Using Deep Belief Nets to Learn Covariance Kernels
for Gaussian Processes

Ruslan Salakhutdinov and Geoffrey Hinton
Department of Computer Science, University of Toronto
6 King’s College Rd, M5S 3G4, Canada
r sal akhu, hi nt on@s. t oront o. edu

Abstract

We show how to use unlabeled data and a deep belief net (DBIato a good
covariance kernel for a Gaussian process. We first learn@agkeerative model
of the unlabeled data using the fast, greedy algorithm éhiced by [7]. If the

data is high-dimensional and highly-structured, a Gauadsganel applied to the
top layer of features in the DBN works much better than a sinkernel applied
to the raw input. Performance at both regression and cleatifn can then be
further improved by using backpropagation through the DBMiscriminatively

fine-tune the covariance kernel.

1 Introduction

Gaussian processes (GP’s) are a widely used method for Bayesn-linear non-parametric re-
gression and classification [13, 16]. GP’s are based on dgfaisimilarity or kernel function that
encodes prior knowledge of the smoothness of the underfiogess that is being modeled. Be-
cause of their flexibility and computational simplicity, GPiave been successfully used in many
areas of machine learning.

Many real-world applications are characterized by highatisional, highly-structured data with a
large supply of unlabeled data but a very limited supply b&lad data. Applications such as infor-
mation retrieval and machine vision are examples wherebeida data is readily available. GP’s
are discriminative models by nature and within the standegdession or classification scenario,
unlabeled data is of no use. Given a set.ofl. labeled input vectorX; = {x,})_, and their
associated target labe{g,,})_, € R or {y,}Y_, € {-1,1} for regression/classification, GP’s
modelp(y,|x,) directly. Unless some assumptions are made about the yimedistribution of
the input dataX = [X;, X,], unlabeled dataX,,, cannot be used. Many researchers have tried to
use unlabeled data by incorporating a modeb@). For classification tasks, [11] mode(X) as

a mixture . p(z.|yn)p(yn) and then infep(y, |z,), [15] attempts to learn covariance kernels
based orp(X), and [10] assumes that the decision boundaries should atcagions where the
data densityp(X), is low. When faced with high-dimensional, highly-struetd data, however,
none of the existing approaches have proved to be partigsiaccessful.

In this paper we exploit two properties of DBN's. First, thegn be learned efficiently from unla-
beled data and the top-level features generally captundisignt, high-order correlations in the data.
Second, they can be discriminatively fine-tuned using bagqgation. We first learn a DBN model
of p(X) in an entirely unsupervised way using the fast, greedy lrgralgorithm introduced by [7]
and further investigated in [2, 14, 6]. We then use this gatier model to initialize a multi-layer,
non-linear mappind’(x|W), parameterized b¥¥’, with F' : X — Z mapping the input vectors in
X into a feature spaci. Typically the mappind”(x|W) will contain millions of parameters. The
top-level features produced by this mapping allow fairlgwate reconstruction of the input, so they
must contain most of the information in the input vector, tgly express this information in a way
that makes explicit a lot of the higher-order structure imitiput data.

After learning F(x|W), a natural way to define a kernel function is to €t(x;,x;) =
exp (—||F(x;|W) — F(x;|W)||?). Note that the kernel is initialized in an entirely unsupsed
way. The parameterid’ of the covariance kernel can then be fine-tuned using théddlmata by

maximizing the log probability of the labels with respecfitd In the final model most of the in-
formation for learning a covariance kernel will have comanirmodeling the input data. The very
limited information in the labels will be used only to slighadjust the layers of features already
discovered by the DBN.

