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Abstract

We introduce two multimodal neural lan-
guage models: models of natural language
that can be conditioned on other modalities.
An image-text multimodal neural language
model can be used to retrieve images given
complex sentence queries, retrieve phrase de-
scriptions given image queries, as well as gen-
erate text conditioned on images. We show
that in the case of image-text modelling we
can jointly learn word representations and
image features by training our models to-
gether with a convolutional network. Unlike
many of the existing methods, our approach
can generate sentence descriptions for images
without the use of templates, structured pre-
diction, and/or syntactic trees. While we fo-
cus on image-text modelling, our algorithms
can be easily applied to other modalities such
as audio.

1. Introduction

Descriptive language is almost never isolated from
other modalities. Advertisements come with images
of the product that is being sold, social media pro-
files contain both descriptions and images of the user
while multimedia websites that play audio and video
have associated descriptions and opinions of the con-
tent. Consider the task of creating an advertisement
to sell an item. An algorithm that can model both
text descriptions and pictures of the item would al-
low a user to (a): search for pictures given a text
description of the desired content; (b): find similar
item descriptions given uploaded images; and (c): au-
tomatically generate text to describe the item given
pictures. What these tasks have in common is the
need to go beyond simple bag-of-word representations
of text alone to model complex descriptions with an
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associated modality.

In this paper we introduce multimodal neural language
models, models of natural language that can be condi-
tioned on other modalities. A multimodal neural lan-
guage model represents a first step towards tackling
the previously described modelling challenges. Unlike
most previous approaches to generating image descrip-
tions, our model makes no use of templates, structured
models, or syntactic trees. Instead, it relies on word
representations learned from millions of words and
conditioning the model on high-level image features
learned from deep neural networks. We introduce two
methods based on the log-bilinear model of Mnih &
Hinton (2007): the modality-biased log-bilinear model
and the factored 3-way log-bilinear model. We then
show how to learn word representations and image fea-
tures together by jointly training our language mod-
els with a convolutional network. Experimentation is
performed on three datasets with image-text descrip-
tions: IAPR TC-12, Attributes Discovery, and the
SBU datasets. We further illustrate capabilities of our
models through quantitative retrieval evaluation and
visualizations of our results.

2. Related Work

Our related work can largely be separated into three
groups: neural language models, image content de-
scription and multimodal representation learning.

Neural Language Models: A neural language
model improves on n-gram language models by re-
ducing the curse of dimensionality through the use of
distributed word representations. Each word in the
vocabulary is represented as a real-valued feature vec-
tor such that the cosine of the angles between these
vectors is high for semantically similar words. Several
models have been proposed based on feed-forward net-
works (Bengio et al., 2003), log-bilinear models (Mnih
& Hinton, 2007), skip-gram models (Mikolov et al.,
2013) and recurrent neural networks (Mikolov et al.,
2010; 2011). Training can be sped up through the
use of hierarchical softmax (Morin & Bengio, 2005) or
noise contrastive estimation (Mnih & Teh, 2012).
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Figure 1. Left two columns: Sample description retrieval given images. Right two columns: description generation. Each
description was initialized to ‘in this picture there is’ or ‘this product contains a’, with 50 subsequent words generated.

Image Description Generation: A growing body
of research has explored how to generate realistic text
descriptions given an image. Farhadi et al. (2010)
consider learning an intermediate meaning space to
project image and sentence features allowing them to
retrieve text from images and vice versa. Kulkarni
et al. (2011) construct a CRF using unary potentials
from objects, attributes and prepositions and high-
order potentials from text corpora, using an n-gram
model for decoding and templates for constraints.
To allow for more descriptive and poetic generation,
Mitchell et al. (2012) propose the use of syntactic
trees constructed from 700,000 Flickr images and text
descriptions. For large scale description generation,
Ordonez et al. (2011) showed that non-parametric
approaches are effective on a dataset of one million
image-text captions. More recently, Socher et al.
(2014) show how to map sentence representations from
recursive networks into the same space as images. We
note that unlike most existing work, our generated text
comes directly from language model samples without
any additional templates, structure, or constraints.

