing, which is the fastest aurneethod.
By using semantic hashing to filter the documents given tdO0¥-
we achieve higher accuracy than applying TF-IDF to the eokirc-
ument set.
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Figure 1: A schematic representation of semantic hashing.

cessfully applied in the domain of information retrieval.simple
and widely-used method is Latent Semantic Analysis (LSA) [5
which extracts low-dimensional semantic structure usi® Se-
composition to get a low-rank approximation of the word-doent

One of the most popular and widely used algorithms for retrie  co-occurrence matrix. This allows document retrieval tdoased
ing documents that are similar to a query document is TF-15F[ on “semantic” content rather than just on individually weigd
14] which measures the similarity between documents by com- words. LSA, however, is very restricted in the types of seinan
paring their word-count vectors. The similarity metric glets content it can capture because it is a linear method so it ogn o
each word by both its frequency in the query document (Teren Fr  capture pairwise correlations between words. A probadtuiliser-
guency) and the logarithm of the reciprocal of its frequeincthe sion of LSA (pLSA) was introduced by [11], using the assuimmpti
whole set of documents (Inverse Document Frequency). TF-ID that each word is modeled as a sample from a document-specific
has several major drawbacks: multinomial mixture of word distributions. A proper gentva
model at the level of documents, Latent Dirichlet Allocatiovas
introduced by [2], improving upon [11].

These recently introduced probabilistic models can be &itw
e It assumes that the counts of different words provide inde- as graphical models in which hidden topic variables havectéd

pendent evidence of similarity. connections to variables that represent word-counts. rthajor

drawback is that exact inference is intractable due to @xipig

e It makes no use of semantic similarities between words so away, so they have to resort to slow or inaccurate approiomsto

it cannot see the similarity between “Wolfowitz resignstlan  compute the posterior distribution over topics. This makeifi-

“Gonzales quits”. cult to fit the models to data. Also, as Welling al. [16] point out,
fast inference is important for information retrieval. Teh&ve this
[16] introduce a class of two-layer undirected graphicatieis that
generalize Restricted Boltzmann Machines (RBM's)[7] t@@x
nential family distributions. This allows them to model Hoimary
data and to use non-binary hiddere( latent) variables. Maxi-
mum likelihood learning is intractable in these models, Ibatn-
ing can be performed efficiently by following an approxinoatito
the gradient of a different objective function called “c@stive di-

1. INTRODUCTION

e It computes document similarity directly in the word-count
space, which can be slow for large vocabularies.

To remedy these drawbacks, numerous models for captusing lo
dimensional, latent representations have been proposgdiamn
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vergence” [7]. Several further developments of these ewtid
models [6, 17] show that they are competitive in terms ofieeal
accuracy with their directed counterparts.

All of the above models, however, have important limitation
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Figure 2: Left panel: The deep generative model. Middle panel: Pretrining consists of learning a stack of RBM'’s in which the featue activations
of one RBM are treated as data by the next RBM. Right panel: Afer pretraining, the RBM’s are “unrolled” to create a multi-layer autoencoder that

is fine-tuned by backpropagation.

First, there are limitations on the types of structure tlaait loe rep-
resented efficiently by a single layer of hidden variableg Wil
show that a network with multiple hidden layers and with roils

of parameters can discover latent representations that mach
better for information retrieval. Second, all of these testtieval
algorithms are based on computing a similarity measuredmtva
query document and other documents in the collection. Tine si
ilarity is computed either directly in the word space or inoa
dimensional latent space. If this is done naively, the ee#ii time
complexity of these models (8(NV'), whereN is the size of the
document corpus and is the size of vocabulary or dimensionality
of the latent space. By using an inverted index, the time dexity
for TF-IDF can be improved t&(BV'), whereB is the average,
over all terms in the query document, of the number of other do
uments in which the term appears. For LSA, the time complexit
can be improved t@(V log N) by using special data structures
such as KD-trees, provided the intrinsic dimensionalityhef rep-
resentations is low enough for KD-trees to be effective. &fbof
these models, however, the larger the size of documentctiolte
the longer it will take to search for relevant documents.

