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Abstract

We present a close relationship between Expectation - Maximization al-
gorithm and direct optimization approaches such as gradient-based meth-
ods for parameter learning. We show that the step EM takes in the param-
eter space and true gradient are related by the symmetric positive definite
P matrix, and provide an explicit form of this matrix for several widely
used latent variable models. We then go on deriving a general form of
the P matrix for the regular exponential family in terms of its natural
parameters.

1 Introduction

The problem of Maximum Livelihood (ML) learning is known to be an important problem
in the area of machine learning and pattern recognition. ML learning is generally hard
problem and arises in many probabilistic models with unobserved or latent variables such
as density estimation, where one seeks to find a descriptive model of data, or dimensionality
reduction, where one tries to discover a compact representation of data.

A variety of methods exist for ML learning of the model parameters in the presence of
latent variables. A very popular technique for ML estimation is Expectation-Maximization
(EM) algorithm. The EM algorithm alternates between estimating the unobserved vari-
ables given the current model and refitting the model given the estimated, complete data.
As such it takes discrete steps in parameter space similar to to first order method operat-
ing on the gradient of a locally reshaped likelihood function. Direct optimization methods
for the parameter learning can be viewed as alternative to the Expectation-Maximization.
These algorithms work directly with the likelihood function and its derivatives (or esti-
mates thereof), trying to maximize or minimize it by adjusting the free parameters in a
local search. This category of algorithms includes random search, standard gradient-based
algorithms, line search methods such as conjugate gradient, and more computationally in-
tensive second-order methods, such as Newton-Raphson.



In this paper we establish mathematical connection between Expectation-Maximization
algorithm and direct optimization algorithms. In particular, we show that the step EM
takes in the parameter space and true gradient are related by the symmetric positive definite
matrix P(©), which is a function of the model parameters ©. For a finite Gaussian mixture
model this P(©) matrix was first described by Xu and Jordan[5]. We extend their results by
deriving the explicit form of the symmetric positive definite matrix for several widely used
latent variable models: Factor Analysis (FA), Probabilistic Principal Component Analysis
(PPCA), mixture of FAs, mixture of PPCAs, and Hidden Markov Models (HMM). We then
provide a general form of the P(©) matrix for the regular exponential family in terms of
its natural parameters.

2 Connection between EM and gradient

2.1 Factor Analysis

Maximum likelihood Factor Analysis (FA) model seeks to specify probabilistically how a
d-dimensional observed variable z is related to a p-dimensional latent variable z, where
generally p < d. This can be viewed as a form of dimensionality reduction. The generative
model is give by:

r=Az+e¢ Q
with A being d x p factor loading matrix, z ~ N(0,1), and e ~ AN(0, ¥), where ¥ is

diagonal matrix. In this model, the p-factors represent informative projections of the data,
similar to the principal components in PCA.

The log-likelihood function for the FA model with parameters {A, U} is
N
L(©)= By (dln 27 +1In|C| + tr(C‘lS)> (2
where C' is the model covariance C = AAT + ¥, and S is a sample covariance matrix
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At each iteration of EM algorithm we have
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where vec(A) denotes the stacked columns of A, and
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where E(x,) = I — BA + B(x, — p)(zn — p)T 87 with 3 = AT(AAT + ¥), diag*(A)
sets all the rows of A to zero except for rows j(d+1) —d, j = 1,2, ...,d, and "®" denotes
the Kronecker product.

Using the notation © = [vec[A]”, vec[¥]”] " and P(©) = diag[Py, Py] we can write
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Te validity of this symmetric positive definite matrix can be easily verified by multiplying
it by the gradient of the log-likelihood function.

Restricting the covariance matrix ¥ to be spherical & = 21, we arrive to so-called Proba-
bilistic Principal Component Analysis (PPCA) [3, 4]. Here A spans p-dimensional princi-
pal subspace of the observed data. The P matrix for PPCA model can be easily derived in
the similar way.

2.2 Mixtureof Factor Analyzers

Mixture of Factor Analyzers (MFA) can be interpreted as a combination of two basic mod-
els: the standard mixture of Gaussians model together with Factor Analysis model.* As a
result, this hybrid model simultaneously performs two tasks: clustering and local dimen-
sionality reduction within each cluster [1].

The log-likelihood function for MFA model with parameters {r;, j1;, A;, ¥;} M| is

M
n =1

with M denoting the number of clusters, and 7;, i« = 1,..., M representing the mixing
coefficients. At each iteration of EM algorithm we have
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where IT denotes mixing coefficients, IT = [ry, ..., ma7]7 and
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h;(x,) are the responsibilities, diag*(A) sets all the rows of A to zero except for rows
j(d+1)—d, 5 =1,2,...,d, where d is the dimensionality of data, and "®” denotes the
Kronecker product.

