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Abstract

We consider the problem of learning probabilistic modetscimmplex relational
structures between various types of objects. A model cgmieelunderstand” a
dataset of relational facts in at least two ways, by findirtgrioretable structure
in the data, and by supporting predictions, or inferencesitlwhether particular
unobserved relations are likely to be true. Often there iadeff between these
two aims: cluster-based models yield more easily integtletrepresentations,
while factorization-based approaches have given betésglighive performance on
large data sets. We introduce the Bayesian Clustered Teastorization (BCTF)
model, which embeds a factorized representation of reiatio a nonparametric
Bayesian clustering framework. Inference is fully Bayasiat scales well to
large data sets. The model simultaneously discovers irgtzgle clusters and
yields predictive performance that matches or beats pusypoobabilistic models
for relational data.

1 Introduction

Learning with relational data, or sets of propositions & thrm (object, relation, object), has been
important in a number of areas of Al and statistical datayaisl Al researchers have proposed that
by storing enough everyday relational facts and genengjiappropriately to unobserved proposi-
tions, we might capture the essence of human common senseskEmce, given propositions such
as (cup, used-for, drinking), (cup, can-contain, juicelp can-contain, water), (cup, can-contain,
coffee), (glass, can-contain, juice), (glass, can-cantaater), (glass, can-contain, wine), and so
on, we might also infer the propositions (glass, used-fidnkihg), (glass, can-contain, coffee), and
(cup, can-contain, wine). Modelling relational data isoailsportant for more immediate appli-
cations, including problems arising in social networks [@pinformatics [16], and collaborative
filtering [18].

We approach these problems using probabilistic modelsitfate a joint distribution over the truth
values of all conceivable relations. Such a model definemagdastribution over the binary variables
T(a,r,b) € {0,1}, wherea andb are objectsy is a relation, and the variabi(a, r, b) determines
whether the relatiofa, r, b) is true. Given a set of true relatioss= {(a, r, b)}, the model predicts
that a new relatioffa, , b) is true with probabilityP(T'(a, r,b) = 1|5).

In addition to making predictions on new relations, we alsmito understand the data—that is, to
find a small set of interpretable laws that explains a largetion of the observations. By introducing
hidden variables over simple hypotheses, the posteritiiiiion over the hidden variables will
concentrate on the laws the data is likely to obey, while itere of the laws depends on the model.
For example, the Infinite Relational Model (IRM) [8] repragesimple laws consisting of partitions
of objects and partitions of relations. To decide whetheréfation(a, r, b) is valid, the IRM simply
checks that the clusters to whiehr, andb belong are compatible. The main advantage of the IRM
is its ability to extract meaningful partitions of objectsdarelations from the observational data,



which greatly facilitates exploratory data analysis. Melaborate proposals consider models over
more powerful laws (e.g., first order formulas with noise migar multiple clusterings), which are
currently less practical due to the computational diffizolt their inference problems [7, 6, 9].

Models based on matrix or tensor factorization [18, 19, $Fthae potential of making better predic-

tions than interpretable models of similar complexity, @&sdemonstrate in our experimental results
section. Factorization models learn a distributed repriagion for each object and each relation,
and make predictions by taking appropriate inner prodddieir strength lies in the relative ease of
their continuous (rather than discrete) optimization, antheir excellent predictive performance.

However, it is often hard to understand and analyze the ¢éeblatent structure.

The tension between interpretability and predictive powemfortunate: it is clearly better to have
a model that has both strong predictive power and interpiléta We address this problem by
introducing the Bayesian Clustered Tensor FactorizaBfil{F) model, which combines good in-
terpretability with excellent predictive power. Specifigasimilarly to the IRM, the BCTF model
learns a partition of the objects and a patrtition of the retest, so that the truth-value of a relation
(a,r,b) depends primarily on the compatibility of the clusters taakha, », andb belong. At the
same time, every entity has a distributed representatiach ebject: is assigned the two vectors
ar,ar (one fora being a left argument in a relation and one for it being a refgument), and
a relationr is assigned the matriR. Given the distributed representations, the truth of atigeia
(a,r,b) is determined by the value af] Rbg, while the object partition encourages the objects
within a cluster to have similar distributed representsiand similarly for relations).