In this paper we describe a new retrieval method called “sema
tic hashing” that produces a shortlist of similar documémtstime
that isindependenof the size of the document collection and linear
in the size of the shortlist. Moreover, only a few machindrins
tions are required per document in the shortlist. Our methadt
store additional information about every document in thikece
tion, but this additional information is only about one wofanem-

ory per document. Our method depends on a new way of training

deep graphical models one layer at a time, so we start byideggr
the type of graphical model we use and how we train it.

of hidden variables at a time [8]. After learning is comp|dtee
mapping from a word-count vector to the states of the toptlev
variables is fast, requiring only a matrix multiplicatiosilbwed by

a componentwise non-linearity for each hidden layer.

After the greedy, layer-by-layer training, the generativedel is
not significantly better than a model with only one hidderelayio
take full advantage of the multiple hidden layers, the layetayer
learning must be treated as a “pretraining” stage that fingisoal
region of the parameter space. Starting in this region, digma
search can then fine-tune the model parameters to producela mu
better model [10].

In the next section we introduce the “Constrained PoissodéVlo
that is used for modeling word-count vectors. This model lban
viewed as a variant of the Rate Adaptive Poisson model [@]itha
easier to train and has a better way of dealing with docunats
different lengths. In section 3, we describe both the ldyetayer
pretraining and the fine-tuning of the deep multi-layer nodfée
also show how “deterministic noise” can be used to force the fi
tuning to discover binary codes in the top layer. In sectipwd
describe two different ways of using binary codes for rgaieFor
relatively small codes we use semantic hashing and for Hdrige
nary codes we simply compare the code of the query document to
the codes of all candidate documents. This is still verylfastuse
it can use bit operations. We present experimental reduttsisag
that both methods work very well on a collection of about diomil
documents as well as on a smaller collection.

2. THE CONSTRAINED POISSON MODEL

We use a conditional “constrained” Poisson distributiamfiod-

The lowest layer in our graphical model represents the word- eling observed “visible” word count dateand a conditional Bernoulli

count vector of a document and the highast.( deepest) layer
represents a learned binary code for that document. Thentop t
layers of the generative model form an undirected bipagisgh
and the remaining layers form a belief net with directed;domn
connections (see fig. 2). The model can be trained efficidmtly

using a Restriced Boltzmann Machine (RBM) to learn one layer  p(h; = 1|v) = o(b; + Zwijvi)

distribution for modeling “hidden” topic featurés

exp (Ai + X2, hjwiz)
’ Zk exp (Ak + Zj hjwkj)

p(vi = n|h) = Ps(n

N) W

@)
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Figure 3: The left panel shows the Markov random field of the constraind Poisson model. The top layer represents a vectoh, of stochastic,
binary, latent, topic features and and the bottom layer repesents a Poisson visible vector. The right panel shows a different interpretation of the
constrained Poisson model in which the visible activities dwe all been divided by the number of words in the document sohiat they represent a
probability distribution. The factor of N that multiplies the upgoing weights is a result of havingV i.i.d. observations from the observed distribution.

where Pn, \) = e A" /nl, o(z) = 1/(1+e~%), wiisasym- 3. PRETRAINING AND FINE-TUNING A
metric interaction term between woidnd featurgj, N = ", v; DEEP GENERATIVE MODEL

is the total length of the documeny; is the bias of the conditional . . .
g A single layer of binary features is not the best way to captur

Poisson model for word andb; is the bias of featurg¢. The Pois- the struct i th {data. W d ib fici
son rate, whose log is shifted by the weighted combinatiothef € structure in tne count data. Yve now describe an € iclayttey
learn additional layers of binary features.

feature activations, is normalized and scaled u e call this . ; h .
PNDW After learning the first layer of hidden features we have adi-un

the “Constrained Poisson Model” (see fig. 3) since it enstivas
the mean Poisson rates across all words sum up to the length of'eCted model that defings(v, h) via the energy function in Eq.
the document. This normalization is significant becauseaikes 4. We can also think of the model as definipy, h) by defining
learning stable and it deals appropriately with documehtfter- a consistent pair of conditional probabilitigsth|v) andp(vih)
ent lengths. }/vhlcrl can t;e used to seLm{olﬁ frobm th(T mod;l(‘_c;;t)nbugorg.h)ﬁ\ dif
; setriby gt i e erent way to express what has been learn andp(h).
The marginal distribution over visible count vectors: Unlike a standard directed model, thigh) does not have its own
exp (—E(v,h)) 3 separate parameters. It is a complicated, non-factoriaf pn h
Z S exp —E(u,g)) ® that is defined implicitly by the weights. This peculiar degm-
sition into p(h) andp(v|h) suggests a recursive algorithm: keep
with an “energy” term (i.e. the negative log probability +Hamown the learned(v|h) but replacep(h) by a better prior oveh, i.e. a
constant offset) given by: prior that is closer to the average, over all the data vectirthe
conditional posterior oveln.
We can sample from this average conditional posterior bplsim

