
1 Proof of Theorem 1

Theorem 1. Suppose K + 1 distributions pk are linearly spaced along a path γ. Assuming per-
fect transitions, if θ(β) and the Fisher information matrix Gθ(β) = covx∼pθ (∇θ log pθ(x)) are
continuous and piecewise smooth, then as K →∞ the bias δ behaves as follows:

Kδ = K

K−1∑
k=0

DKL(pk‖pk+1)→ F(γ) ≡
1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β) dβ, (1)

where θ̇(β) represents the derivative of θ with respect to β.

Proof. First, assume that θ(β) and Gθ(β) are both smooth. Consider a second-order Taylor expan-
sion of DKL(θ(β)‖θ(β + h)) around h = 0. The constant and first order terms are zero. For the
second order term,

∇2
θDKL(θ‖θ0)

∣∣
θ=θ0

= Gθ,

so the second-order Taylor expansion is given by:

DKL(θ(β)‖θ(β + h)) =
1

2
h2θ̇T (β)Gθ(β)θ̇(β) + ε,

where

|ε| ≤ h3

6
max
β

∣∣∣∣ d3dh3DKL(θ(β)‖θ(β + h))

∣∣∣∣ .
(The maximum is finite because Gθ is smooth.)

Assuming a linear schedule, the bias is given by

δ =

K−1∑
k=0

DKL(pk‖pk+1)

=

K−1∑
k=0

DKL(θ(k/K) ‖ θ((k + 1)/K))

=
1

2K2

K−1∑
k=0

θ̇(βk)
TGθ(βk)θ̇(βk) +

K−1∑
k=0

εk

The error term decays like 1/K2, so it approaches zero even when scaled by K. The asymptotic
bias, therefore, is determined by the first term. When scaled by K, this approaches

F(γ) ≡ 1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β) dβ.

Therefore, Kδ → F(γ).
In the above analysis, we assumed that θ(β) and Gθ(β) were smooth. If they are merely piecewise
smooth, the integral decomposes into sums over the smooth segments of γ. Similarly, the KL di-
vergence terms corresponding to non-smooth points decay like 1/K2, so they approach zero when
scaled by K. Ignoring these terms, the bias decomposes as a sum over the smooth segments of γ, so
the theorem holds in the piecewise smooth case as well.

2 Derivation of variational interpretation from Section 4.1

2.1 Geometric averages

For simplicity of notation, assume the state space X is discrete. Consider solving for a distribution
q to minimize the weighted sum of KL divergences

(1− β)DKL(q‖pa) + βDKL(q‖pb) (2)
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with the constraint that
∑

x q(x) = 1. The Lagrangian is given by:

L(q) = λ

(∑
x

q(x)− 1

)
+ (1− β)

∑
x

q(x) (log q(x)− log pa(x))+

+ β
∑
x

q(x) (log q(x)− log pb(x))

= −λ+
∑
x

λq(x) + q(x) log q(x)− q(x) [(1− β) log pa(x)− β log pb(x)]

Differentiating with respect to q(x),

∂L(q)
∂q(x)

= λ+ 1 + log q(x)− (1− β) log pa(x)− β log pb(x).

Setting this to zero gives:
q(x) ∝ pa(x)1−βpb(x)β .

This is the optimum over the probability simplex. If pa and pb belong to an exponential family P ,
with natural parameters ηpa and ηpb , the optimum is achieved within P using ηβ = (1 − β)ηpa +
βηpb .

2.2 Moment averages

Suppose we wish to find

p
(MA)
β = argmin

q
(1− β)DKL(pa‖q) + βDKL(pb‖q). (3)

We write the cost function in terms of the natural parameters η:

J(η) = (1− β)
∑
x

pa(x)(log pa(x)− log q(x)) + β
∑
x

pb(x)(log pb(x)− log q(x))

= const−
∑
x

[(1− β)pa(x) + βpb(x)] log q(x)

= const + logZ(η)−
∑
x

[(1− β)pa(x) + βpb(x)]η
Tg(x)

The partial derivatives are given by:
∂J

∂ηi
=
∑
x

q(x)gi(x)−
∑
x

[(1− β)pa(x) + βpb(x)] gi(x)

= Eq[gi(x)]− (1− β)Epa(gi(x))− βEpb(gi(x))
Setting this to zero, we see that the optimal solution is given by averaging the moments of pa and
pb:

Eq[gi(x)] = (1− β)Epa(gi(x)) + βEpb(gi(x))
Intuitively, this can be thought of as a maximum likelihood estimate of η for a dataset with (1− β)
fraction of the points drawn from pa and β fraction drawn from pb.