The experiments show that the BCTF model achieves bettdiqgtise performance than a number
of related probabilistic relational models, including tRé, on several datasets. The model is scal-
able, and we apply it on the Movielens [15] and the Concedtt@tdatasets. We also examine
the structure found in BCTF'’s clusters and learned vectbmsally, our results provide an exam-
ple where the performance of a Bayesian madistantiallyoutperforms a corresponding MAP
estimate for large sparse datasets with minimal manualrpgpameter selection.

2 TheBayesian Clustered Tensor Factorization (BCTF)

We begin with a simple tensor factorization model. Suppbaewe have a fixed finite set of objects
O and a fixed finite set of relation®. For each object € O the model maintains two vectors
ar,ap € RY (the left and the right arguments of the relation), and farhegelationr € R it
maintains a matriR € R?*<, whered is the dimensionality of the model. Given a setting of
these parameters (collectively denotedythe model independently chooses the truth-value of
each relation(a, 7, b) from the distributionP(T'(a,r,b) = 1|6) = 1/(1 + exp(—a; Rbg)). In
particular, given a set of known relatio§s we can learn the parameters by maximizing a penalized
log likelihoodlog P(S|0) — Reg(f). The necessity of having a pair of parametersarg, instead

of a single distributed representatianwill become clear later.

Next, we define a prior over the vectofa;,}, {ar}, and{R}. Specifically, the model defines a
prior distribution over partitions of objects and partit®of relations using the Chinese Restaurant
Process. Once the partitions are chosen, each clasgamples its own prior mean and prior di-
agonal covariance, which are then used to independentipleavectors{a;,ar : a € C} that
belong to clustec” (and similarly for the relations, where we trd&tas ad?-dimensional vector).
As a result, objects within a cluster have similar distrdzltepresentations. When the clusters are
sufficiently tight, the value o&;] Rby is mainly determined by the clusters to whiehr, andb
belong. At the same time, the distributed representatietpsdpeneralization, because they can rep-
resent graded similarities between clusters and fine difiegs between objects in the same cluster.
Thus, given a set of relations, we expect the model to find bwhningful clusters of objects and
relations, as well as predictive distributed represenmati

More formally, assume tha® = {a1,...,an} andR = {r1,...,rp}. The model is defined as
follows:

P(obs b, c,a,app) = P(obg0, ) P(0|c, ) P(clapp)P(app, o, 0?) 1)

where the observed data obs is a set of triples and theirvalttes{(a, r, b), t}; the variablec =
{conj, crer} cONtains the cluster assignments (partitions) of the ebpend the relations; the variable
6 = {ar,ag, R} consists of the distributed representations of the objatsthe relations, and
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Figure 1: A schematic diagram of the model, where the araesemt the object clusters and the
vectors within each cluster are similar. The model preditis r, b) with a; Rbpg.

{02, o, app} are the model hyperparameters. Two of the above terms aga biv

P(obgf) = Il NtlaiRbg,o?) 2)
{(a,rb),t}c0bS
P(ClOéDP) = CRP(CObj|04DP)CRP(C7-61|O(DP) (3)

whereN (t|u1, 0?) denotes the Gaussian distribution with mgaand variancer?, andCRP(c|«)
denotes the probability of the partition induced bynder the Chinese Restaurant Process with
concentration parameter The Gaussian likelihood in Eq. 2 is far from ideal for mouhglbinary
data, but, similarly to [19, 18], we use it instead of the &tigi function because it makes the model
conjugate and Gibbs sampling easier.