2 Gaussian Processes for Regression and Binary Classifiaati

For a regression task, we are given a datalsef i.i.d. labeled input vectorX,; = {x,})_, and
their corresponding target labefg,, }Y_; € R. We are interested in the following probabilistic
regression model:

yn = f(zn) +€, €~ N(e|0,0?))
A Gaussian process regression places a zero-mean GP peioth@vunderlying latent functiof
we are modeling, so that a-prigrif|X;) =N/ (f|0, K), wheref = [f(z1), ..., f(z,)]T andK is the
covariance matrix, whose entries are specified by the caveei functionk’;; = K(x;,x;). The
covariance function encodes our prior notion of the smaoagbroff, or the prior assumption that
if two input vectors are similar according to some distan@asure, their labels should be highly
correlated. In this paper we will use the spherical Gaudstanel, parameterized W= {«a, 5}:

1
%(Xi —x;)" (x; — x;)))

Integrating out the function valué€sthe marginal log-likelihood takes form:

Kij =aexp(—

N 1 1 _
L =logp(ylX;) = Y log 2w — 3 log |K + 0?1 — §yT(K + 0?7y 3)

which can then be maximized with respect to the paramétarslo. Given a new test point,, a
prediction is obtained by conditioning on the observed datd¥. The distribution of the predicted
valuey, atx, takes the form:

p(ys|%e, D, 0,0%) = N (yu|kL (K + 6%1) 7Yy, kuw — kL (K + 021) Yk, + 02) (4)
wherek, = K(x., X)), andk,. = K (x., X.).

For a binary classification task, we similarly place a zeram@&P prior over the underlying latent
functionf, which is then passed through the logistic functigm) = 1/(1 + exp(—=z)) to define a
prior p(y, = 1|x,) = g(f(x,)). Given a new test point.., inference is done by first obtaining the
distribution over the latent functiofi. = f(x.):

p(FloeD) = [B b X Op(EX))
which is then used to produce a probabilistic prediction:
oo =1 D) = [g(FIplf o D), ©)

The non-Gaussian likelihood makes the integral in Eq. Sydically intractable. In our experiments,
we approximate the non-Gaussian postepidtX;, y) with a Gaussian one using expectation prop-
agation [12]. For more thorough reviews and implementadietails refer to [13, 16].

3 Learning Deep Belief Networks (DBN's)

In this section we describe an unsupervised way of learniD@Bdl model of the input datX =
[X;, X,], that contains both labeled and unlabeled data sets. A DBNbearained efficiently by
using a Restricted Boltzmann Machine (RBM) to learn onedaféhidden features at a time [7].
Welling et. al. [18] introduced a class of two-layer undirected graphicabeis that generalize
RBM’s to exponential family distributions. This framewowkll allow us to model real-valued
images of face patches and word-count vectors of documents.

3.1 Modeling Real-valued Data
We use a conditional Gaussian distribution for modelingeobed “visible” pixel values (e.g.
images of faces) and a conditional Bernoulli distributionhodeling “hidden” featureh (Fig. 1):

(I*bifa’i Zj h]‘wij)2

p(w; = w]h) = —sL—exp(— —))
p(hj = 1|X) = g(bj + Zz Wi %) (8)

2

: t Ws target y

3 1000 |

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | _RBM! GP

Feature

| 1000 | P 1000 | Representation
h Binary i tw, fwi FXIW)

Hidden Features | | 1000 lren | 1000 |
W § | 1000 | 1000 |
W, twl

O O Oy N e
X Visible :
Units RBM! Input X

Figure 1:Left panel: Markov random field of the generalized RBM. Thelayer represents stochastic binary
hidden feature® and and the bottom layer is composed of linear visible waitgith Gaussian noise. When
using a Constrained Poisson Model, the top layer represémtiastic binary latent topic featurbsand the
bottom layer represents the Poisson visible word-courtbvec Middle panel: Pretraining consists of learning
a stack of RBM’s. Right panel: After pretraining, the RBMi®aised to initialize a covariance function of the
Gaussian process, which is then fine-tuned by backpropagati

whereg(x) = 1/(1+exp(—z)) is the logistic functionw;; is a symmetric interaction term between
inputi and featurg, o? is the variance of input, andb;, b; are biases. The marginal distribution
over visible vectok is:

Z exp ((x h)) ©)
Ju 2 exp (—E(u, g))du

whereE(x, h) is an energy termE(x,h) = >, (Il_b) = >2;bjhy =2, ; hjwi; 2. The param-
eter updates required to perform gradient ascent in théikedhood is obtained from Eq. 9:

dlog p(x
Awij = Eagi() = 6(<Zihj>data — <Zihj>model) (10)
wij
wheree is the learning ratey; = x; /04, <->4ate denotes an expectation with respect to the data
distribution and< ->,,.4¢; IS an expectation with respect to the distribution definedhieymodel.
To circumvent the difficulty of computing ->,,.4c;, We use 1-step Contrastive Divergence [5]:

