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Abstract

While Boltzmann Machines have been successful at un-

supervised learning and density modeling of images and

speech data, they can be very sensitive to noise in the data.

In this paper, we introduce a novel model, the Robust Boltz-

mann Machine (RoBM), which allows Boltzmann Machines

to be robust to corruptions. In the domain of visual recog-

nition, the RoBM is able to accurately deal with occlusions

and noise by using multiplicative gating to induce a scale

mixture of Gaussians over pixels. Image denoising and in-

painting correspond to posterior inference in the RoBM.

Our model is trained in an unsupervised fashion with un-

labeled noisy data and can learn the spatial structure of the

occluders. Compared to standard algorithms, the RoBM is

significantly better at recognition and denoising on several

face databases.

1. Introduction
Recognition algorithms often break down when solving

real world problems. Examples include trying to recognize
a face of a person who is drinking from a red coffee mug or
trying to find an object partially occluded by a stack of pa-
pers. In both cases, the appearance of the occluders should
not affect the recognition of the objects of interest, yet many
algorithms are significantly influenced by their appearance.

Typical approaches for dealing with occluders are to use
an architecture which is engineered to be robust against oc-
clusion and/or to augment the training set with noisy ex-
amples. Local descriptors, such as SIFT [11] and Convo-
lutional Neural Nets [9] are examples of such engineered
architectures. There are, however, some drawbacks to
these approaches. For SIFT and Convolutional Nets, hyper-
parameters such as the descriptor window size and local
filter size need to be specified. Augmenting the training
set requires the ability to synthetically generate corruptions,
which is challenging for shadows, specular reflections and
occlusion by unknown objects.

This paper describes an alternative unsupervised ap-
proach that learns to distinguish between corrupted and un-

corrupted pixels and to find useful latent representations of
both that lead to improved object discrimination. The fam-
ily of Boltzmann Machine models have been shown to give
good results on the facial expression [15] and speech recog-
nition tasks [14]. We present a novel model that allows
Boltzmann Machines to be robust to corruptions in the data.
Building on a similar model for binary data [21], our model
uses multiplicative gating to induce a scale mixture of two
Gaussian distributions over the data variables. Furthermore,
our framework can successfully learn the statistical struc-

ture of the noise and occluders without explicit supervision.
Our model has several key advantages:

• Multiplicative gating allows for the presence of novel
occluders with exotic appearances.

• The structure of the occluders and noise statistics can
be learned from the data in an unsupervised fashion.

• Completely automated image inpainting and denoising
correspond to posterior inference in the model.

Generative image models with occlusion have been well
studied in the vision and machine learning literature [7, 26].
Recently, models involving Restricted Boltzmann Machines
have also been applied to image segmentation [17] and
foreground-background modeling [3]. Compared to the
above work, the fully undirected nature of our model facil-
itates efficient inference. Face recognition under occlusion
has also been explored in [27, 29, 6]. Zhou et al. used an
MRF to model contiguous occlusion [29]. However, their
model is not as flexible since its parameters are not learned
from data.

2. The Model
The Robust Boltzmann Machine (RoBM) is an undi-

rected graphical model with three components. The first is
a Gaussian Restricted Boltzmann Machine (GRBM) model-
ing the density of the noise-free or “clean” data. The second
is a Restricted Boltzmann Machine (RBM) modeling the
structure of the occluder/noise. The RoBM also contains a
multiplicative gating mechanism which allows it to be ro-
bust to unexpected corruptions of the observed variables.
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We briefly review the RBM and GRBM before describing
the RoBM in detail.

