
Semantic Hashing

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4

rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4
hinton@cs.toronto.edu

ABSTRACT
We show how to learn a deep graphical model of the word-count
vectors obtained from a large set of documents. The values ofthe
latent variables in the deepest layer are easy to infer and give a
much better representation of each document than Latent Semantic
Analysis. When the deepest layer is forced to use a small number of
binary variables (e.g.32), the graphical model performs “semantic
hashing”: Documents are mapped to memory addresses in such a
way that semantically similar documents are located at nearby ad-
dresses. Documents similar to a query document can then be found
by simply accessing all the addresses that differ by only a few bits
from the address of the query document. This way of extendingthe
efficiency of hash-coding to approximate matching is much faster
than locality sensitive hashing, which is the fastest current method.
By using semantic hashing to filter the documents given to TF-IDF,
we achieve higher accuracy than applying TF-IDF to the entire doc-
ument set.

1. INTRODUCTION
One of the most popular and widely used algorithms for retriev-

ing documents that are similar to a query document is TF-IDF[15,
14] which measures the similarity between documents by com-
paring their word-count vectors. The similarity metric weights
each word by both its frequency in the query document (Term Fre-
quency) and the logarithm of the reciprocal of its frequencyin the
whole set of documents (Inverse Document Frequency). TF-IDF
has several major drawbacks:

• It computes document similarity directly in the word-count
space, which can be slow for large vocabularies.

• It assumes that the counts of different words provide inde-
pendent evidence of similarity.

• It makes no use of semantic similarities between words so
it cannot see the similarity between “Wolfowitz resigns” and
“Gonzales quits”.

To remedy these drawbacks, numerous models for capturing low-
dimensional, latent representations have been proposed and suc-
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Figure 1: A schematic representation of semantic hashing.

cessfully applied in the domain of information retrieval. Asimple
and widely-used method is Latent Semantic Analysis (LSA) [5],
which extracts low-dimensional semantic structure using SVD de-
composition to get a low-rank approximation of the word-document
co-occurrence matrix. This allows document retrieval to bebased
on “semantic” content rather than just on individually weighted
words. LSA, however, is very restricted in the types of semantic
content it can capture because it is a linear method so it can only
capture pairwise correlations between words. A probabilistic ver-
sion of LSA (pLSA) was introduced by [11], using the assumption
that each word is modeled as a sample from a document-specific
multinomial mixture of word distributions. A proper generative
model at the level of documents, Latent Dirichlet Allocation, was
introduced by [2], improving upon [11].

These recently introduced probabilistic models can be viewed
as graphical models in which hidden topic variables have directed
connections to variables that represent word-counts. Their major
drawback is that exact inference is intractable due to explaining
away, so they have to resort to slow or inaccurate approximations to
compute the posterior distribution over topics. This makesit diffi-
cult to fit the models to data. Also, as Wellinget. al. [16] point out,
fast inference is important for information retrieval. To achieve this
[16] introduce a class of two-layer undirected graphical models that
generalize Restricted Boltzmann Machines (RBM’s)[7] to expo-
nential family distributions. This allows them to model non-binary
data and to use non-binary hidden (i.e. latent) variables. Maxi-
mum likelihood learning is intractable in these models, butlearn-
ing can be performed efficiently by following an approximation to
the gradient of a different objective function called “contrastive di-
vergence” [7]. Several further developments of these undirected
models [6, 17] show that they are competitive in terms of retrieval
accuracy with their directed counterparts.

All of the above models, however, have important limitations.
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Figure 2: Left panel: The deep generative model. Middle panel: Pretraining consists of learning a stack of RBM’s in which the feature activations
of one RBM are treated as data by the next RBM. Right panel: After pretraining, the RBM’s are “unrolled” to create a multi-layer autoencoder that
is fine-tuned by backpropagation.