Defining P(f|c, «) takes a little more work. Given the partitions, the sets obpeeterdar }, {ar},
and{R} become independent, so

P(0]c,a) = P({ar}covs, dobj) P({ar} Cobs, onj ) P({R}erer, avrer) (4)
The distribution over the relation-vectors is given by

|CT€l|

PR erear) = [T [ TT Nl 2)dP(n o) (5)
k=1 7 #-2
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where|c,| is the number of clusters in the partitien.;. This is precisely a Dirichlet process
mixture model [13]. We further place a Gaussian-Inversea®a prior over(, X):

P(,u,2|a,.el) = P(N|E)P(Z|a7'el) :N(MOaZ)HIG(UcQI’lO‘Tela1) (6)
d/

2
x exp < Z ,Uzd/éz + 1) H (0_3/)_0-5_(17"61_1 (7)
d/ dl

d’

whereX is a diagonal matrix whose entries arg, the variable?’ ranges over the dimensions of
R; (sol < d' < d?), andIG(z|a, 3) denotes the inverse-Gamma distribution with shape pasmet
« and scale parametgr This prior makes many useful expectations analyticalippotable. The
termsP ({ar }|co;, o) aNAP({ar}|con;, aop;) are defined analogously to Eq. 5.

Finally, we place an impropéP(x) « x~! scale-uniform prior over each hyperparameter indepen-
dently.

Inference

We now briefly describe the MCMC algorithm used for infereri8efore starting the Markov chain,
we find a MAP estimate of the model parameters using the maihodnjugate gradient (but we

do not optimize over the partitions). The MAP estimate isitheed to initialize the Markov chain.
Each step of the Markov chain consists of a number of intestegds. First, given the parameters
6, the chain updates = (c,.;, copj) USING a collapsed Gibbs sampling sweep and a step of the
split-and-merge algorithm (where the launch state wasmddavith two sweeps of Gibbs sampling
starting from a uniformly random cluster assignment) [5¢xN it samples from the posterior mean



and covariance of each cluster, which is the distributiapprtional to the term being integrated in
Eq. 5.

Next, the Markov chain samples the paramefeis} given{ar}, {R}, and the cluster posterior
means and covariances. This step is tractable since théiooadidistribution over the object vec-
tors{ay } is Gaussian and factorizes into the product of conditiorgfidutions over the individual
object vectors. This conditional independence is impayr&nce it tends to make the Markov chain
mix faster, and is a direct consequence of each objdwving two vectorsa; andag. If each
objecta was only associated with a single vectofand notay, ag), the conditional distribution
over {a} would not factorize, which in turn would require the use oflan&r sequential Gibbs
sampler. In the current setting, we can further speed upfieesince by sampling from conditional
distributions in parallel. The speedup could be substamtaticularly when the number of objects
is large. The disadvantage of using two vectors for eachcbigethat the model cannot as easily
capture the “position-independent” properties of the ohjespecially in the sparse regime.

Sampling{a,} from the Gaussian takes time proportionalb- N, whereN is the number of
objects. While we do the same fénr}, we run a standard hybrid Monte Carlo to update the
matrices{ R} using 10 leapfrog steps of sia®~° [12]. Each matrix, which we treat as a vector,
hasd? dimensions, so direct sampling from the Gaussian distdhigcales ag® - M, which is slow
even for small values af (e.g. 20). Finally, we make a small symmetric multiplicatthange to
each hyperparameter and accept or reject its new valuedingdo the Metropolis-Hastings rule.

3 Evaluation

In this section, we show that the BCTF model has excellerdiptige power and that it finds inter-
pretable clusters by applying it to five datasets and compats performance to the IRM [8] and
the Multiple Relational Clustering (MRC) model [9]. We alsmmpare BCTF to its simpler counter-
part: a Bayesian Tensor Factorization (BTF) model, whdrhalobjects and the relations belong to
a single cluster. The Bayesian Tensor Factorization madeeneralization of the Bayesian prob-
abilistic matrix factorization [17], and is closely reldttdo many other existing tensor-factorization
methods [3, 14, 1]. In what follows, we will describe the d&ts, report the predictive performance
of our and of the competing algorithms, and examine the straaliscovered by BCTF.