2.1. Restricted Boltzmann Machines
A Restricted Boltzmann Machine (RBM) is a type of

Markov Random Field, or an undirected graphical model
that has a bipartite structure with two sets of binary stochas-
tic nodes: the visible v ∈ {0, 1}Nv and hidden h ∈
{0, 1}Nh layer nodes [18]. The RBM has visible to hidden
connections but no intra-layer connections. For any config-
uration of the nodes, we can define an energy function as:

ERBM (v,h; θ) = −
Nv�

i

bivi−
Nh�

j

cjhj −
Nv,Nh�

i,j

Wijvihj ,

where θ = {W,b, c} are the model parameters. The prob-
ability distribution of the configuration {v,h} is:

p(v,h; θ) =
p∗(v,h)

Z(θ)
=

exp−E(v,h)

Z(θ)
, (1)

where we have used p∗(·) to represent the unnormalized
probability distribution and Z(θ) =

�
v,h exp−E(v,h) is

the normalization constant. There is a good reason to use
RBMs for image modeling. Unlike directed models, an
RBM’s conditional distribution over hidden nodes is fac-
torial and very easy to compute.

When the data are real valued, the Gaussian RBM
(GRBM) [4] can be used for modeling. The GRBM has
been successfully applied to tasks including image clas-
sification, video action recognition, and speech recogni-
tion [10, 8, 22, 14]. The GRBM can be viewed as a mixture
of diagonal Gaussians with shared parameters, where the
number of mixture components is exponential in the num-
ber of hidden nodes and the mixing proportions of the com-
ponents are defined by marginalizing out the visible nodes
from the joint distribution. Its energy is given by:

EGRBM (v,h) =
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The conditional distributions needed for inference and gen-
eration are given by:

p(hj = 1|v) = 1

1 + exp(−
�

i Wijvi − cj)
(2)

p(vi|h) = N (vi|µi, σ
2
i ) (3)

where µi = bi + σ2
i

�

j

Wijhj (4)

2.2. Robust Boltzmann Machines
The GRBM is not robust to noise as it assumes a diago-

nal Gaussian as its conditional distribution over the visible
nodes. This means that the log probability assigned to a

Figure 1. Graphical model of the Robust Boltzmann Machine.
Filled triangles indicate gating of the connection between vi and ṽi
by si. The yellow connections are the weights of the RBM while
the green connections are the weights of the GRBM. Each pixel is
modeled by three random variables: vi, ṽi and si. Best viewed in
color.

noisy outlier would be very low and classification accuracy
tends to be poor for noisy, out-of-sample test cases. The
RoBM solves this problem by using gating at each visible
node, inducing a scale mixture of two Gaussians. Its energy
is obtained by combining gating terms involving vi, si, and
ṽi, an RBM of binary indicator variables si, a GRBM with
real-valued variables vi, and a Gaussian noise model of ṽi:

ERoBM (v, ṽ, s,h,g) =
1
2

�

i

γ2
i

σ2
i

si(vi − ṽi)
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In the above energy function, the first line is the gating in-
teraction term involving si, vi, and ṽi. It allows ṽi to be very
different from vi when si = 0. γ2

i regulates the coupling be-
tween vi and ṽi when si = 1. The second line is the energy
function of the RBM modeling the structure/correlations of
the noise indicators s. The third line is the energy function
of the GRBM modeling “clean” data v. The last line in the
above energy function specifies the noise distribution: b̃i is
the mean of the noise and σ̃2

i is the variance of the noise. In
particular, if the model estimates that the i-th node is cor-
rupted with noise (si = 0), then ṽi ∼ N (ṽi|b̃i; σ̃2

i ).
Fig. 1 shows the graphical model of the RoBM model.

Filled triangles emphasize that si can dynamically change
the weight between vi and ṽi. Fig. 2 shows how an RoBM
model should decompose an occluded face. Note that only
ṽ is observed and the RoBM model uses its prior over
face images to infer the unoccluded face and the occluding
shape.



Figure 2. The Robust Boltzmann Machine with real images
demonstrating its latent representations. ṽ is observed, while the
model uses the higher layer RBMs to separate out the clean face
and the occluder/noise. Best viewed in color.