Awij = 6(<Zihj>data - <Zihj>recon) (11)

The expectation< z;h; >4q:0 defines the expected sufficient statistics of the data bigtan and

is computed as;p(h; = 1|x) when the features are being driven by the observed data frem t
training set using Eq. 8. After stochastically activatihg features, Eq. 7 is used to “reconstruct”
real-valued data. Then Eqg. 8 is used again to activate thertssand compute z;h ;> .ccon When
the features are being driven by the reconstructed dataughiout our experiments we set variances
o? = 1 for all visible unitsi, which facilitates learning. The learning rule for the lgigss just a
simplified version of Eq. 11.

3.2 Modeling Count Data with the Constrained Poisson Model

We use a conditional “constrained” Poisson distributiomfimdeling observed “visible” word count
datax and a conditional Bernoulli distribution for modeling “liein” topic feature:

exp (A + >, hjwij)
Zk exp (/\k + Zj hiWi;

where Poi§n, \) = e X" /nl, w;; is a symmetric interaction term between wardnd feature

J, N =Y, z; is the total length of the documen; is the bias of the conditional Poisson model
for word i, andb; is the bias of featurg. The Poisson rate, whose log is shifted by the weighted
combination of the feature activations, is normalized acales] up byN. We call this the “Con-
strained Poisson Model” since it ensures that the meandtorsges across all words sum up to the
length of the document. This normalization is significantduese it makes learning stable and it
deals appropriately with documents of different lengths.

p(z; = nlh) = POiS(n7) X N), p(h; = 1|x) = g(b; + waxl) (12)

The marginal distribution over visible count vectarss given in Eq. 9 with an “energy” given by
E(x,h) ==Y Nai+ Y log(zi!) = Y bjhj — > wihjwy; (13)
i i J 4,7

The gradient of the log-likelihood function is:

dlogp(v)

Awij =€ aw
)

= e(<xih;>data — <Tihj>model) (14)

3.3 Greedy Recursive Learning of Deep Belief Nets

A single layer of binary features is not the best way to capthe structure in the input data. We
now describe an efficient way to learn additional layers ofby features.

After learning the first layer of hidden features we have adingtted model that definggv, h)

by defining a consistent pair of conditional probabilitipéa|v) andp(v|h) which can be used to
sample from the model distribution. A different way to exggevhat has been learnegis/|h) and
p(h). Unlike a standard, directed model, thidh) does not have its own separate parameters. Itis a
complicated, non-factorial prior dm that is defined implicitly by (h|v) andp(v|h). This peculiar
decomposition int(h) andp(v|h) suggests a recursive algorithm: keep the leam(edh) but
replacep(h) by a better prior oveh, i.e. a prior that is closer to the average, over all the data
vectors, of the conditional posterior over So after learning an undirected model, the part we keep
is part of a multilayedirected model.

We can sample from this average conditional posterior bykimsingp(h|v) on the training data
and these samples are then the “data” that is used for tgathennext layer of features. The only
difference from learning the first layer of features is that tvisible” units of the second-level RBM
are also binary [6, 3]. The learning rule provided in the pyas section remains the same [5].
We could initialize the new RBM model by simply using the ¢ixig learned model but with the
roles of the hidden and visible units reversed. This ensiln&®(v) in our new model starts out
being exactly the same agh) in our old one. Provided the number of features per layer doés
decrease, [7] show that each extra layer increases a waghtower bound on the log probability
of data. To suppress noise in the learning signal, we usestilevalued activatioprobabilities for
the visible units of every RBM, but to prevent hidden unitnfrtransmitting more than one bit of
information from the data to its reconstruction, the piiefrag always uses stochastic binary values
for the hidden units.

The greedy, layer-by-layer training can be repeated skteres to learn a deep, hierarchical model
in which each layer of features captures strong high-orderetations between the activities of
features in the layer below.