3.1 Description of the Datasets

We use three of the four datasets used by [8] and [9], nani\Ahimals, the UML, and the Kinship
dataset, as well the Movielens [15] and the Conceptnet elistfi0].

1. The animals dataset consists of 50 animals and 85 bintiiyua¢s. The dataset is a fully
observed matrix—so there is only one relation.

2. The kinship dataset consists of kinship relationshipsragthe members of the Alyawarra
tribe [4]. The dataset contains 104 people and 26 relatidhi&s dataset is dense and has
10426104 = 218216 observations, most of which are 0.

3. The UML dataset [11] consists of a 135 medical terms an&kifions. The dataset is also
fully observed and has 138135 = 893025 (mostly 0) observations.

4. The Movielens [15] dataset consists of 1000209 obsemvegdér ratings of 6041 movies
on a scale from 1 to 5, which are rated by 3953 users. The date8® 8% sparse.

5. The Conceptnet dataset [10] is a collection of commors&seassertions collected from the
web. It consists of about 112135 “common-sense” assersioals as (hockey, is-a, sport).
There are 19 relations and 17571 objects. To make our expetinfaster, we used only
the 7000 most frequent objects, which resulted in 82062facis. For the negative data,
we sampled twice as many random object-relation-objgdtsiand used them as the false
facts. As a result, there were 246186 binary observatiotBisndataset. The dataset is
99.9% sparse.

3.2 Experimental Protocol

To facilitate comparison with [9], we conducted our expeits the following way. First, we nor-
malized each dataset so the mean of its observations wasxd, Wecreated 10 random train/test



animals kinship UML movielens conceptnet
algorithm || RMSE | AUC | RMSE | AUC | RMSE | AUC | RMSE | AUC | RMSE | AUC
MAP4 0.467 | 0.78 | 0.122 | 0.82 | 0.033 | 0.96 | 0.899 - 0.536 | 0.57
MAP 4 0.528 | 0.68 | 0.110 | 0.90 | 0.024 | 098 | 0.933 - 0.614 | 0.48
BTF2o 0.337 | 0.85 | 0.122 | 0.82 | 0.033 | 0.96 | 0.835 - 0.275 | 0.93
BCTFxo 0331 | 086 | 0.122 | 0.82 | 0.033 | 0.96 | 0.836 - 0.278 | 0.93
BTF40 0.338 | 0.86 | 0.108 | 090 | 0024 | 098 | 0.834 - 0.267 | 0.94
BCTFuo 0.336 | 086 | 0108 | 0.90 | 0.024 | 098 | 0.836 - 0.260 | 0.94

IRM [8] 0.382 | 0.75 | 0.140 | 0.66 | 0.054 | 0.70 - - - -

MRC [9] - 0.81 - 0.85 - 0.98 - - - -

Table 1: A gquantitative evaluation of the algorithms using 20 and #@emsional vectors. We report the
performance of the following algorithms: the MAP-based S@mFactorization, the Bayesian Tensor Factor-
ization (BTF) with MCMC (where all objects belong to a singlester), the full Bayesian Clustered Tensor
Factorization (BCTF), the IRM [8] and the MRC [9].