3 Analysis of Gaussian example in Section 4.2

Here we evaluate the cost functionals for the Gaussian example of Section 4.2 under γGA and γMA

using both linear and optimal schedules. Recall that pa = N (µa, σ) and pb = N (µb, σ). The natural
parameters of the Gaussian are the information form representation, with precision λ = 1/σ2 and
potential h = λµ. The sufficient statistics are the first and (rescaled) second moments given by
E[x] = µ and − 1

2E[x
2] = − 1

2s ≡ −
1
2 (σ

2 + µ2).

Throughout this section, we use the relationship Gηη̇ = ṡ (Amari (2000), sec. 3.3), so that F(γ)
can be rewritten as 1

2

∫ 1

0
η̇(β)T ṡ(β) dβ.

To simplify calculations, let β range from −1/2 to 1/2 (rather than 0 to 1), and assume µa = −1/2
and µb = 1/2. The general case can be obtained by rescaling µa, µb, and σ.
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3.1 Geometric averages

Geometric averages correspond to averaging the natural parameters:
λ(β) = 1/σ2

h(β) = β/σ2

Solving for the moments,
µ(β) = β

s(β) = σ2 + β2.

The derivatives are given by:

λ̇(β) = 0

ḣ(β) = 1/σ2

µ̇(β) = 1

ṡ(β) = 2β

Ignoring the constant, the cost functional is given by:

F(γ) = 1

2

∫ 1/2

−1/2

ḣ(β)µ̇(β)− 1

2
λ̇(β)ṡ(β) dβ

=
1

2

∫ 1/2

−1/2

1

σ2
dβ

=
1

2σ2
.

We can also compute the cost under the optimal schedule by computing the path length (see Section
3):

`(γ) =

∫ 1/2

−1/2

√
ḣ(β)µ̇(β)− 1

2
λ̇(β)ṡ(β) dβ

=

∫ 1/2

−1/2

√
1/σ2 dβ

=
1

σ
.

Since the functional under the optimal schedule is given by `2/2, these two answers agree with each
other, i.e. the linear schedule is optimal.

We assumed for simplicity that µa = −1/2 and µb = 1/2. In general, we can rescale σ and µb−µa
by the same amount without changing the functional. Therefore, F(γGA) is given by:

(µb − µa)2

2σ2
≡ d2

2
.

3.2 Moment averaging

Now let’s look at moment averaging. The parameterizations are given by:
µ(β) = β

s(β) = σ2 +
1

4

λ(β) =

(
σ2 +

1

4
− β2

)−1

h(β) =

(
σ2 +

1

4
− β2

)−1

β
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with derivatives

µ̇(β) = 1

ṡ(β) = 0

λ̇(β) = 2

(
σ2 +

1

4
− β2

)−2

β

ḣ(β) = λ(β)µ̇(β) + µ(β)λ̇(β)

=

(
σ2 +

1

4
− β2

)−1

+ 2

(
σ2 +

1

4
− β2

)−2

β2

The cost functional is given by:

F(γMA) =
1

2

∫ 1/2

−1/2

µ̇(β)ḣ(β)− 1

2
ṡ(β)λ̇(β)

=
1

2

∫ 1/2

−1/2

ḣ(β) dβ

=
1

2
[h(1/2)− h(−1/2)]

=
1

2σ2
.

This agrees exactly with F(γGA), consistent with Theorem 2.

However, we can see by inspection that for small σ, most of the mass of this integral is concentrated
near the endpoints, where the variance changes suddenly. This suggests that the optimal schedule
would place more intermediate distributions near the endpoints.

We can bound the cost under the optimal schedule by bounding the path length `(γMA):

`(γMA) =

∫ 1/2

−1/2

√
µ̇(β)ḣ(β)− 1

2
ṡ(β)λ̇(β) dβ

=

∫ 1/2

−1/2

√
ḣ(β) dβ

=

∫ 1/2

−1/2

√
λ(β)µ̇(β) + µ(β)λ̇(β) dβ

≤
∫ 1/2

−1/2

√
|λ(β)µ̇(β)|dβ +

∫ 1/2

−1/2

√
|µ(β)λ̇(β)|dβ

=

∫ 1/2

−1/2

1√
σ2 + 1

4 − β2
dβ +

√
2

∫ 1/2

−1/2

|β|
σ2 + 1

4 − β2
dβ

= 2 sin−1

(
1√

4σ2 + 1

)
+
√
2 log

(
1 +

1

4σ2

)
≤ π +

√
2 log

(
1 +

1

4σ2

)
The path length has dropped from linear to logarithmic! Since F grows like `2, the cost drops from
quadratic to log squared.

This shows that even though Theorem 2 guarantees that both γGA and γMA have the same cost under
a linear schedule, one path may do substantially better than the other if one is allowed to change the
schedule.
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