4 Learning the Covariance Kernel for a Gaussian Process

After pretraining, the stochastic activities of the binfgtures in each layer are replaced by deter-
ministic, real-valued probabilities and the DBN is usedritialize a multi-layer, non-linear map-
ping f(x|W) as shown in figure 1. We define a Gaussian covariance fungiamameterized by

0 = {«, 8} andWV as:

Ky = avexp (- %IIF(XZ-IW) — Fx; W) (15)

Note that this covariance function is initialized in an eslif unsupervised way. We can now maxi-
mize the log-likelihood of Eq. 3 with respect to the paranmetd the covariance function using the
labeled training data[9]. The derivative of the log-likedbd with respect to the kernel function is:

0L 1, _ _
K, 5 (K, vy K = K (16)

whereK,, = K + 0?1 is the covariance matrix. Using the chain rule we readilyaobthe necessary
gradients:

oL _ oL 9K, . 0L _ 0L 0K, OF (x|W)
00 0K, 00 W 0K, 0F(x|W) oW

(17)

4

Training Data Test Data
—22 07 3299 -41.15 66.38 27.49 Unlabeled

» P N SR i TS
S B o R Y

Figure 2:Top panelA: Randomly sampled examples of the training and test datdoBganelB: The same
sample of the training and test images but with rectangudelusions.

Training | GPstandard GP-DBNgreedy = GP-DBNfine GPpca
labels Sph. ARD | Sph. ARD | Sph. ARD | Sph. ARD
A | 100 22.24 28.57 | 17.94 18.37 15.28 15.01 | 18.13(10) 16.47 (10)
500 17.25 18.16 | 12.71 8.96 7.25 6.84 | 14.75(20) 10.53(80)
1000 16.33 16.36 | 11.22 8.77 6.42 6.31 | 14.86(20) 10.00 (160)
B | 100 26.94 28.32 | 23.15 19.42 19.75 18.59 | 25.91 (10) 19.27 (20)
500 20.20 21.06 | 15.16 11.01 10.56 10.12 | 17.67 (10) 14.11(20)
1000 19.20 1798 | 14.15 10.43 9.13 9.23 16.26 (10) 11.55(80)

Table 1:Performance results on the face-orientation regressgakn The root mean squared error (RMSE) on

the test set is shown for each method using spherical Gauksiael and Gaussian kernel with ARD hyper-

parameters. By row: A) Non-occluded face data, B) Occludee flata. For the GPpca model, the number of
principal components that performs best on the test datzisrsin parenthesis.

wheredF'(x|W)/0W is computed using standard backpropagation. We also g#tithe observa-
tion noiseo?. It is necessary to compute the inversegf, so each gradient evaluation h@gN)
complexity whereV is the number of the labeled training cases. When learnimgettricted Boltz-
mann machines that are composed to form the initial DBN, wveweach gradient evaluation scales
linearly in time and space with the number of unlabeled irgjrcases. So the pretraining stage
can make efficient use of very large sets of unlabeled datetiesensible, high-level features and
when the amount of labeled data is small. Then the very larat@ount of information in the labels
can be used to slightly refine those features rather tharesiethem.

5 Experimental Results

In this section we present experimental results for sevegression and classification tasks that
involve high-dimensional, highly-structured data. Thetfiegression task is to extract the orienta-
tion of a face from a gray-level image of a large patch of theefaThe second regression task is
to map images of handwritten digits to a single real-vala has close as possible to the integer
represented by the digit in the image. The first classificask is to discriminate between images
of odd digits and images of even digits. The second clasiditdask is to discriminate between
two different classes of news story based on the vector ofiwounts in each story.

5.1 Extracting the Orientation of a Face Patch

The Olivetti face data set contains ten>@# images of each of forty different people. We con-
structed a data set of 13,000:288 images by randomly rotating-00° to +90°), cropping, and
subsampling the original 400 images. The data set was thmsded into 12,000 training images,
which contained the first 30 people, and 1,000 test imageshwdontained the remaining 10 peo-
ple. 1,000 randomly sampled face patches from the trairéhgvere assigned an orientation label.
The remaining 11,000 training images were used as unlablefied We also made a more difficult
version of the task by occluding part of each face patch vétidomly chosen rectangles. Panel A
of figure 2 shows randomly sampled examples from the traiaimjtest data.