F1 F2 F3

o1 killer whale, blue whale, humpback whale,
seal, walrus, dolphin o1

02 antelope, dalmatian, horse, giraffe, zebra, dgﬁ'

03 mole, hamster, rabbit, mouse

04 hippopotamus, elephant, rhinoceros 03

05 spider monkey, gorilla, chimpanzee

06 moose, ox, sheep, buffalo, pig, cow

o7 beaver, squirrel, otter

08 Persian cat, skunk, chihuahua, collie

09 grizzly bear, polar bear

F1 flippers, strainteeth, swims, fish,
arctic, coastal, ocean, water
F2 hooves, vegetation, grazer, plains, fields
F3 paws, claws, solitary
F4 bulbous, slow, inactive
F5 jungle, tree
F6 big, strong, group
F7 walks, quadrapedal, ground
F8 small, weak, nocturnal, hibernate, nestspot
F9 tail, newworld, oldworld, timid

Figure 2: Results on the Animals datasdteft: The discovered clustersviddle: The biclustering of the
features.Right: The covariance of the distributed representations of timae (bottom) and their attributes

(top).

splits, where 10% of the data was used for testing. For the€unet and the Movielens datasets,
we used only two train/test splits and at most 30 clustersghlwimade our experiments faster. We
report test root mean squared error (RMSE) and the area threlprecision recall curve (AUC) [9].
For the IRM we make predictions as follows. The IRM partitions the data blocks; we compute
the smoothed mean of the observed entries of each block antitospredict the test entries in the
same block.

3.3 Reaults

We first applied BCTF to the Animals, Kinship, and the UML dsts using 20 and 40-dimensional
vectors. Table 1 shows that BCTF substantially outperfd®RM and MRC in terms of both RMSE
and AUC. In fact, for the Kinship and the UML datasets, thepertensor factorization model
trained by MAP performs as well as BTF and BCTF. This happatabse for these datasets the
number of observations is much larger than the number ofpetexs, so there is little uncertainty
about the true parameter values. However, the Animals elatssonsiderably smaller, so BTF
performs better, and BCTF performs even better than the Bddrein

We then applied BCTF to the Movielens and the ConceptnesdttaWe found that the MAP es-
timates suffered from significant overfitting, and that théyf Bayesian models performed much
better. This is important because both datasets are spdridy makes overfitting difficult to com-

bat. For the extremely sparse Conceptnet dataset, the B@rEIrfurther improved upon simpler

The code is available ittp://www.psy.cmu.edu/ ~ckemp/code/irm.html
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Figure 3:Results on the Kinship dataséteft: The covariance of the distributed representatipms} learned
for each persorRight: The biclustering of a subset of the relations.

2 Amino Acid, Peptide, or Protein, Biomedical or Dental Ma&grCarbohydrate, . .
3 Amphibian, Animal, Archaeon, Bird, Fish, Human, .
4 Antibiotic, Biologically Active Substance, Enzyme, Hadaus or Poisonous Substance, Hormone,
5 Biologic Function, Cell Function, Genetic Function, MdrRaocess, . .
6 Classification, Drug Delivery Device, Intellectual Produdanufactured Object, . .
7 Body Part, Organ, Cell, Cell Component, .
8 Alga, Bacterium, Fungus, Plant, Rickettsia or Chlamydiauy

9 Age Group, Family Group, Group, Patient or Disabled Group,

10 Cell / Molecular Dysfunction, Disease or Syndrome, ModeDifease, Mental Dysfunction,. .

11 Daily or Recreational Activity, Educational Activity, Gevmnmental Activity,. . .

12 Environmental Effect of Humans, Human-caused PhenomenBrozess, . .

13 Acquired Abnormality, Anatomical Abnormality, Congedifsbnormality, Injury or Poisoning

14 Health Care Related Organization, Organization, PrajessiSociety, . .

Affects interacts with causes

Figure 4:Results on the medical UML dataséteft: The covariance of the distributed representatifms}
learned for each objecRight: The inferred clusters, along with the biclustering of a tilod the relations.

BTF model. We do not report results for the IRM, because tligtiag off-the-shelf implementation
could not handle these large datasets.