First, there are limitations on the types of structure that can be rep-
resented efficiently by a single layer of hidden variables. We will
show that a network with multiple hidden layers and with millions
of parameters can discover latent representations that work much
better for information retrieval. Second, all of these textretrieval
algorithms are based on computing a similarity measure between a
query document and other documents in the collection. The sim-
ilarity is computed either directly in the word space or in a low-
dimensional latent space. If this is done naively, the retrieval time
complexity of these models isO(NV ), whereN is the size of the
document corpus andV is the size of vocabulary or dimensionality
of the latent space. By using an inverted index, the time complexity
for TF-IDF can be improved toO(BV ), whereB is the average,
over all terms in the query document, of the number of other doc-
uments in which the term appears. For LSA, the time complexity
can be improved toO(V log N) by using special data structures
such as KD-trees, provided the intrinsic dimensionality ofthe rep-
resentations is low enough for KD-trees to be effective. Forall of
these models, however, the larger the size of document collection,
the longer it will take to search for relevant documents.

In this paper we describe a new retrieval method called “seman-
tic hashing” that produces a shortlist of similar documentsin a time
that isindependentof the size of the document collection and linear
in the size of the shortlist. Moreover, only a few machine instruc-
tions are required per document in the shortlist. Our methodmust
store additional information about every document in the collec-
tion, but this additional information is only about one wordof mem-
ory per document. Our method depends on a new way of training
deep graphical models one layer at a time, so we start by describing
the type of graphical model we use and how we train it.

The lowest layer in our graphical model represents the word-
count vector of a document and the highest (i.e. deepest) layer
represents a learned binary code for that document. The top two
layers of the generative model form an undirected bipartitegraph
and the remaining layers form a belief net with directed, top-down
connections (see fig. 2). The model can be trained efficientlyby
using a Restriced Boltzmann Machine (RBM) to learn one layer

of hidden variables at a time [8]. After learning is complete, the
mapping from a word-count vector to the states of the top-level
variables is fast, requiring only a matrix multiplication followed by
a componentwise non-linearity for each hidden layer.

After the greedy, layer-by-layer training, the generativemodel is
not significantly better than a model with only one hidden layer. To
take full advantage of the multiple hidden layers, the layer-by-layer
learning must be treated as a “pretraining” stage that finds agood
region of the parameter space. Starting in this region, a gradient
search can then fine-tune the model parameters to produce a much
better model [10].

In the next section we introduce the “Constrained Poisson Model”
that is used for modeling word-count vectors. This model canbe
viewed as a variant of the Rate Adaptive Poisson model [6] that is
easier to train and has a better way of dealing with documentsof
different lengths. In section 3, we describe both the layer-by-layer
pretraining and the fine-tuning of the deep multi-layer model. We
also show how “deterministic noise” can be used to force the fine-
tuning to discover binary codes in the top layer. In section 4, we
describe two different ways of using binary codes for retrieval. For
relatively small codes we use semantic hashing and for larger bi-
nary codes we simply compare the code of the query document to
the codes of all candidate documents. This is still very fastbecause
it can use bit operations. We present experimental results showing
that both methods work very well on a collection of about a million
documents as well as on a smaller collection.

2. THE CONSTRAINED POISSON MODEL
We use a conditional “constrained” Poisson distribution for mod-

eling observed “visible” word count datav and a conditional Bernoulli
distribution for modeling “hidden” topic featuresh:
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Figure 3: The left panel shows the Markov random field of the constrained Poisson model. The top layer represents a vector,h, of stochastic,
binary, latent, topic features and and the bottom layer represents a Poisson visible vectorv. The right panel shows a different interpretation of the
constrained Poisson model in which the visible activities have all been divided by the number of words in the document so that they represent a
probability distribution. The factor of N that multiplies the upgoing weights is a result of havingN i.i.d. observations from the observed distribution.
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is the total length of the document,λi is the bias of the conditional
Poisson model for wordi, andbj is the bias of featurej. The Pois-
son rate, whose log is shifted by the weighted combination ofthe
feature activations, is normalized and scaled up byN . We call this
the “Constrained Poisson Model” (see fig. 3) since it ensuresthat
the mean Poisson rates across all words sum up to the length of
the document. This normalization is significant because it makes
learning stable and it deals appropriately with documents of differ-
ent lengths.