In regular Mixture of Factor Analyzers model, the the isotropic noise covariance W is fixed across
all component densities. In our derivation we have different noise models across different component
densities.



Using the notation © = 117, u{, ..., pu3;, vec[A4]7, ..., vec[An]T, vec[¥y]T, ...,vec[\I!A,[]T]T,
and P(©) = diag[Pr, Py, ...s Puyys Pays ooy Paygs Poy s .o, Py, | We can write
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One can easily verify the validity of this symmetric positive definite matrix by multiplying
it by the gradient of the log-likelihood function.

@(t+1) — ®(t) + P(@t)

The symmetric positive definite matrix for Mixture of Probabilistic Principal Component
Analyzers model [4] can be easily derived in the analogous way.

2.3 Hidden Markov Model
Hidden Markov Model (HMM) can be interpreted as a dynamical mixture model, or a
mixture model evolving over time [2].

The log-likelihood of observing the data under this model with parameters © = {r, A, H}
is
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where

e 7; is the probability of state s; at time t=1.

o Ais M x M matrix with its elements a;; denoting the transition probability from
state s; to state s;, and M denoting the number of states.

o H is M x R matrix with its elements %;; denoting the probability of state s; to
generate observation z;, and R denoting the alphabet size.

At each iteration of EM algorithm we have
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where IT denotes initial state priors, II = [r1, ..., mp/]7, and
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where we have defined the following:

o E(M is M x M matrix with elements e;; = 1/ 31" 7:(i), where ~,(i) denotes
the probability of being in state s; at time t. (Note that e;1 = e;2 = ... = e;r.)

e (V) is M x R matrix with elements f;; = 1/ Zthl ().



Using the notation © = [IT7', vec[A]”, vec[H]]|”, and P(©) = diag[Pr, Pa, Py] we can
write
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Once again, the reader can easily verify the validity of this symmetric positive definite
matrix by multiplying it by the gradient of the log-likelihood function.
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3 Exponential Family Models

Let us assume that the exponential family takes the following form:

p(il?, Z|®) = f(z,z)exp {GTT(*T7 Z)}/g(@) (7

where z are the observed variables, z are the latent variables, © is the vector of natural
parameters and T is the vector of sufficient statistics. We are seeking the general form of
the transformation matrix P(©), as a function of ©:
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where L(©) is the log-likelihood function, and ©*+! — ©* represents the step EM performs
in the parameter space. We also define the expected complete log-likelihood term as:
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For exponential family models we get from (17) that

J0L(©) | 2Q(0]07) |
06 9= 06 o=

= /p(z|m, @t)T(I,z)dz—/p(z,:c|@t)T(:c,z)dxdz (20)

which can be interpreted as the difference in the expected sufficient statistic vector when
the observed data is clamped and unclamped. Define the following vector-valued functions:

T(O) = /p(z,m|®)T(:z:,z)d:udz (21)
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The M step of the EM algorithm for the exponential family models then solves:
9Q(e|e")
00

Since T(©) is an invertible function, we can write ©*+! = T—1(T,(6%)). We now have
all the ingredients to re-write (18) as:

T=1T.(0") - 8" = P(e")[T.(6") - T(0")] (24)
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One way, out of many, to write the general form of the transformation matrix P(©*) that
satisfies equation (24) is the following:
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where v(0%) = T~YT,(6%)) — 6, and u(6%) = T,(0%) — T(©"). Note that this trans-
formation matrix P(©%) is symmetric positive definite. Indeed, the denominator of (25) is
written as:
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The above term can be regarded as a directional derivative of function Q(©]0%) in the

direction of ©'*1 —©!. This quantity is always positive because the expected complete log-

likelihood function Q(©]0%) for exponential family models is well-defined and concave,
attaining its maximum at the point ©*+1,

w(©H)Tv(0!) = lot(0 —@)>0 O £e! (26)

4 Discussion

In this paper we have built up the link between EM algorithm and gradient based methods
for ML learning by showing that the EM step in the parameter space can be obtained from
the gradient via the transformation symmetric positive definite P matrix. The important
consequence of the above analysis is that EM has the appealing quality of always taking a
step @1 — @ having positive projection onto the true gradient of the likelihood function
L(©%). This makes EM similar to the first order methods operating on the gradient of a
locally reshaped likelihood function.

We could now study the convergence of the EM algorithm by analyzing the structure of
this transformation P matrix and relating it to the convergence rate matrix. One could
also analyze the effect that P matrix has on the likelihood surface by examining its special
properties [5]. This will help us in getting deeper understanding of the nature of the EM
algorithm and identify analytic conditions under which it is superior or inferior to other
direct optimization methods in terms of convergence.
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