We now examine the latent structure discovered by the BCTH#ainoy inspecting a sample pro-
duced by the Markov chain. Figure 2 shows some of the clugarmed by the model on the
Animals dataset. It also shows the biclustering, as welhascbvariance of the distributed repre-
sentations of the animals and their attributes, sorted &y thusters. By inspecting the covariance,
we can determine the clusters that are tight and the afiiitigween the clusters. Indeed, the clus-
ter structure is reflected in the block-diagonal structdrihe covariance matrix. For example, the
covariance of the attributes (see Fig. 2, top-right partes that cluster F1, containifdlippers,
stainteeth,swimisis similar to cluster F4, containingbulbous, slow, inactivg but is very dissimilar

to F2, containing hooves, vegetation, grazer

Figure 3 displays the learned representation for the Kndhataset. The kinship dataset has 104
people with complex relationships between them: each pesgtongs to one of four sections,
which strongly constrains the other relations. For examplperson in section 1 has a father in
section 3 and a mother in section 4 (see [8, 4] for more dg¢talifier learning, each cluster was
almost completely localized in gender, section, and age. ckoity of presentation, we sort the
clusters first by their section, then by their gender, andlitgy their age, as done in [8]. Figure 3
(panels (b-g)) displays some of the relations accordindidlustering, and panel (a) shows the
covariance between the vectdes;, } learned for each person. The four sections are clearlylgisib
in the covariance structure of the distributed represemsit

Figure 4 shows the inferred clusters for the medical UML slettaFor example, the model discovers
that{Amino Acid, Peptide, ProteinAffects { Biologic Function, Cell Function, Genetic Functign



Independence Day; Lost World: Jurassic Park The; Stargadster; Air Force One; . .

Star Wars: Episode IV - A New Hope; Silence of the Lambs Thecd&a of the Lost Ark; . .
Shakespeare in Love; Shawshank Redemption The; Good Wllifrty; As Good As It Gets; . .
Fargo; Being John Malkovich; Annie Hall; Talented Mr. Ripl€he; Taxi Driver;. . .

E.T. the Extra-Terrestrial; Ghostbusters; Babe; Bug's l4f Toy Story 2;. . .

Jurassic Park; Saving Private Ryan; Matrix The; Back to tieife; Forrest Gump;. .

Dick Tracy; Space Jam; Teenage Mutant Ninja Turtles; Supertit; Last Action Hero;. . .

Monty Python and the Holy Grail; Twelve Monkeys; Beetlepji€erris Bueller's Day Off; . .
Lawnmower Man The; Event Horizon; Howard the Duck; Beach; Rucky III; Bird on a Wire;. . .
10 Terminator 2: Judgment Day; Terminator The; Alien; Totat&E Aliens; Jaws; Predator;. .

11 Groundhog Day; Who Framed Roger Rabbit?; Usual SuspectsAlitpane!; Election;. . .

12 Back to the Future Part Ill; Honey | Shrunk the Kids; Crocedilundee; Rocketeer The; .

13 Sixth Sense The; Braveheart; Princess Bride The; Batmalty Wonka and the Chocolate Factory; .
14 Men in Black; Galaxy Quest; Clueless; Chicken Run; Mask Rieasantville; Mars Attacks!;. .

15 Austin Powers: The Spy Who Shagged Me; There’s SomethingiAldary; Austin Powers: . .

16 Breakfast Club The; American Pie; Blues Brothers The; AtiHause; Rocky; Blazing Saddles; .
17 American Beauty; Pulp Fiction; GoodFellas; Fight Club; SoRark: Bigger Longer and Uncut; .

18 Star Wars: Episode V - The Empire Strikes Back; Star Warssdtje VI - Return of the Jedi;. .

19 Edward Scissorhands; Blair Witch Project The; NightmartoBeChristmas The; James and the Giant Peach;
20 Mighty Peking Man
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Figure 5: Results on the Movielens dataséteft: The covariance between the movie vectdight: The
inferred clusters.