The marginal distribution over visible count vectorsv is:

p(v) =
X

h

exp (−E(v,h))
P
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(3)

with an “energy” term (i.e. the negative log probability + unknown
constant offset) given by:
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The parameter updates required to perform gradient ascent in the
log-likelihood can be obtained from Eq. 3:

∆wij = ǫ
∂ log p(v)

∂wij

= ǫ(<vihj>data − <vihj>model)

whereǫ is the learning rate,<·>data denotes an expectation with
respect to the data distribution and< ·>model is an expectation
with respect to the distribution defined by the model. To avoid
computing<·>model, we use 1-step Contrastive Divergence [7]:

∆wij = ǫ(<vihj>data − <vihj>recon) (5)

The expectation< vihj >data defines the frequency with which
word i and featurej are on together when the features are being
driven by the observed count data from the training set usingEq. 2.
After stochastically activating the features, Eq. 1 is usedto “recon-
struct” the Poisson rates for each word. Then Eq. 2 is used again
to activate the features and<vihj>recon is the corresponding ex-
pectation when the features are being driven by the reconstructed
counts. The learning rule for the biases is just a simplified version
of Eq. 5.

3. PRETRAINING AND FINE-TUNING A
DEEP GENERATIVE MODEL

A single layer of binary features is not the best way to capture
the structure in the count data. We now describe an efficient way to
learn additional layers of binary features.

After learning the first layer of hidden features we have an undi-
rected model that definesp(v,h) via the energy function in Eq.
4. We can also think of the model as definingp(v,h) by defining
a consistent pair of conditional probabilities,p(h|v) andp(v|h)
which can be used to sample from the model distribution. A dif-
ferent way to express what has been learned isp(v|h) andp(h).
Unlike a standard directed model, thisp(h) does not have its own
separate parameters. It is a complicated, non-factorial prior on h

that is defined implicitly by the weights. This peculiar decompo-
sition intop(h) andp(v|h) suggests a recursive algorithm: keep
the learnedp(v|h) but replacep(h) by a better prior overh, i.e. a
prior that is closer to the average, over all the data vectors, of the
conditional posterior overh.

We can sample from this average conditional posterior by simply
applyingp(h|v) to the training data. The sampledh vectors are
then the “data” that is used for training a higher-level RBM that
learns the next layer of features. We could initialize the higher-level
RBM model by using the same parameters as the lower-level RBM
but with the roles of the hidden and visible units reversed. This
ensures thatp(v) for the higher-level RBM starts out being exactly
the same asp(h) for the lower-level one. Provided the number of
features per layer does not decrease, [8] show that each extra layer
increases a variational lower bound on the log probability of the
data. This bound is described in more detail in the appendix.

The directed connections from the first hidden layer to the visi-
ble units in the final, composite graphical model (see figure 1) are
a consequence of the the fact that we keep thep(v|h) but throw
away thep(h) defined by the first level RBM. In the final compos-
ite model, the only undirected connections are between the top two
layers, because we do not throw away thep(h) for the highest-level
RBM.

The first layer of hidden features is learned using a constrained
Poisson RBM in which the visible units represent word-counts and
the hidden units are binary. All the higher-level RBM’s use binary
units for both their hidden and their visible layers. The update rules
for each layer are then:

p(hj = 1|v) = σ(bj +
X

i

wijvi) (6)

p(vi = 1|h) = σ(bi +
X

j

wijhj) (7)



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

5

Activation Probabilities

Pretrained

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

5

Activation Probabilities

Fine−tuned

Figure 4: The distribution of the activities of the 128 code units on the
20 Newsgroups training data before and after fine-tuning with back-
propagation and deterministic noise.

The learning rule provided in the previous section remains the same
[7]. This greedy, layer-by-layer training can be repeated several
times to learn a deep, hierarchical model in which each layerof
features captures strong high-order correlations betweenthe activ-
ities of features in the layer below.

To suppress noise in the learning signal, we use the real-valued
activationprobabilities for the visible units of all the higher-level
RBM’s, but to prevent hidden units from transmitting more than
one bit of information from the data to its reconstruction, the pre-
training always uses stochastic binary values for the hidden units.

The variational bound does not apply if the layers get smaller,
as they do in an autoencoder, but, as we shall see, the pretraining
algorithm still works very well as a way to initialize a subsequent
stage of fine-tuning. The pretraining finds a point that lies in a
good region of parameter space and the myopic fine-tuning then
performs a local gradient search that finds a nearby point that is
considerably better.