=— Z v + Z log (vs!) applying p(h|v) to the training data. The samplédvectors are
- i then the “data” that is used for training a higher-level RBi\Att
_ z bih; — z vihjwij @) learns the next layer of features. We could initialize ttghbr-level

RBM model by using the same parameters as the lower-level RBM
but with the roles of the hidden and visible units reversethis T
The parameter updates required to perform gradient astée i ensures that(v) for the higher-level RBM start_s out being exactly
log-likelihood can be obtained from Eq. 3: the same ag(h) for the lower-level one. Provided the number of
features per layer does not decrease, [8] show that eachlaxar
increases a variational lower bound on the log probabilityhe
data. This bound is described in more detail in the appendix.
The directed connections from the first hidden layer to tisé vi
ble units in the final, composite graphical model (see figyraré
WhereE iS the |eal’ning rate<'>data denOtes an expectation Wlth a Consequence Of the the fact that we keepm‘ah) but thrOW
respect to the data distribution ard- >..4e1 IS an expectation  away thep(h) defined by the first level RBM. In the final compos-
Wlth I’espeCt to the distribution deﬁned by the mOdel. To d.VOi |te mode'y the On'y undirected Connections are betweemme/\lo
computing<->moder, We use 1-step Contrastive Divergence [7]:  |ayers, because we do not throw away i) for the highest-level
RBM.
The first layer of hidden features is learned using a comstchi
The expectation< v;h; >qa:a defines the frequency with which Poisson RBM in which the visible units represent word-celard
word i and featurej are on together when the features are being the hidden units are binary. All the higher-level RBM’s useeiy

Awgy = Ealog;p(v)

8111ij = E(<Uihj>data - <Uihj>model)

Awij = €(<U’ihj>data, - <Uihj>recon) (5)

driven by the observed count data from the training set Usipg. units for both their hidden and their visible layers. Theatgdules
After stochastically activating the features, Eq. 1 is usgtlecon- for each layer are then:

struct” the Poisson rates for each word. Then Eq. 2 is useith aga

to activate the features andv;h;>ccon is the corresponding ex- p(h; =1|v) = o( Z Wi;vi) (6)
pectation when the features are being driven by the reastett

counts. The learning rule for the biases is just a simplifiedion p(vi = 1|h) = o(b; + Zwijhﬁ (7)

of Eq. 5.

J
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Figure 4: The distribution of the activities of the 128 code units on tke
20 Newsgroups training data before and after fine-tuning wih back-
propagation and deterministic noise.

The learning rule provided in the previous section remdiasaime
[7]. This greedy, layer-by-layer training can be repeatedesl
times to learn a deep, hierarchical model in which each lafer
features captures strong high-order correlations betweeactiv-
ities of features in the layer below.

To suppress noise in the learning signal, we use the reaédal
activationprobabilitiesfor the visible units of all the higher-level
RBM'’s, but to prevent hidden units from transmitting morarth
one bit of information from the data to its reconstructidme pre-
training always uses stochastic binary values for the Imiddsts.

The variational bound does not apply if the layers get smalle
as they do in an autoencoder, but, as we shall see, the piegrai
algorithm still works very well as a way to initialize a subsent
stage of fine-tuning. The pretraining finds a point that liesi
good region of parameter space and the myopic fine-tuning the
performs a local gradient search that finds a nearby poittisha
considerably better.

Recursive Greedy Learning of the Deep Generative Model:

1. Learn the parameteéd = (W1, A1, b') of the Constrained
Poisson Model.

2. Freeze the parameters of the Constrained Poisson mati¢l an
use the activation probabilities of the binary featuresemwh
they are being driven by training data, as the data for mngi
the next layer of binary features.