Properties of the model

The motivation for using the RoBM is to achieve better gen-
eralization by eliminating the influence of corrupted pixels.
The gating serves as a buffer between what is observed (ṽi)
and what is preferred by the GRBM (vi). When ṽi is cor-
rupted, RoBM can still set vi to the noiseless value while
turning off si. If the RBM model of s assigns equal ener-
gies for both states of si, then no data penalty costs would
be incurred by the corruption to ṽi.1

Robust Statistics, such as the M-estimator [5], use loss
functions which do not increase super-linearly. For fit-
ting parametric mixture models, robustness is provided by
using a heavy-tailed distribution for the likelihood func-
tion of each component [20]. The RoBM model is also a
robust mixture model with a scale mixture of two Gaus-
sians over the observed ṽ. To see this, we can formu-
late RoBM as a mixture model with 2Nh+Ng components:
p(ṽ) =

�
h,g p(ṽ|h,g)p(h,g), where each component’s

likelihood function is factorial, p(ṽ|h,g) =
�

i p(ṽi|h,g).
It can be shown that

p(ṽi|h,g) =
�

i

�
πiN (ṽi|b̃i; σ̃2

i )

+ (1− πi)N (ṽi|µnew
i ;

σ2
i σ̃

2
i

σ̃2
i + σ2

i

)

�
, (6)

where πi is a function of g and h, and µnew
i is a linear com-

bination of b̃i and µi (Eq. 4). This means that p(ṽi|h,g)
is a mixture of two Gaussians with different variances: one
large (σ̃2

i ) and one much smaller, since σ̃ >> σ. The mix-
ing proportions are not fixed but rather depend on g and h,
which can learn the spatial structures (if any) of the corrup-
tions.

The RoBM model is also a generalization of the com-
mon MRF framework used for image restoration and de-
noising [2, 16]. Setting si = 1, ∀i, and γ2

i

σ2
i

to the noise vari-
ance of the data penalty, we recover an MRF model with the
GRBM specifying its image prior instead of the usual local

1There will still be a small penalty from the noise model.

smoothness potentials. Whereas the parameters of the data
penalty in standard MRFs are usually manually specified,
the equivalent parameters in the RoBM, siγ2

i , are actually
random variables. We will show in section 2.2.2 that the
distribution of siγ2

i can be learned from noisy data in an
unsupervised fashion.

2.2.1 Inference

Inference in the RoBM consists of finding the posterior dis-
tribution of the latent variables conditioned on the observed
variables: p(v, s,g,h|ṽ). This distribution is complicated
but we can use the alternating Gibbs operator to sample
from this posterior. Alternating Gibbs is much more effi-
cient than standard Gibbs as we have two alternating condi-
tional distributions which are easy to sample from.

Conditional 1: p(v, s|g,h, ṽ)

Conditional 2: p(g,h|v, s, ṽ)

Conditional 1: we can efficiently draw samples by first
sampling p(s|g,h, ṽ), then p(v|s,h, ṽ), since:

p(v, s|g,h, ṽ) = p(v|s,h, ṽ)p(s|g,h, ṽ). (7)

In addition, due to the form of Eq. 5, when given g and h,
the distribution over v and s is factorial:

p(v, s|g,h, ṽ) =
�

i

p(vi, si|g,h, ṽ)

=
�

i

p(vi|si,g,h, ṽ)p(si|g,h, ṽ). (8)

Moreover, it can be shown by integrating out vi that

p(si|g,h, ṽ) =
αsiβ1−si

α+ β
(9)

α = σ̂i exp
�
(di + Uig)−

1

2
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2
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i
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�
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β = σi exp
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2
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i
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�
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where µi is defined by Eq. 4, µ̂ = µi+γ2
i ṽi

γ2
i +1

, and σ̂i =
σi√
γ2
i +1

. Note that di + Uig is the total input coming from

the g layer, and µ is the total input coming from the h layer.
After sampling si, the conditional distribution over vi is:

p(vi|si,h, ṽ) ∼ N
� siγ2

i

siγ2
i + 1

ṽi +
µi

siγ2
i + 1

,
σ2
i

siγ2
i + 1

�

(12)
The above equation has a very intuitive interpretation.