Recursive Greedy Learning of the Deep Generative Model:

1. Learn the parametersθ1 = (W 1, λ1, b1) of the Constrained
Poisson Model.

2. Freeze the parameters of the Constrained Poisson model and
use the activation probabilities of the binary features, when
they are being driven by training data, as the data for training
the next layer of binary features.

3. Freeze the parametersθ2 that define the 2nd layer of features
and use the activation probabilities of those features as data
for training the 3rd layer of binary features.

4. Proceed recursively for as many layers as desired.

3.1 Fine-tuning the weights
After pretraining, the individual RBM’s at each level are “un-

rolled” as shown in figure 2 to create a deep autoencoder. If the
stochastic activities of the binary features are replaced by determin-
istic, real-valued probabilities, we can then backpropagate through
the entire network to fine-tune the weights for optimal reconstruc-
tion of the count data. For the fine tuning, we divide the countvec-
tor by the number of words so that it represents a probabilitydistri-
bution across words. Then we use the cross-entropy error function
with a “softmax” at the output layer. The fine-tuning makes the
codes in the central layer of the autoencoder work much better for
information retrieval.

3.2 Making the codes binary
During the fine-tuning, we want backpropagation to find codes

that are good at reconstructing the count data but are as close to bi-
nary as possible. To make the codes binary, we add Gaussian noise

to the bottom-up input received by each code unit1. Assuming that
the decoder network is insensitive to very small differences in the
output of a code unit, the best way to communicate information
in the presence of added noise is to make the bottom-up input re-
ceived by a code unit be large and negative for some training cases
and large and positive for others. Figure 4 shows that this iswhat
the fine-tuning does.

To prevent the added Gaussian noise from messing up the conju-
gate gradient fine-tuning, we used “deterministic noise” with mean
zero and variance 16. For each training case, the sampled noise val-
ues are fixed in advance and do not change during training. With a
limited number of training cases, the optimization could tailor the
parameters to the fixed noise values, but this is not possiblewhen
the total number of sampled noise values is much larger than the
number of parameters.

3.3 Details of the training
To speed-up the pretraining, we subdivided both datasets into

small mini-batches, each containing 100 cases2, and updated the
weights after each mini-batch. For both datasets each layerwas
greedily pretrained for 50 passes (epochs) through the entire train-
ing dataset. The weights were updated using a learning rate of 0.1,
momentum of 0.9, and a weight decay of0.0002×weight×learning
rate. The weights were initialized with small random valuessam-
pled from a zero-mean normal distribution with variance 0.01.

For fine-tuning we used the method of conjugate gradients3 on
larger mini-batches of 1000 data vectors, with three line searches
performed for each mini-batch in each epoch. To determine anad-
equate number of epochs and to avoid overfitting, we fine-tuned
on a fraction of the training data and tested performance on the
remaining validation data. We then repeated fine-tuning on the en-
tire training dataset for 50 epochs. Slight overfitting was observed
on the 20 Newsgroups corpus but not on the Reuters corpus. Af-
ter fine-tuning, the codes were thresholded to produce binary code
vectors. The asymmetry between0 and1 in the energy function of
an RBM causes the unthresholded codes to have many more values
near0 than near1, so we used a threshold of0.1.

We experimented with various values for the noise variance and
the threshold, as well as the learning rate, momentum, and weight-
decay parameters used in the pretraining. Our results are fairly
robust to variations in these parameters and also to variations in
the number of layers and the number of units in each layer. The
precise weights found by the pretraining do not matter as long as it
finds a good region of the parameter space from which to start the
fine-tuning.

4. EXPERIMENTAL RESULTS
To evaluate performance of our model on an information re-

trieval task we use Precision-Recall curves where we define:

Recall =
Number of retrieved relevant documents
Total number of all relevant documents

Precision =
Number of relevant retrieved documents

Total number of retrieved documents

To decide whether a retrieved document is relevant to the query
document, we simply look to see if they have the same class label.

1We tried other ways of encouraging the code units to be binary,
such as penalizing the entropy of−p log p − (1 − p) log (1 − p)
for each code unit, but Gaussian noise worked better.
2The last mini-batch contained more than 100 cases.
3Code is available at
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
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Figure 5: A 2-dimensional embedding of the 128-bit codes using stochastic neighbor embedding for the 20 Newsgroups data (left panel) and the
Reuters RCV2 corpus (right panel). See in color for better visualization.