feel good; make money; make music; sweat; earn money; chmakiyind; pass time;
weasel; Apple trees; Ferrets; heifer; beaver; ficus; anemtdowfish; koala; triangle;
boredom; anger; cry; buy ticket; laughter; fatigue; joynjgaturn on tv; patience;
enjoy; danger; hurt; bad; competition; cold; recreategbphealth; excited;

car; book; home; build; store; school; table; office; mudiesk; cabinet; pleasure;
library; New York; shelf; cupboard; living room; pocket; auntryside; utah; basement;
city; bathroom; kitchen; restaurant; bed; park; refrigeraloset; street; bedroom;
think; sleep; sit; play games; examine; listen music; reaakb; buy; wait; play sport;
Housework; attend class; go jogging; chat with friendsif wigiseums; ride bikes;

10 fox; small dogs; wiener dog; bald eagle; crab; boy; bee; regng&hark; sloth; marmot;
11 fun; relax; entertain; learn; eat; exercise; sex; food;kvtalk; play; party; travel;

12 state; a large city; act; big city; Europe; maryland; colmarner; need; pennsylvania;
13 play music; go; look; drink water; cut; plan; rope; fair; ehevear; body part; fail;

14 green; lawyer; recycle; globe; Rat; sharp points; silverpg/; Bob Dylan; dead fish;

15 potato; comfort; knowledge; move; inform; burn; men; veget fear; accident; murder;
16 garbage; thought; orange; handle; penis; diamond; wingegunose; sidewalk; pad;
17 sand; bacteria; robot; hall; basketball court; supportkiiVay; chef; sheet of paper;
18 dessert; pub; extinguish fire; fuel; symbol; cleanlinesskithe door; shelter; sphere;

©CONOUDWNE

Figure 6:Results on the Conceptnet datasetft: The covariance of the learnde, } vectors for each object.
Right: The inferred clusters.

which is also similar, according to the covariance{&ell Dysfunction, Disease, Mental Dysfunc-
tion}. Qualitatively, the clustering appears to be on par with tfizhe IRM on all the datasets, but
the BCTF model is able to predict held-out relations muclebet

Figures 5 and 6 display the learned clusters for the Movietard the Conceptnet datasets. For the
Movielens dataset, we show the most frequently-rated nsaxieach cluster where the clusters are
sorted by size. We also show the covariance between the meuters which are sorted by the
clusters, where we display only the 100 most frequentlgeaihovies per cluster. The covariance
matrix is aligned with the table on the right, making it easysée how the clusters relate to each
other. For example, according to the covariance structiusters 7 and 9, containing Hollywood
action/adventure movies are similar to each other but asirdilar to cluster 8, which consists of
comedy/horror movies.

For the Conceptnet dataset, Fig. 6 displays the 100 mosidrdéagbjects per category. From the co-
variance matrix, we can infer that clusters 8, 9, and 11 ,ainimtg concepts associated with humans
taking actions, are very similar to each other, and are vissirdilar to cluster 10, which contains
animals. Observe that some clusters (e.qg., clusters Z@aicrisp, which is reflected in the smaller
covariances between vectors in each of these clusters.

4 Discussions and Conclusions

We introduced a new method for modelling relational dateciiig able to both discover meaningful
structure and generalize well. In particular, our resliitstrate the predictive power of distributed
representations when applied to modelling relational ,dsitece even simple tensor factorization
models can sometimes outperform the more complex modelseth for the kinship and the UML
datasets, the performance of the MAP-based tensor faatmmzwas as good as the performance
of the BCTF model, which is due to the density of these datasbé number of observations was
much larger than the number of parameters. On the other famldrge sparse datasets, the BCTF



model significantly outperformed its MAP counterpart, amgarticular, it noticeably outperformed
BTF on the Conceptnet dataset.

A surprising aspect of the Bayesian model is the ease witlthwitiworked after automatic hy-
perparameter selection was implemented. Furthermoremtidel performs well even when the
initial MAP estimate is very poor, as was the case for the #dedsional models on the Conceptnet
dataset. This is particularly important for large spardmskts, since finding a good MAP estimate
requires careful cross-validation to select the regudaion hyperparameters. Careful hyperparam-
eter selection can be very labour-expensive because iresqrareful training of a large number of
models.