When si = 0, node i is corrupted, vi is distributed ac-
cording to vi ∼ N (µi;σ2

i ), where µi is determined by the
hidden nodes of the GRBM. However, when si = 1, node i



Algorithm 1 Inference in the RoBM: p(v, s,h,g|ṽ)
1: Randomly initialize the layers of h, g.

for t = 1 : NumberGibbsSteps do
2: Sample from p(s|g,h, ṽ), using Eq. 9.
3: Sample from p(v|s,h, ṽ), using Eq. 12.
4: Sample from p(g,h|v, s, ṽ), using Eq. 13.

end for

is not corrupted, and its mean is a weighted average of µi

and the observed input ṽi. The weighting is determined by
the parameter γ2

i , which acts as the precision of the sensor
noise. When it is large, vi will be very similar to ṽi. When
it is small, vi is allowed to be different from ṽi since its
deviation can be explained by the observation noise.

Conditional 2: The 2nd conditional is efficient to compute
as it can be factored into a product of the RBM and GRBM
posteriors:

p(g,h|v, s, ṽ) = p(g,h|v, s) = p(h|v)p(g|s), (13)

where p(h|v) =
�

j p(hj |v) (see Eq. 2). Similarly, we also
have p(g|s) =

�
k p(gk|s). The algorithm for performing

posterior inference is shown in Alg. 1.

2.2.2 Learning

The parameters of the RoBM can be learned by maximizing
the log-likelihood over the observed noisy images ṽ:

θ̂ = argmax
θ

log p(ṽ; θ), (14)

where θ is the collection of all parameters of the RoBM in
Eq. 5. In an undirected graphical model, such as a Boltz-
mann Machine, maximum likelihood learning can be ac-
complished by gradient ascent, where gradients with respect
to the parameters are given by the difference of two expec-
tations:
∂
∂θ

E[log p(ṽn; θ)] = Emodel

�∂ERoBM

∂θ

�
− Edata

�∂ERoBM

∂θ

�
.

(15)
Emodel[·] denotes the expectation with respect to the distri-
bution defined by the RoBM model (Eq. 5), while Edata[·]
denotes the empirical expectation with respect to the data
distribution pdata(ṽ,v, s,h,g) = p(v, s,h,g|ṽ)pdata(ṽ),
where pdata(ṽ) =

1
N

�
n δ(ṽ − ṽn).

Exact maximum likelihood learning in this model is in-
tractable, but efficient approximate learning can be done as
follows. We first approximate Edata[·] by sampling from the
posterior p(v, s,h,g|ṽ) using a small number of alternating
Gibbs updates (see Alg. 1). To approximate Emodel[·], we
need to sample ṽ as specified by the RoBM parameters. To
sample from ṽ given v and s, we can sample each ṽi inde-
pendently since p(ṽ|v, s) =

�
i p(ṽi|v, s). The conditional

Algorithm 2 Parameter Estimation for the RoBM
1: Pretrain the {v, h} GRBM with “clean” data and initial-

ize {W,b, c} of the RoBM with the pretrained parame-
ters. Initialize other parameters randomly.

2: Initialize randomly the state of negative fantasy particles
{vfp, ṽfp, sfp,gfp,hfp} needed by PCD.

3: Initialize learning rate η0 ← 0.001
for m = 1 : number learning epochs do

for n = 1 : number of training cases do
4: Use Alg. 1 to sample from p(v, s,h,g|ṽn)

5: Calculate Edata

�
∂ERoBM

∂θ

�
using the samples of

{v, s,h,g, and ṽn}.
6: Use Alg. 1 sample from p(vfp, sfp,hfp,gfp|ṽfp)

7: Calculate Emodel

�
∂ERoBM

∂θ

�
using the fantasy par-

ticles {vfp, sfp,hfp,gfp, and ṽfp}.
8: Update: θt+1 ← θt +

∂ log p(ṽn)
∂θ (see Eq. 14).

end for
9: Decrease learning rate: ηt+1 = η0/m

end for

distribution over ṽi is a Gaussian distribution:

p(ṽi|v, s) ∼ N
�
ṽi
���αvi + βb̃i,
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i σ̃
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2
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i σ̃
2
i

σ2
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i σ̃
2
i

, β =
σ2
i

σ2
i + siγ2

i σ̃
2
i

.