This is the only time that the class labels are used. It is not apar-
ticularly good measure of relevance, but it is the same for all the
methods we compare.

Results of [6] show that pLSA and LDA models do not gener-
ally outperform LSA and TF-IDF. Therefore for comparison we
only used LSA and TF-IDF as benchmark methods. For LSA each
word count,ci, was replaced bylog(1 + ci) before the SVD de-
composition, which slightly improved performance. For both these
methods we used the cosine of the angle between two vectors asa
measure of their similarity.

4.1 Description of the Text Corpora
In this section we present experimental results for document re-

trieval on two text datasets: 20-Newsgroups and Reuters Corpus
Volume II.

The 20 newsgroups corpus contains 18,845 postings taken from
the Usenet newsgroup collection. The corpus is partitionedfairly
evenly into 20 different newsgroups, each corresponding toa sep-
arate topic.4 The data was split by date into 11,314 training and
7,531 test articles, so the training and test sets were separated in
time. The training set was further randomly split into 8,314train-
ing and 3,000 validation documents. Newsgroups such as
soc.religion.christian and talk.religion.misc are very closely related
to each other, while newsgroups such as comp.graphics and
rec.sport.hockey are very different (see fig. 5)

We further preprocessed the data by removing common stop-
words, stemming, and then only considering the 2000 most fre-
quent words in the training dataset. As a result, each posting was
represented as a vector containing 2000 word counts. No other pre-
processing was done.

The Reuters Corpus Volume II is an archive of 804,414 newswire
stories5 that have been manually categorized into 103 topics. The
corpus covers four major groups: corporate/industrial, economics,

4Available at http://people.csail.mit.edu/jrennie/20Newsgroups
(20news-bydate.tar.gz). It has been preprocessed and organized by
date.
5The Reuter Corpus Volume 2 dataset is available at
http://trec.nist.gov/data/reuters/reuters.html

government/social, and markets. Sample topics are displayed in
figure 5. The topic classes form a tree which is typically of depth
3. For this dataset, we define the relevance of one document to
another to be the fraction of the topic labels that agree on the two
paths from the root to the two documents.

The data was randomly split into 402,207 training and 402,207
test articles. The training set was further randomly split into 302,207
training and 100,000 validation documents. The available data was
already in the preprocessed format, where common stopwordswere
removed and all documents were stemmed. We again only consid-
ered the 2000 most frequent words in the training dataset.

4.2 Results using 128-bit codes
For both datasets we used a 2000-500-500-128 architecture which

is like the architecture shown in figure 2, but with 128 code units.
To see whether the learned 128-bit codes preserve class informa-
tion, we used stochastic neighbor embedding [9] to visualize the
128-bit codes of all the documents from 5 or 6 separate classes.
Figure 5 shows that for both datasets the 128-bit codes preserve the
class structure of the documents.

In addition to requiring very little memory, binary codes allow
very fast search because fast bit counting routines6 can be used to
compute the Hamming distance between two binary codes. On a
3GHz Intel Xeon running C, for example, it only takes 3.6 millisec-
onds to search through 1 million documents using 128-bit codes.
The same search takes 72 milliseconds for 128-dimensional LSA.

Figures 6 and 7 (left panels) show that our 128-bit codes are
better at document retrieval than the 128 real-values produced by
LSA. We tried thresholding the 128 real-values produced by LSA
to get binary codes. The thresholds were set so that each of the 128
components was a 0 for half of the training set and a 1 for the other
half. The results of figure 6 reveal that binarizing LSA significantly
reduces its performance. This is hardly surprising since LSA has
not been optimized to make the binary codes perform well.