For training on the Olivetti face patches we used the 7841D@W00-1000 architecture shown in

figure 1. The entire training set of 12,000 unlabeled imagas used for greedy, layer-by-layer

training of a DBN model. The 2.8 million parameters of the DBdel may seem excessive for

12,000 training cases, but each training case involves lmgd&25 real-values rather than just a
single real-valued label. Also, we only train each layer edttires for a few passes through the
training data and we penalize the squared weights.

1.0[«f Input Pixel Space
35
30|
25
081 20f
15|
10y
N 5]
S 06 01 2 3 4 6
g log B
= -
5. ms oo
L 04 ‘s _—] sof Feature Space
A 70
60|
‘;l 50|
0.2 ‘ g More Relevant
0 0.2 0.4 0.6 0.8 1.0 1 0 4 5 6

Feature 992 o B

Figure 3: Left panel shows a scatter plot of the two most relevant feafuvith each point replaced by the
corresponding input testimage. For better visualizatiwerlapped images are not shown. Right panel displays
the histogram plots of the learned ARD hyper-paramdigys.

After the DBN has been pretrained on the unlabeled data, a Gelhwas fitted to the labeled
data using the top-level features of the DBN model as inpts call this modelGP-DBNgreedy:.
GP-DBNgreedy can be significantly improved by slightly aitg the weights in the DBN. The
GP model gives error derivatives for its input vectors whach the top-level features of the DBN.
These derivatives can be backpropagated through the DBMNotw discriminative fine-tuning of
the weights. Each time the weights in the DBN are updatedGfhenodel is also refitted. We call
this modelGP-DBNfine. For comparison, we fitted a GP model that used the pixel sities of
the labeled images as its inputs. We call this md@glestandard. We also used PCA to reduce the
dimensionality of the labeled images and fitted severakdkfit GP models using the projections
onto the firstm principal components as the input. Since we only want a |dwemnd on the error
of this model, we simply use the value wf that performs best on thest data. We call this model
GPpca Table 1 shows the root mean squared error (RMSE) of the gieztiiace orientations using
all four types of GP model on varying amounts of labeled dathe results show that both GP-
DBNgreedy and GP-DBNfine significantly outperform a reg@# model. Indeed, GP-DBNfine
with only 100 labeled training cases outperforms GPstaheégth 1000.

To test the robustness of our approach to noise in the inpubalethe same data set and created
artificial rectangular occlusions (see Fig. 2, panel B). fhenber of rectangles per image was
drawn from a Poisson with = 2. The top-left location, length and width of each rectangésw
sampled from a uniform [0,25]. The pixel intensity of eaclklading rectangle was set to the mean
pixel intensity of the entire image. Table 1 shows that thdgomance of all models degrades, but
their relative performances remain the same and GP-DBNfingcoluded data is still much better
than GPstandard on non-occluded data.

We have also experimented with using a Gaussian kernel WD Ayper-parameters, which is a
common practice when the input vectors are high-dimensiona

K;; = cexp (— %(Xl — Xj)TD(xi — xj)) (18)

whereD is the diagonal matrix wittD,; = 1/3;, so that the covariance function has a separate
length-scale parameter for each dimension. ARD hyperrpeters were optimized by maximizing
the marginal log-likelihood of Eq. 3. Table 1 shows that AR{péar-parameters do not improve
GPstandard, but they do slightly improve GP-DBNfine and tteygngly improve GP-DBNgreedy
and GPpca when there are 500 or 1000 labeled training cases.

The histogram plot ofog 3 in figure 3 reveals that there are a few extracted featurésatbavery
relevant (smalB) to our prediction task. The same figure (left panel) showeatter plot of the two
most relevant features of GP-DBNgreedy model, with eachtgeplaced by the corresponding in-
put testimage. Clearly, these two features carry a lot afrimition about the orientation of the face.