Acknowledgments

The authors acknowledge the financial support from NSEREI|SMTT Communication Sciences
Laboratory, AFOSR FA9550-07-1-0075, and AFOSR MURI.

References

[1] Edoardo Airoldi, David M. Blei, Stephen E. Fienberg, adc P. Xing. Mixed membership stochastic
blockmodels. IMNIPS pages 33—40. MIT Press, 2008.

[2] P.J. Carrington, J. Scott, and S. Wasserméndels and methods in social network analy&immbridge
University Press, 2005.

[3] W. Chu and Z. Ghahramani. Probabilistic models for inptete multi-dimensional arrays. Proceed-
ings of the International Conference on Atrtificial Inteligce and Statisticsolume 5, 2009.

[4] W. Denham. The Detection of Patterns in Alyawarra Nonverbal Behavi®hD thesis, Department of
Anthropology, University of Washington, 1973.

[5] S. Jain and R.M. Neal. A split-merge Markov chain Monterl@grocedure for the Dirichlet process
mixture model.Journal of Computational and Graphical Statistid$(1):158-182, 2004.

[6] Y. Katz, N.D. Goodman, K. Kersting, C. Kemp, and J.B. Telbaum. Modeling Semantic Cognition as
Logical Dimensionality Reduction. IRroceedings of Thirtieth Annual Meeting of the CognitivieBce
Society 2008.

[7] C. Kemp, N.D. Goodman, and J.B. Tenenbaum. Theory aitguisand the language of thought. In
Proceedings of Thirtieth Annual Meeting of the CognitiveeSce Society2008.

[8] C.Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, andJdda. Learning systems of concepts with an
infinite relational model. IfProceedings of the National Conference on Atrtificial Ingghce volume 21,
page 381. Menlo Park, CA; Cambridge, MA; London; AAAI PrdgdT Press; 1999, 2006.

[9] S. Kok and P. Domingos. Statistical predicate inventionProceedings of the 24th international confer-
ence on Machine learningpages 433—-440. ACM New York, NY, USA, 2007.

[10] H. Liu and P. Singh. ConceptNeta practical commonseaasoning tool-kit. BT Technology Journal
22(4):211-226, 2004.

[11] A.T. McCray. An upper-level ontology for the biomedicdomain. Comparative and Functional Ge-
nomics 4(1):80-84, 2003.

[12] R.M. Neal. Probabilistic inference using Markov chMionte Carlo methods, 1993.

[13] R.M. Neal. Markov chain sampling methods for Dirichfgbcess mixture modelslournal of computa-
tional and graphical statisticgpages 249-265, 2000.

[14] lan Porteous, Evgeniy Bart, and Max Welling. Multi-HDR non parametric bayesian model for tensor
factorization. In Dieter Fox and Carla P. Gomes, edit&sAl, pages 1487-1490. AAAI Press, 2008.

[15] J. Riedl, J. Konstan, S. Lam, and J. Herlocker. Movigleollaborative filtering data set, 2006.

[16] J.F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikau. Dricot, N. Li, G.F. Berriz, F.D. Gibbons,

M. Dreze, N. Ayivi-Guedehoussou, et al. Towards a protesgae map of the human protein—protein
interaction networkNature 437(7062):1173-1178, 2005.

[17] R. Salakhutdinov and A. Mnih. Bayesian probabilistiatnix factorization using Markov chain Monte
Carlo. InProceedings of the 25th international conference on Mael@arning pages 880—-887. ACM
New York, NY, USA, 2008.

[18] R. Salakhutdinov and A. Mnih. Probabilistic matrix fadzation. Advances in neural information pro-
cessing systemg20, 2008.

[19] R. Speer, C. Havasi, and H. Lieberman. AnalogySpacetuBiag the dimensionality of common sense
knowledge. InProceedings of AAAROOS.