3. Freeze the parametetd that define the 2¢ layer of features
and use the activation probabilities of those features &
for training the 3¢ layer of binary features.

4. Proceed recursively for as many layers as desired.

3.1 Fine-tuning the weights

After pretraining, the individual RBM'’s at each level aren“u
rolled” as shown in figure 2 to create a deep autoencoder.elf th
stochastic activities of the binary features are replagetebermin-
istic, real-valued probabilities, we can then backpropagarough
the entire network to fine-tune the weights for optimal restorc-
tion of the count data. For the fine tuning, we divide the coarat
tor by the number of words so that it represents a probaloligiyi-
bution across words. Then we use the cross-entropy errotiéum
with a “softmax” at the output layer. The fine-tuning makes th
codes in the central layer of the autoencoder work much tiette
information retrieval.

3.2 Making the codes binary

During the fine-tuning, we want backpropagation to find codes
that are good at reconstructing the count data but are ae tds-
nary as possible. To make the codes binary, we add Gauss&sn no

to the bottom-up input received by each code urissuming that
the decoder network is insensitive to very small differanicethe
output of a code unit, the best way to communicate infornmatio
in the presence of added noise is to make the bottom-up imput r
ceived by a code unit be large and negative for some trairdaegs
and large and positive for others. Figure 4 shows that thighist
the fine-tuning does.

To prevent the added Gaussian noise from messing up the-conju
gate gradient fine-tuning, we used “deterministic noisehwiean
zero and variance 16. For each training case, the sampled vali
ues are fixed in advance and do not change during trainind &Vit
limited number of training cases, the optimization couitbtahe
parameters to the fixed noise values, but this is not posgibén
the total number of sampled noise values is much larger than t
number of parameters.

3.3 Details of the training

To speed-up the pretraining, we subdivided both dataséss in
small mini-batches, each containing 100 césesd updated the
weights after each mini-batch. For both datasets each lager
greedily pretrained for 50 passes (epochs) through thesemnaiin-
ing dataset. The weights were updated using a learning f&d o
momentum of 0.9, and a weight decayodi002 x weightx learning
rate. The weights were initialized with small random valsam-
pled from a zero-mean normal distribution with variancel0.0

For fine-tuning we used the method of conjugate gradfemts
larger mini-batches of 1000 data vectors, with three lirercees
performed for each mini-batch in each epoch. To determiredan
equate number of epochs and to avoid overfitting, we fineetune
on a fraction of the training data and tested performancehen t
remaining validation data. We then repeated fine-tuningheren-
tire training dataset for 50 epochs. Slight overfitting whseyved
on the 20 Newsgroups corpus but not on the Reuters corpus. Af-
ter fine-tuning, the codes were thresholded to produce Ypirze
vectors. The asymmetry betweermnd1 in the energy function of
an RBM causes the unthresholded codes to have many morevalue
near0 than nead, so we used a threshold 0f1.

We experimented with various values for the noise variamcke a
the threshold, as well as the learning rate, momentum, aightve
decay parameters used in the pretraining. Our results atg fa
robust to variations in these parameters and also to vam&iin
the number of layers and the number of units in each layer. The
precise weights found by the pretraining do not matter ag &mit
finds a good region of the parameter space from which to $tart t
fine-tuning.

4. EXPERIMENTAL RESULTS

To evaluate performance of our model on an information re-
trieval task we use Precision-Recall curves where we define:
Number of retrieved relevant documents

Total number of all relevant documents
Number of relevant retrieved documents

Total number of retrieved documents

Recall

Precision

To decide whether a retrieved document is relevant to theyque
document, we simply look to see if they have the same clags.lab

lWe tried other ways of encouraging the code units to be binary
such as penalizing the entropy efplogp — (1 — p)log (1 — p)

for each code unit, but Gaussian noise worked better.

2The last mini-batch contained more than 100 cases.

3Code is available at
http://www.kyb.tuebingen.mpg.de/bs/people/carl/dodrimize/
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Figure 5: A 2-dimensional embedding of the 128-bit codes using stockiic neighbor embedding for the 20 Newsgroups data (left pagl) and the

Reuters RCV2 corpus (right panel). See in color for better \dualization.

This is the only time that the class labels are used. It is rpzra
ticularly good measure of relevance, but it is the same fothal
methods we compare.