The mean of this distribution is a linear combination of what
the GRBM expects and what the noise term expects. In
addition, the coefficients α and β depend on the random
variable si. When si = 0, indicating that noise is present,
ṽi is correctly sampled from the noise model with mean b̃i
and variance σ̃2

i .
During learning, we use a type of Stochastic Approxi-

mation of the Robbins-Monro type also known as Persistent
Contrastive Divergence [23] to compute the model’s expec-
tation. Using PCD, we only need to run the Gibbs chain for
a small number of iterations after each update of the param-
eters. With some mild conditions on the learning rates [28],
we are guaranteed to converge to a locally optimal solution.

While it is possible to learn to maximize the objective
function in Eq. 14 starting with random weights, it is much
faster and easier if we first pretrain the parameters of the
GRBM on “clean” data. It is not unreasonable for a model
to have seen many noise-free examples of face images be-
fore learning on faces disguised with sunglasses. Learning
is still unsupervised as no corresponding pairs of images of
the same person, one with sunglasses and one without, are
used during learning. The algorithm for RoBM learning is
outlined in Alg. 2.



3. Experiments
We demonstrate the effectiveness of the RoBM on sev-

eral standard face databases. Since the novelty of our model
is in its ability to learn the structure and statistics from
noisy data, we will first demonstrate it by using the Yale
Face Database [1]. We will then show that denoising with
the RoBM is significantly better than standard algorithm on
the large Toronto Face Database [19]. Finally, we investi-
gate the RoBM’s recognition performance when test images
contain noise or occlusions as in the Yale Database or con-
tain disguise as in the AR Face Database [13].

3.1. Effects of Learning
We first demonstrate that RoBM’s learning algorithm de-

scribed in Sec. 2.2.2 can be successfully applied to learn di-
rectly from noisy data, without any knowledge of a clean
image and its noisy version. We use the Yale Database
for this experiment. The Yale Face Database contains 15
subjects with 11 images per subject. The face images are
frontal but vary in illumination and expression. Following
the standard protocol, we randomly select 8 images per sub-
ject as training and 3 for testing. We cropped images to
the resolution of 32 × 32 and trained a GRBM model with
visible nodes v and hidden nodes h on the “clean” faces.
The training used Persistent Contrastive Divergence for a
total of 50 epochs. We then initialized the RoBM’s param-
eters {W,b, c} with the pretrained GRBM and applied the
learning algorithm in Alg. 2 to learn the parameters of the
RoBM model. In all of our experiments, Uik, ek, b̃i are ini-
tialized to 0.0, di to 4.0, γi to 20.0, and σ̃2

i is initialized to
1.0.

Fig. 3 shows the learning process of the RoBM. The
columns represent the internal activation of the RoBM dur-
ing learning from epoch 1 to epoch 50. The top row displays
the training examples. The top panel shows an example that
has a synthetically grid noise, while the bottom panel shows
an example that has an occlusion by sunglasses. The second
and third rows display the inferred faces v and the structure
of the occluder/noise s.

During the first learning epoch, the U matrix was ini-
tialized to zero. Therefore, no structure in s is modeled
initially. This is confirmed by the fact that the inferred s
are very noisy. As learning proceeds, we observe the trend
that the actual shapes of the occluders are cleanly detected2

and are modeled by the {s,g} RBM. This demonstrates that
we can in fact learn the noise structure in an unsupervised
manner, when given a pretrained face density model.

To isolate the effect of having a model of the
noise/occluder, we compare an RoBM model with hand-
tuned parameters with an RoBM model trained on the noisy

2Some speckle will remain since we are viewing random samples from
the posterior.