TF-IDF is slightly more accurate than our 128-bit codes when
retrieving the top few documents in either dataset. If, however, we

6Code is available at
http://www-db.stanford.edu/∼manku/bitcount/bitcount.html
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Figure 6: Precision-Recall curves for the 20 Newsgroups dataset, when a query document from the test set is used to retrieve other test set documents,
averaged over all 7,531 possible queries.
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Figure 7: Precision-Recall curves for the Reuters RCV2 dataset, whena query document from the test set is used to retrieve other test set documents,
averaged over all 402,207 possible queries.

use our 128-bit codes to preselect the top 100 documents for the 20
Newsgroups data or the top 1000 for the Reuters data, and thenre-
rank these preselected documents using TF-IDF, we get better ac-
curacy than running TF-IDF alone on the whole document set (see
figures 6 and 7). This means that some documents which TF-IDF
would have considered a very good match to the query document
have been correctly eliminated by using the 128-bit codes asa filter.

4.3 Results using 20-bit codes
Using 20-bit codes, we also checked whether our learning proce-

dure could discover a way to model similarity of count-vectors by
similarity of 20-bit addresses that was good enough to allowhigh
precision and retrieval for our set of 402,207 Reuters RCV2 test
documents. After learning to assign 20-bit addresses to documents
using the training data, we compute the 20-bit address of each test
document and place a pointer to the document at its address.7

For the 402,207 test documents, a 20-bit address space givesa

7We actually start with a pointer tonull at all addresses and then
replace it by a one-dimensional array that contains pointers to all
the documents that have that address.

density of about 0.4 documents per address. For a given a query
document, we compute its 20-bit address and then retrieve all of
the documents stored in a hamming ball of radius 4 (about6196 ×
0.402207 ≅ 2500 documents) without performing any search at
all. Figure 8 shows that neither precision nor recall is lostby re-
stricting TF-IDF to this fixed, preselected set.

Using a simple implementation of Semantic Hashing in C, it
takes about 0.5 milliseconds to create the short-list of about 2500
semantically similar documents and about 10 milleseconds to re-
trieve the top few matches from that short-list using TF-IDF. Locality-
Sensitive Hashing (LSH) [4, 1] takes about 500 millesecondsto
perform the same search using E2LSH 0.1 software, provided by
Alexandr Andoni and Piotr Indyk. Also, locality sensitive hash-
ing is an approximation to nearest-neighbor matching in theword-
count space, so it cannot be expected to perform better than TF-IDF
and it generally performs slightly worse. Figure 8 shows that us-
ing semantic hashing as a filter, in addition to being much faster,
achieves higher accuracy than either LSH or TF-IDF applied to the
whole document set.
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5. SEMANTIC HASHING FOR VERY LARGE
DOCUMENT COLLECTIONS

For a billion documents, a 30-bit address space gives a density
of about 1 document per address and semantic hashing only re-
quires a few Gigabytes of memory. Using a hamming-ball of ra-
dius 5 around the address of a query document, we can create a
long “shortlist” of about 175,000 similar documents with nosearch.
There is no point creating a new data-structure for each shortlist.
When items from the shortlist are required we can simply produce
them by enumerating the addresses in the hamming ball. So, as-
suming we already have the 30-bit code for the query document,
the time required to create this long shortlist is zero, which com-
pares favorably with other methods. The items in the long shortlist
could then be further filtered using, say, 128-bit binary codes pro-
duced by a deep belief net. This second level of filtering would only
take a fraction of a millesecond. It requires additional storage of
two 64-bit words of memory for every document in the collection,
but this is only about twice the space already required for semantic
hashing.

Scaling up the learning to a billion training cases would not
be particularly difficult. Using mini-batches, the learning time is
slightly sublinear in the size of the dataset if there is redundancy in
the data, and different cores can be used to compute the gradients
for different examples within a large mini-batch. So training on a
billion documents would take at most a few weeks on 100 cores and
a large organization could train on many billions of documents.

Unlike almost all other machine learning applications, overfitting
need not be an issue because there is no need to generalize to new
data. If the learning is ongoing, the deep belief net can be trained
on all of the documents in the collection which should significantly
improve the results we obtained when training the deep belief net
on one half of a document collection and then testing on the other
half.

Many elaborations are possible. We could learn several different
semantic hashing functions on disjoint training sets and then pres-

elect documents that are close to the query document in any ofthe
semantic address spaces. This would ameliorate one of the weak-
nesses of semantic hashing: Documents with similar addresses have
similar content but the converse is not necessarily true. Given the
way we learn the deep belief net, it is quite possible for the se-
mantic address space to contain widely separated regions that are
semantically very similar. The seriousness of this problemfor very
large document collections remains to be determined, but itdid not
prevent semantic hashing from having good recall in our experi-
ments.