Multimodal Representation Learning: Deep
learning methods have been successfully used to learn
representations from multiple modalities. Ngiam et al.
(2011) proposed using deep autoencoders to learn
features from audio and video, while Srivastava &

Salakhutdinov (2012) introduced the multimodal deep
Boltzmann machine as a joint model of images and
text. Unlike Srivastava & Salakhutdinov (2012), our
proposed models are conditional and go beyond bag-
of-word features. More recently, Socher et al. (2013)
and Frome et al. (2013) propose methods for mapping
images into a text representation space learned from
a language model that incorporates global context
(Huang et al., 2012) or a skip-gram model (Mikolov
et al., 2013), respectively . This allowed Socher et al.
(2013); Frome et al. (2013) to perform zero-shot learn-
ing, generalizing to classes the model has never seen
before. Similar to our work, the authors combine con-
volutional networks with a language model but our
work instead focuses on text generation and retrieval
as opposed to object classification.

The remainder of the paper is structured as follows.
We first review the log-bilinear model of Mnih & Hin-
ton (2007) as it forms the foundation for our work. We
then introduce our two proposed models as well as how
to perform joint image-text feature learning. Finally,
we describe our experiments and results.

3. The Log-Bilinear Model (LBL)

The log-bilinear language model (LBL) (Mnih & Hin-
ton, 2007) is a deterministic model that may be viewed
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as a feed-forward neural network with a single linear
hidden layer. As a neural language model, the LBL
operates on word representation vectors. Each word
w in the vocabulary is represented as a D-dimensional
real-valued vector rw ∈ RD. Let R denote the K ×D
matrix of word representation vectors where K is the
vocabulary size. Let (w1, . . . wn−1) be a tuple of n− 1
words where n−1 is the context size. The LBL model
makes a linear prediction of the next word representa-
tion as

r̂ =

n−1∑
i=1

C(i)rwi
, (1)

where C(i), i = 1, . . . , n− 1 are D×D context param-
eter matrices. Thus, r̂ is the predicted representation
of rwn

. The conditional probability P (wn = i|w1:n−1)
of wn given w1, . . . , wn−1 is

P (wn = i|w1:n−1) =
exp(r̂T ri + bi)∑K

j=1 exp(r̂T rj + bj)
, (2)

where b ∈ RK is a bias vector with a word-specific bias
bi. Eq. 2 may be seen as scoring the predicted repre-
sentation r̂ of wn against the actual representation rwn

through an inner product, followed by normalization
based on the inner products amongst all other word
representations in the vocabulary. In the context of a
feed-forward neural network, the weights between the
output layer and linear hidden layer is the word rep-
resentation matrix R where the output layer uses a
softmax activation. Learning can be done with stan-
dard backpropagation.

4. Multimodal Log-Bilinear Models

Suppose that along with each training tuple of words
(w1, . . . wn) there is an associated vector x ∈ RM cor-
responding to the feature representation of the modal-
ity to be conditioned on, such as an image. Assume
for now that these features are computed in advance.
In Section 5 we show how to jointly learn both text
and image features.

4.1. Modality-Biased Log-Bilinear Model
(MLBL-B)

Our first proposed model is the modality-biased log-
bilinear model (MLBL-B) which is a straightforward
extension of the LBL model. The MLBL-B model adds
an additive bias to the next predicted word represen-
tation r̂ which is computed as

r̂ =

(
n−1∑
i=1

C(i)rwi

)
+ C(m)x, (3)

where C(m) is a D×M context matrix. Given the pre-
dicted next word representation r̂, computing the con-
ditional probability P (wn = i|w1:n−1,x) of wn given

w1, . . . , wn−1 and x remains unchanged from the LBL
model. The MLBL-B can be viewed as a feedforward
network by taking the LBL network and adding a con-
text channel based on the modality x, as shown in
Fig. 2a. This model also shares resemblance to the
quadratic model of Grangier et al. (2006). Learning
in this model involves a straightforward application of
backpropagation as in the LBL model.