Figure 3. Internal states of the RoBM during learning: columns
from left to right represent epochs 1 to 50. The first row is the
training data ṽ, the second row is the inferred v, and the third row
is the inferred s. 20 Gibbs iterations were run to sample from the
posterior.

RoBMs Parameters hand-tuned learned
Random noise 30.0 ± 0.77 30.4 ± 0.88
Block occlusion 26.7 ± 0.85 28.6 ± 0.82

Table 1. Peak Signal to Noise Ratio (PSNR) in dB for denoising
on Yale faces for a hand-tuned and learned RoBM. The numbers
are averages over 40 trials ± the standard error of the mean.

data. For the hand-tuned RoBM, we set its biases di such
that the sigmoid of di would give the probability of each
pixel being corrupted. Table 1 shows the PSNR of de-
noised Yale faces using an hand-tuned RoBM vs. an learned
RoBM. For random noise, 40% of the pixels were corrupted
by random noise with a standard deviation of 0.4. For block
occlusion, 12× 12 blocks were superimposed on a random
part of the 32× 32 faces.

For random noise, learning the structure of the noise does
not add any value, thus similar results are expected. How-
ever, for block occlusions, structure learning helps denois-
ing dramatically, resulting in an increase of 2 dB in the av-
erage denoised image.

3.2. Denoising

We next experimented on the large-scale Toronto Face
Database (TFD) [19]. The TFD is a collection of (mostly)
publicly available aligned face images. We used 60,000
training and 2,000 test 24 × 24 images. All test images are
different from the training images by a Euclidean distance
of at least 5.0. This eliminates cases where a test image is
very similar to a training image, which is a possibility as
the TFD faces were aggregated from a large collection of
databases without separation by identity.



Figure 4. Difference between various denoising algorithms for
block occlusion.

We first pretrained a GRBM model with 2,000 hidden
nodes using Fast PCD [24] on the 60,000 training images
for 500 epochs. The RoBM model was initialized exactly
as described in the previous subsection. We then learned
the joint model using Alg. 2. For block noise, we trained
the RoBM model on data occluded by blocks at random po-
sitions. For random noise, we trained the RoBM model on
data corrupted by random noise. After learning, we used
50 Gibbs iterations to sample from the posterior distribu-
tion. The denoised image of the RoBM model is taken to be
the exponentially weighted average of the posterior samples
with a weight of 0.9.

In all of our experiments, we compare performance of
the RoBM model to the following four baseline models.
Our first denoising algorithm, called RBM, consists of tak-
ing the pretrained GRBM model and initializing it with a
noisy data. We run a few alternating Gibbs updates and
take the exponentially weighted average as the denoised
output. The second model, called PCA denoising algorithm,
projects a noisy image onto a 75 dimensional subspace. The
PCA reconstruction is then taken to be the denoised image.
Our third algorithm performs Wiener filtering using MAT-
LAB’s wiener2 function and a window size of 5. Our final
baseline model finds the closest Euclidean nearest neighbor
of the noisy test image in the training set.

Fig. 4 shows the denoising results for one face. The
RoBM model performs significantly better than other meth-
ods. Since there is a dark occluder in the bottom left of
the image, nearest neighbor found a different face with a
shadow on the bottom left. While Wiener filtering works
well for the Gaussian noise, it is not suitable for occlusions.
PCA and RBM are unable to fully restore the occluded area,
whereas RoBM is able to properly denoise due to its ability
to gate off the occluded area and use its face prior to infer
what is behind the occluder. We present similar qualitative
results for random noise and occlusion in Fig. 5. Quanti-
tatively, RoBM performs better than other models in terms
of peak signal to noise ratio of the denoised results. Fig. 6
shows the results for both random noise and block occlu-
sion.

We also investigated how sensitive our denoising results
are to the hyper-parameter that specifies how many Gibbs
iterations to run during inference. In Fig. 7, we plot the
PSNR vs. the number of Gibbs iterations for both random
noise and occlusion. From this plot, we see that 40 to 60
iterations tend to give the best average performance.