Results of [6] show that pLSA and LDA models do not gener-
ally outperform LSA and TF-IDF. Therefore for comparison we

only used LSA and TF-IDF as benchmark methods. For LSA each

word count,c;, was replaced bjog(1 + ¢;) before the SVD de-
composition, which slightly improved performance. Fortbtitese

government/social, and markets. Sample topics are display
figure 5. The topic classes form a tree which is typically gftte
3. For this dataset, we define the relevance of one document to
another to be the fraction of the topic labels that agree envio
paths from the root to the two documents.

The data was randomly split into 402,207 training and 402,20
test articles. The training set was further randomly sptit 302,207
training and 100,000 validation documents. The availabte das

methods we used the cosine of the angle between two vectars as already in the preprocessed format, where common stopwads

measure of their similarity.

4.1 Description of the Text Corpora

In this section we present experimental results for docairesn
trieval on two text datasets: 20-Newsgroups and ReuterpuSor
Volume II.

The 20 newsgroups corpus contains 18,845 postings taken fro
the Usenet newsgroup collection. The corpus is partitidagty
evenly into 20 different newsgroups, each correspondirey $ep-
arate topi¢. The data was split by date into 11,314 training and
7,531 test articles, so the training and test sets were atejphin
time. The training set was further randomly split into 8,3dain-
ing and 3,000 validation documents. Newsgroups such as
soc.religion.christian and talk.religion.misc are veligsely related
to each other, while newsgroups such as comp.graphics and
rec.sport.hockey are very different (see fig. 5)

removed and all documents were stemmed. We again only consid
ered the 2000 most frequent words in the training dataset.

4.2 Results using 128-bit codes

For both datasets we used a 2000-500-500-128 architechica w
is like the architecture shown in figure 2, but with 128 codésun
To see whether the learned 128-bit codes preserve clagsiafo
tion, we used stochastic neighbor embedding [9] to viseaiie
128-bit codes of all the documents from 5 or 6 separate dasse
Figure 5 shows that for both datasets the 128-bit codesipete
class structure of the documents.

In addition to requiring very little memory, binary codes$oal
very fast search because fast bit counting roufimes be used to
compute the Hamming distance between two binary codes. On a
3GHz Intel Xeon running C, for example, it only takes 3.6 iadk-
onds to search through 1 million documents using 128-biesod

We further preprocessed the data by removing common stop- The same search takes 72 milliseconds for 128-dimensiddal L

words, stemming, and then only considering the 2000 most fre
quent words in the training dataset. As a result, each Epsias
represented as a vector containing 2000 word counts. No ptae
processing was done.

The Reuters Corpus Volume Il is an archive of 804,414 neveswir

Figures 6 and 7 (left panels) show that our 128-bit codes are
better at document retrieval than the 128 real-values mexitby
LSA. We tried thresholding the 128 real-values produced B L
to get binary codes. The thresholds were set so that eack @&
components was a 0 for half of the training set and a 1 for therot

stories that have been manually categorized into 103 topics. The half. The results of figure 6 reveal that binarizing LSA sfigrintly

corpus covers four major groups: corporate/industriabnemics,

4Available at http://people.csail.mit.edu/jrennie/20vgroups
(20news-bydate.tar.gz). It has been preprocessed andizeday
date.

5The Reuter Corpus \olume 2 dataset
http://trec.nist.gov/data/reuters/reuters.html

reduces its performance. This is hardly surprising sincA bSs

not been optimized to make the binary codes perform well.
TF-IDF is slightly more accurate than our 128-bit codes when

retrieving the top few documents in either dataset. If, h@xewe

is available at °Code is available at

http://www-db.stanford.eds/manku/bitcount/bitcount.html
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Figure 6: Precision-Recall curves for the 20 Newsgroups dataset, wha query document from the test set is used to retrieve othesist set documents,
averaged over all 7,531 possible queries.
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Figure 7: Precision-Recall curves for the Reuters RCV2 dataset, whemquery document from the test set is used to retrieve other & set documents,
averaged over all 402,207 possible queries.