Training GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels Sph. ARD | Sph. ARD | Sph. ARD | Sph. ARD

A] 100 1.86 227 | 1.68 1.61 1.63 1.58 | 1.73(20) 2.00 (20)
500 1.42 1.62 1.19 1.27 | 1.16 1.22 1.32(40) 1.36(20)
1000 1.25 1.36 1.07 1.14 1.03 1.10 1.19(40) 1.22(80)

B | 100 0.0884 0.1087 | 0.0528 0.0597 | 0.0501 0.0599 | 0.0785(10) 0.0920 (10)
500 0.0222 0.0541 | 0.0100 0.0161 | 0.0055 0.0104 | 0.0160 (40) 0.0235(20)
1000 0.0129 0.0385 | 0.0058 0.0059 | 0.0050 0.0100 | 0.0091 (40) 0.0127 (40)

Table 2:Performance results on the digit magnitude regression(f8sénd and discriminating odd vs. even
digits classification task (B). The root mean squared eonprdgression task on the test set is shown for each
method. For classification task the area under the ROC (AUR®@Iric is used. For each method we show
1-AUROC on the test set. All methods were tried using bottesphl Gaussian kernel, and a Gaussian kernel
with ARD hyper-parameters. For the GPpca model, the numiyanirecipal components that performs best on
the test data is shown in parenthesis.

Number of labeled GPstandard GP-DBNgreedy GP-DBNfine
cases (50% in each class)

100 0.1295 0.1180 0.0995

500 0.0875 0.0793 0.0609

1000 0.0645 0.0580 0.0458

Table 3: Performance results using the area under the ROC (AUROG)uet the text classification task.
For each method we show 1-AUROC on the test set.

We suspect that the GP-DBNfine model does not benefit as machtfre ARD hyper-parameters
because the fine-tuning stage is already capable of turiwg the activities of irrelevant top-level
features.

5.2 Extracting the Magnitude Represented by a Handwritten Dgit and Discriminating
between Images of Odd and Even Digits

The MNIST digit data set contains 60,000 training and 101@8028< 28 images of ten handwritten
digits (0 to 9). 100 randomly sampled training images of edass were assigned a magnitude label.
The remaining 59,000 training images were used as unlabelad As in the previous experiment,
we used the 784-1000-1000-1000 architecture with theestmiiming set of 60,000 unlabeled digits
being used for greedily pretraining the DBN model. Tabledghed A, shows that GP-DBNfine and
GP-DBNgreedy perform considerably better than GPstanblatidl with and without ARD hyper-
parameters. The same table, panel B, shows results foraksifatation task of discriminating be-
tween images of odd and images of even digits. We used thelaleled training set, but with each
digit categorized into an even or an odd class. The same DBi#ehveas used, so the Gaussian co-
variance function was initialized in exactly the same waybfoth regression and classification tasks.
The performance of GP-DBNgreedy demonstrates that thelidydearned feature representation
captures a lot of structure in the unlabeled input data wisietseful for subsequent discrimination
tasks, even though these tasks are unknown when the DBNnig trained.

5.3 Classifying News Stories

The Reuters Corpus Volume Il is an archive of 804,414 nevesstiories The corpus covers four

major groups: Corporate/Industrial, Economics, Govemti$ocial, and Markets. The data was
randomly split into 802,414 training and 2000 test articlEse test set contains 500 articles of each
major group. The available data was already in a convenpeeprocessed format, where common
stopwords were removed and all the remaining words weremstgim\We only made use of the 2000

most frequently used word stems in the training data. As @lttesach document was represented
as a vector containing 2000 word counts. No other preprowesss done.

For the text classification task we used a 2000-1000-10@@-af€chitecture. The entire unlabeled
training set of 802,414 articles was used for learning ailay#r generative model of the text docu-
ments. The bottom layer of the DBN was trained using a CoingtdePoisson Model. Table 3 shows
the area under the ROC curve for classifying documents gaigrto the Corporate/Industrial vs.

Economics groups. As expected, GP-DBNfine and GP-DBNgreext better than GPstandard.

The results of binary discrimination between other pairdafument classes are very similar to the
results presented in table 3. Our experiments using a Gauksinel with ARD hyper-parameters

did not show any significant improvements. Examining théogisams of the length-scale parame-
ters3, we found that most of the input word-counts as well as moghefextracted features were
relevant to the classification task.