4.2. The Factored 3-way Log-Bilinear Model
(MLBL-F)

A more powerful model to incorporate modality con-
ditioning is to gate the word representation matrix R
by the features x. By doing this, R becomes a ten-
sor for which each feature x can specify its own hid-
den to output weight matrix. More specifically, let
R(1), . . . ,R(m) be K × D matrices specified by fea-
ture components 1, . . . ,M of x. The hidden to output
weights corresponding to x are computed as

Rx =

M∑
i=1

xiR
(i), (4)

where Rx denotes the word representations with re-
spect to x. The motivation for using a modality spe-
cific word representation is as follows. Suppose x is
an image containing a picture of a cat, with context
words (there, is, a). A language model that is trained
without knowledge of image features would score the
predicted next word representation r̂ high with words
such as dog, building or car. If each image has a cor-
responding word representation matrix Rx, the rep-
resentations for attributes that are not present in the
image would be modified such that the inner product
of r̂ with the representation of cat would score higher
than the inner product of r̂ with the representations
of dog, building or car.

As is, the tensor R requires K × D × M parame-
ters which makes using a general 3-way tensor im-
practical even for modest vocabulary sizes. A com-
mon solution to this approach (Memisevic & Hinton,
2007; Krizhevsky et al., 2010) is to factor R into three
lower-rank matrices Wfr̂ ∈ RF×D, Wfx ∈ RF×M and
Wfh ∈ RF×K , such that

Rx = (Wfh)> · diag(Wfxx) ·Wfr̂, (5)

where diag(·) denotes the matrix with its argument on
the diagonal. These matrices are parametrized by F ,
the number of factors, as shown in Fig. 2b.

Let E = (Wfr̂)>Wfh denote the D × K matrix of
word embeddings. Given the context w1, . . . , wn−1,
the predicted next word representation r̂ is given by:

r̂ =

(
n−1∑
i=1

C(i)E(:, wi)

)
+ C(m)x, (6)
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Figure 2. Our proposed models. Left: The predicted next word representation r̂ is a linear prediction of word features
rw1 , rw2 , rw3 (blue connections) biased by image features x. Right: The word representation matrix R is replaced by a
factored tensor for which the hidden-to-output connections are gated by x.

where E(:, wi) denotes the column of E for the word
representation of wi. Given a predicted next word rep-
resentation r̂, the factor outputs are

f = (Wfr̂ r̂) • (Wfxx), (7)

where • is a component-wise product. The condi-
tional probability P (wn = i|w1:n−1,x) of wn given
w1, . . . , wn−1 and x can be written as

P (wn = i|w1:n−1,x) =
exp
(
(Wfh(:, i))>f + bi

)∑K
j=1 exp

(
(Wfh(:, j))>f + bj

) ,
where Wfh(:, i) denotes the column of Wfh corre-
sponding to word i. We call this the MLBL-F model.
As with the LBL and MLBL-B models, training can be
achieved using a straightforward application of back-
propagation. Unlike the other models, extra care needs
to be taken when adjusting the learning rates for the
matrices of the factored tensor.

It is sensible that pre-computed word embeddings
could be used as a starting point to training, as op-
posed to random initialization of the word representa-
tions. Indeed, all of our experiments use the embed-
dings of Turian et al. (2010) for initialization. In the
case of the LBL and MLBL-B models, each pre-trained
word embedding can be used to initialize the rows of
R. In the case of the MLBL-F model where R is a
factored tensor, we can let E be the D × K matrix
of pre-trained embeddings. Since E = (Wfr̂)>Wfh,
we can initialize the MLBL-F model with pre-trained
embeddings by simply applying an SVD to E.

5. Joint Image-Text Feature Learning

Up until now we have not made any assumptions on
the type of modality being used for the feature repre-
sentation x. In this section, we consider the case where
the conditioned modality consists of images and show
how to jointly learn image and word features along
with the model parameters.