use our 128-bit codes to preselect the top 100 documentsd@t density of about 0.4 documents per address. For a given § quer
Newsgroups data or the top 1000 for the Reuters data, andehen document, we compute its 20-bit address and then retriéwaf al
rank these preselected documents using TF-IDF, we get lastte the documents stored in a hamming ball of radius 4 (abb®6 x
curacy than running TF-IDF alone on the whole document &t (s 0.402207 = 2500 documents) without performing any search at
figures 6 and 7). This means that some documents which TF-IDF all. Figure 8 shows that neither precision nor recall is oste-
would have considered a very good match to the query documentstricting TF-IDF to this fixed, preselected set.

have been correctly eliminated by using the 128-bit codedfiéter. Using a simple implementation of Semantic Hashing in C, it
. . takes about 0.5 milliseconds to create the short-list ofiaB600
4.3 Results using 20-bit codes semantically similar documents and about 10 millesecoads-t
Using 20-bit codes, we also checked whether our learninggpro  trieve the top few matches from that short-list using TF-IDécality-
dure could discover a way to model similarity of count-vestby Sensitive Hashing (LSH) [4, 1] takes about 500 millesecaiads
similarity of 20-bit addresses that was good enough to ahiyin perform the same search usingLSH 0.1 software, provided by
precision and retrieval for our set of 402,207 Reuters RCA& t  Alexandr Andoni and Piotr Indyk. Also, locality sensitivagdh-
documents. After learning to assign 20-bit addresses tardents ing is an approximation to nearest-neighbor matching intbed-
using the training data, we compute the 20-bit address df &t count space, so it cannot be expected to perform better theDF
document and place a pointer to the document at its address. and it generally performs slightly worse. Figure 8 shows tie

For the 402,207 test documents, a 20-bit address spaceayives ing semantic hashing as a filter, in addition to being muclkefas
achieves higher accuracy than either LSH or TF-IDF applietti¢
whole document set.

"We actually start with a pointer toull at all addresses and then
replace it by a one-dimensional array that contains pariemall
the documents that have that address.
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5. SEMANTIC HASHING FOR VERY LARGE
DOCUMENT COLLECTIONS

For a billion documents, a 30-bit address space gives atgtensi
of about 1 document per address and semantic hashing only re
quires a few Gigabytes of memory. Using a hamming-ball of ra-
dius 5 around the address of a query document, we can create

long “shortlist” of about 175,000 similar documents withsearch.
There is no point creating a new data-structure for eachtlgior
When items from the shortlist are required we can simply pced

them by enumerating the addresses in the hamming ball. So, as
suming we already have the 30-bit code for the query document

the time required to create this long shortlist is zero, Wwhiom-
pares favorably with other methods. The items in the longtiso
could then be further filtered using, say, 128-bit binaryesogro-
duced by a deep belief net. This second level of filtering waully
take a fraction of a millesecond. It requires additionatage of
two 64-bit words of memory for every document in the collesti
but this is only about twice the space already required forssgic
hashing.

Scaling up the learning to a billion training cases would not

be particularly difficult. Using mini-batches, the leamitime is
slightly sublinear in the size of the dataset if there is rethincy in
the data, and different cores can be used to compute thesgtadi
for different examples within a large mini-batch. So tragnion a
billion documents would take at most a few weeks on 100 cards a
a large organization could train on many billions of docutaen
Unlike almost all other machine learning applications,réitteng

need not be an issue because there is no need to generaliag to n

data. If the learning is ongoing, the deep belief net can &iedd
on all of the documents in the collection which should sigaifitly
improve the results we obtained when training the deep fmdie
on one half of a document collection and then testing on therot
half.

Many elaborations are possible. We could learn severareifit
semantic hashing functions on disjoint training sets aed tires-

elect documents that are close to the query document in ating of
semantic address spaces. This would ameliorate one of thie-we
nesses of semantic hashing: Documents with similar adelsdss/e
similar content but the converse is not necessarily trueeiGthe

‘way we learn the deep belief net, it is quite possible for the s

mantic address space to contain widely separated regiahaté

asemantically very similar. The seriousness of this proienvery

large document collections remains to be determined, lolidl ibot
prevent semantic hashing from having good recall in our &xpe
ments.

There is a simple way to discourage the deep belief net from

assigning very different codes to similar documents. Wepbiradd
an extra penalty term during the optimization that pulls ¢bdes
for similar documents towards each other. This attractived can
easily be backpropagated through the deep belief net. Amiladle
information about the relevance of two documents can be fsed
this penalty term, including class labels if they are avdda This
resembles non-linear Neighborhood Components AnalysBAN
[13, 3], but scales much better to very large datasets bedhas
derivatives produced by the autoencoder prevent the codes f
all becoming identical, so there is no need for the quadityic
expensive normalization term used in NCA.