6 Conclusions and Future Research

In this paper we have shown how to use Deep Belief Networksdedily pretrain and discrimina-

tively fine-tune a covariance kernel for a Gaussian Proddss discriminative fine-tuning produces
an additional improvement in performance that is comparatinagnitude to the improvement pro-
duced by using the greedily pretrained DBN. For high-din@ms, highly-structured data, this is

an effective way to make use of large unlabeled data setscisly when labeled training data is
scarce. Greedily pretrained DBN'’s can also be used to peamjolut vectors for other kernel-based
methods, including SVMs [17, 8] and kernel regression [&Y aur future research will concentrate
on comparing our method to other kernel-based semi-swgehgarning algorithms [4, 19].

Acknowledgments

We thank Radford Neal for many helpful suggestions. Thisaesh was supported by NSERC, CFI
and OTI. GEH is a fellow of CIAR and holds a CRC chair.

References
[1] J. K. Benedetti. On the nonparametric estimation ofesgion functionsJournal of the Royal Satistical
Society series B, 39:248-253, 1977.

[2] Y.Bengio and Y. Le Cun. Scaling learning algorithms todgAl. In L. Bottou, O. Chapelle, D. DeCoste,
and J. Weston, editorkarge-Scale Kernel Machines. MIT Press, 2007.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. ggdy layer-wise training of deep networks. In
Advances in Neural Information Processing Systems, 2006.

[4] O. Chapelle, B. Scholkopf, and A. ZieSemi-Supervised Learning. MIT Press, 2006.

[5] G. E. Hinton. Training products of experts by minimizingntrastive divergenceNeural Computation,
14(8):1711-1800, 2002.

[6] G.E. Hinton and R. Salakhutdinov. Reducing the dimemaiity of data with neural networksScience,
313, 2006.

[7] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. #t faarning algorithm for deep belief nets.
Neural Computation, 18(7):1527-1554, 2006.

[8] F.Lauer, C.Y. Suen, and G. Bloch. A trainable featureantor for handwritten digit recognitiorPattern
Recognition, 40(6):1816-1824, 2007.

[9] N. D. Lawrence and J. Quifionero Candela. Local distgreservation in the GP-LVM through back
constraints. In William W. Cohen and Andrew Moore, editd@ML, volume 148, pages 513-520.
ACM, 2006.

[10] N. D. Lawrence and M. I. Jordan. Semi-supervised le@yma gaussian processes.NHPS 2004.

[11] N. D. Lawrence and B. Scholkopf. Estimating a kernedheir discriminant in the presence of label
noise. InProc. 18th International Conf. on Machine Learning, pages 306—-313. Morgan Kaufmann, San
Francisco, CA, 2001.

[12] T. P. Minka. Expectation propagation for approximasgdsian inference. In Jack Breese and Daphne
Koller, editors,UAIl, pages 362—369, San Francisco, CA, 2001. Morgan KaufmablisRers.

[13] C.E. Rasmussen and C. WillianSaussian Processes for Machine Learning. The MIT Press, 2006.

[14] R. Salakhutdinov and G. E. Hinton. Learning a nonlinembedding by preserving class neighbourhood
structure. IMAl and Satistics, 2007.

[15] M. Seeger. Covariance kernels from bayesian generatwdels. In Thomas G. Dietterich, Suzanna
Becker, and Zoubin Ghahramani, editd#PS pages 905-912. MIT Press, 2001.

[16] M. Seeger. Gaussian processes for machine learhingl. Neural Syst, 14(2):69-106, 2004.
[17] V. Vapnik. Satistical Learning Theory. Wiley, 1998.

[18] M. Welling, M. Rosen-Zvi, and G. Hinton. Exponentiahfidy harmoniums with an application to infor-
mation retrieval. I'NIPS17, pages 1481-1488, Cambridge, MA, 2005. MIT Press.

[19] Xiaojin Zhu, Jaz S. Kandola, Zoubin Ghahramani, andnJbh Lafferty. Nonparametric transforms of
graph kernels for semi-supervised learningNI®PS, 2004.