There is a simple way to discourage the deep belief net from
assigning very different codes to similar documents. We simply add
an extra penalty term during the optimization that pulls thecodes
for similar documents towards each other. This attractive force can
easily be backpropagated through the deep belief net. Any available
information about the relevance of two documents can be usedfor
this penalty term, including class labels if they are available. This
resembles non-linear Neighborhood Components Analysis (NCA)
[13, 3], but scales much better to very large datasets because the
derivatives produced by the autoencoder prevent the codes from
all becoming identical, so there is no need for the quadratically
expensive normalization term used in NCA.

6. AN ALTERNATIVE VIEW OF SEMAN-
TIC HASHING

Fast retrieval methods often rely on intersecting sets of docu-
ments that contain a particular word or feature. Semantic hashing
is no exception. Each of the binary values in the code assigned to
a document represents a set containing about half the entiredocu-
ment collection. Intersecting such sets would be slow if they were
represented by explicit lists, but all computers come with aspecial
piece of hardware – the address bus – that can intersect sets in a
single machine instruction. Semantic hashing is simply a way of
mapping the set intersections required for document retrieval di-
rectly onto the available hardware.



7. CONCLUSION
In this paper we described a two-stage learning procedure for

finding binary codes that can be used for fast document retrieval.
During thepretraining stage, we greedily learn a deep generative
model in which the lowest layer represents the word-count vector
of a document and the highest layer represents a learned binary
code for that document. During thefine-tuningstage, the model is
“unfolded” to produce a deep autoencoder network and backprop-
agation is used to fine-tune the weights for optimal reconstruction.
By adding noise at the code layer, we force backpropagation to use
codes that are close to binary.

By treating the learned binary codes as memory addresses, we
can find semantically similar documents in a time that is inde-
pendent of the size of the document collection – something that
no other retrieval method can achieve. Using the Reuters RCV2
dataset, we showed that by using semantic hashing as a filter for
TF-IDF, we achieve higher precision and recall than TF-IDF or
Locality Sensitive Hashing applied to the whole document collec-
tion in a very small fraction of the time taken by Locality-Sensitive
Hashing, which is the fastest current method.
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9. APPENDIX: THE VARIATIONAL BOUND
FOR THE GREEDY LEARNING

Consider a restricted Boltzmann machine with parameters W
that determinep(v|h) andp(h|v), wherev is a visible vector and
h is a hidden vector.

It is shown in [12] that for any approximating distributionQ(h|v)
we can write:

log p(v) ≥
X

h

Q(h|v)[log p(h) + log p(v|h)]

−
X

h

Q(h|v) log Q(h|v) (8)

If we setQ(h|v) to be the true posterior distribution,p(h|v) given
by Eq. 1, the bound becomes tight. By freezing the parameter vec-
torW at the valueWfrozen, we freezep(v|h), andQ(h|v, W T

frozen).
Whenp(h) is implicitly defined byWfrozen, Q(h|v, W T

frozen) is
the true posterior, but when thisp(h) is replaced by a better dis-
tribution that is learned by a higher-level RBM,Q(h|v,W T

frozen)
is only an approximation to the true posterior. Nevertheless, the
loss caused by using an approximate posterior is less than the gain
caused by using a better model forp(h), provided this better model
is learned by optimizing the variational bound in Eq. 8 and pro-
vided the better model is initialized so thatp(v) for the better
model is equal top(h) for the first model. Maximizing the bound
with W frozen is equivalent to maximizing:

X

h

Q(h|v, W T
frozen) log p(h)

or replacingp(h) by a prior that is closer to the average, over all the
data vectors, of the conditional posteriorQ(h|v, W T

frozen). This is
exactly what is being learned when samples fromp(h|v) are used
as the training data for a higher-level RBM.

In practice, we typically do not bother to initialize each RBM so
that itsp(v) equals thep(h) for the previous model. Initializing the
weights in this way would force the hidden units of the new RBM
to be of the same type as the visible units of the lower-level RBM.