6. AN ALTERNATIVE VIEW OF SEMAN-
TIC HASHING

Fast retrieval methods often rely on intersecting sets oudo
ments that contain a particular word or feature. Semansbing
is no exception. Each of the binary values in the code asdigme
a document represents a set containing about half the elatig
ment collection. Intersecting such sets would be slow iy tere
represented by explicit lists, but all computers come wigipecial
piece of hardware — the address bus — that can intersectnsets i
single machine instruction. Semantic hashing is simply @ @fa
mapping the set intersections required for document wetiriei-
rectly onto the available hardware.



7. CONCLUSION

In this paper we described a two-stage learning procedure fo
finding binary codes that can be used for fast document vatrie
During thepretraining stage, we greedily learn a deep generative
model in which the lowest layer represents the word-countore
of a document and the highest layer represents a learnedybina
code for that document. During thi@e-tuningstage, the model is
“unfolded” to produce a deep autoencoder network and bapkpr
agation is used to fine-tune the weights for optimal recocsin.

By adding noise at the code layer, we force backpropagatioisé
codes that are close to binary.

[11] T. Hofmann. Probabilistic latent semantic analysis. |
Proceedings of the 15th Conference on Uncertainty in Al
pages 289-296, San Fransisco, California, 1999. Morgan
Kaufmann.

[12] R. M. Neal and G. E. Hinton. A view of the EM algorithm
that justifies incremental, sparse and other variants. |h M.
Jordan, editorl.earning in Graphical Modelspages
355-368. Kluwer Academic Press, 1998.

[13] R. Salakhutdinov and G. E. Hinton. Learning a nonlinear
embedding by preserving class neighbourhood structure. In
Al and Statistics2007.

By treating the learned binary codes as memory addresses, weg[14] Salton. Developments in automatic text retrie®&dience

can find semantically similar documents in a time that is inde
pendent of the size of the document collection — somethiag) th
no other retrieval method can achieve. Using the Reuters RCV
dataset, we showed that by using semantic hashing as a fitter f
TF-IDF, we achieve higher precision and recall than TF-IDF o
Locality Sensitive Hashing applied to the whole documettiece
tion in a very small fraction of the time taken by Locality+Séive
Hashing, which is the fastest current method.
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9. APPENDIX: THE VARIATIONAL BOUND
FOR THE GREEDY LEARNING

Consider a restricted Boltzmann machine with parameters W
that determiney(v|h) andp(h|v), wherev is a visible vector and
h is a hidden vector.

Itis shown in [12] that for any approximating distributi@i{h|v)
we can write:

logp(v) > Y Q(h|v)[logp(h) + log p(v|h)]

~3"Q(h|v) log Q(hv) ®)
h
If we setQ(h|v) to be the true posterior distribution(h|v) given
by Eqg. 1, the bound becomes tight. By freezing the parameter v
tor W at the valuéVi,osen, We freezep(v|h), and@(h|v, Wf:fozen).
Whenp(h) is implicitly defined byWirozen, Q(h|v, Wik ,..) is
the true posterior, but when thigh) is replaced by a better dis-
tribution that is learned by a higher-level RBM(h|v, W, ,..)
is only an approximation to the true posterior. Neverthgldise
loss caused by using an approximate posterior is less tleageatin
caused by using a better model fgih), provided this better model
is learned by optimizing the variational bound in Eq. 8 ano-pr
vided the better model is initialized so thafv) for the better
model is equal tg(h) for the first model. Maximizing the bound
with W frozen is equivalent to maximizing:

Z Q(h'V, Wf?ozen) 10g p(h)
h

or replacingp(h) by a prior that is closer to the average, over all the
data vectors, of the conditional poster@th|v, W, ,..). This is
exactly what is being learned when samples freth|v) are used
as the training data for a higher-level RBM.

In practice, we typically do not bother to initialize eachRBo
that itsp(v) equals the(h) for the previous model. Initializing the
weights in this way would force the hidden units of the new RBM
to be of the same type as the visible units of the lower-le@&VR