Figure 6. Quantitative denoising results. Methods: (a) RoBM, (b)
RBM, (c) PCA, (d) Wiener, (e) Nearest Neighbor.

Figure 7. Denoising quality versus the number of Gibbs iterations
used for sampling from the posterior during inference.

3.3. Recognition
In this section we test the ability of the RoBM to ac-

curately recognize faces in the presence of noise and oc-
clusion. We first add synthetic noise and occlusions to the
faces in the Yale Database and plot classification accuracy
as a function of the degree of noise/occlusion. We then test
recognition performance with natural disguises (sunglasses
and scarf) from the AR Face Database.

The classifier is a multi-class linear SVM trained on dif-
ferent feature representations of the faces. Recognition us-
ing the RoBM consists of first running 30 Gibbs iterations
for denoising followed by classification using its hidden
outputs before the sigmoid nonlinearity (Eq. 2). We provide
comparisons to other benchmark models: pixels, LDA [12],
Eigenfaces [25], and the standard GRBM. For the GRBM
model, we first pretrain it and then run a few iterations of
alternating Gibbs updates before classification.

Yale Face Database
As in Sec. 3.1, we used 8 images per subject for training

and 3 for testing, and trained the RoBM model as speci-
fied in Sec. 3.1. During testing, for each noisy image, we
ran 30 iterations of Gibbs sampling to arrive at a clean face.
For classification, we feed the h layer activations (before
the sigmoid nonlinearity) into the linear SVM. Fig. 8 shows



(a) Random Noise (b) Block Occlusions

Figure 5. Qualitative comparison of various denoising algorithms for two types of noise and occlusion. The first row has the original faces
and the second row is corrupted with noise. Starting from the third row, we have denoising results from RoBM, RBM, PCA, Wiener
filtering, and Nearest Neighbor, respectively.

Figure 8. Recognition rates on the Yale Database as a function of
the percentage of pixels corrupted by noise. Random noise with
standard deviation of 0.5 were added to the corrupted pixels.

that RoBM performs better than other benchmark models,
particularly when the amount of noise increases. The RBM
method was run for 5 iterations of alternating Gibbs starting
from the initial noisy image, where 5 iterations were chosen
as it gave the best results on the test set. PCA used 50 eigen-
faces and LDA was learned using the code provided by [12].
Fig. 9 displays the recognition accuracy as a function of the
percentage of the image that is blocked.

AR Face Database

The AR database contains faces with real-life disguises
using sunglasses and a scarf. We used a subset of 114 peo-
ple each with 8 images for a total of 912 training images.
For every person, there are two additional images with sun-
glasses and two with scarf occlusions, which we used as
our test set. We first cropped and downsized the images to

Figure 9. Recognition rates on the Yale Database as a function of
the percentage of pixels occluded. Block occlusion were applied
as in Fig. 5(b).

a resolution of 32 × 32 and pretrained a GRBM with 2000
hidden nodes. Initializing the RoBM model with weights
from the pretrained GRBM, we learned one RoBM model
on sunglasses and one RoBM model on the scarf images.
After learning for 50 epochs, Fig. 10 displays the inferred
“clean” face. Table 2 further shows that the RoBM model

Figure 10. Intermediate results during RoBM inference. The left-
most images are the test samples.



significantly outperforms all other models on the AR face
recognition task.

Algorithms Sunglasses Scarf
RoBM 84.5 % 80.7 %
RBM 61.7 % 32.9 %
Eigenfaces 66.9 % 38.6 %
LDA 56.1 % 27.0 %
Pixel 51.3 % 17.5 %

Table 2. Recognition results on the AR Face Database.

4. Conclusions
We have described a novel model which allows Boltz-

mann Machines to be robust to noise and occlusions. By
first training on noise-free images followed by unsupervised
learning on noisy images, our model can learn the structure

of the noise which allows it to perform much better on face
denoising and recognition tasks.
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