One way of incorporating image representation learn-
ing is to use a convolutional network for which the

outputs are used either as an additive bias or for gat-
ing. Gradients from the loss could then be backprop-
agated from the language model through the convolu-
tional network to update filter weights. Unfortunately,
learning on every image in this architecture is com-
putationally demanding. Since each training tuple of
words comes with an associated image, then the num-
ber of training elements becomes large even with a
modest size training set. For example, if the training
set consisted of 10,000 images and each image had a
text description of 20 words, then the number of train-
ing elements for the model becomes 200,000. For large
image databases this could quickly scale to millions of
training instances.

To speed up computation, we follow Wang et al.
(2012); Swersky et al. (2013) and learn our convolu-
tional networks on small feature maps learned using
k-means as opposed to the original images. We follow
the pipeline of Coates & Ng (2011). Given training im-
ages, r × r patches are randomly extracted, contrast
normalized and whitened. These are used for training
a dictionary with spherical k-means. These filters are
convolved with the image and a soft activation encod-
ing is applied. If the image is of dimensions nV ×nH×3
and kf filters are learned, the resulting feature maps
are of size (nV −r+1)×(nH−r+1)×kf . Each slice of
this region is then split into a G×G grid for which fea-
tures within each region are max-pooled. This results
in an output of size G×G×kf . It is these outputs that
are used as inputs to the convolutional network. For
all of our experiments, we use G = 9 and kf = 128.

Each 9×9×128 input is convolved with 64 3×3 filters
resulting in feature maps of size 7× 7× 64. Rectified
linear units (ReLUs) are used for activation followed
by a response normalization layer (Krizhevsky et al.,
2012). The response-normalized feature maps are then
max-pooled with a pooling window of 3×3 and a stride
of 2, resulting in outputs of size 3× 3× 64. One fully-
connected layer with ReLU activation is added. It is
the feature responses at this layer that are used ei-
ther for additive biasing or gating in the MLBL-B and
MLBL-F models, respectively.
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6. Generation and Retrieval

The standard approach to evaluating language models
is through perplexity

log2C(w1:n|x) = − 1

N

∑
w1:n

log2P (wn = i|w1:n−1,x),

where w1:n−1 runs through each subsequence of length
n−1 and N is the length of the sequence. Here we use
perplexity not only as a measure of performance but
also as a link between text and the additional modality.

First, consider the task of retrieving training images
from a text query w1:N . For each image x in the train-
ing set, we compute C(w1:N |x) and return the images
for which C(w1:N |x) is lowest. Intuitively, images when
conditioned on by the model that achieve low perplex-
ity are those that are a good match to the query de-
scription.

The task of retrieving text from an image query is
trickier for the following reasons. It is likely that
there are many ‘easy’ sentences for which the language
model will assign low perplexity to independent of the
query image being conditioned on. Thus, instead of re-
trieving text from the training set for which C(w1:N |x)
is lowest conditioned on the query image x, we instead
look at the ratio C(w1:N |x)/C(w1:N |x̃) where x̃ denotes
the mean image in the training set (computed in fea-
ture space). Thus, if w1:N is a good explanation of
x, then C(w1:N |x) < C(w1:N |x̃) and we can simply re-
trieve the text for which this ratio is smallest.

While this leads to better search results, it is conceiv-
able that using the image itself as a query for other
images and returning their corresponding descriptions
may in itself work well as a query strategy. For ex-
ample, an image taken at night would ideally return a
description describing this, which would be more likely
to occur if we first retrieved nearby images which were
also taken at night. We found the most effective way
of performing description retrieval is as follows: first
retrieve the top kr training images as a shortlist based
on the Euclidean distance between x and images in the
training set. Then retrieve the descriptions for which
C(w1:N |x)/C(w1:N |x̃) is smallest for each description
w1:N in the shortlist. We found that combining these
two strategies is more effective than using either alone.
In the case when a convolutional network is used, we
first map the images through the convolutional net-
work and use the output representations for computing
distances.

Finally, we generate text given an image as follows:
Suppose we are given an initialization w1:n−1, where
n − 1 is the context size. We compute P (wn =
i|w1:n−1,x) and obtain a sample w̃ from this distribu-
tion, appending w̃ to our initialization. This procedure
is then repeated for as long as desired.

7. Experiments

We perform experimental evaluation of our proposed
models on three publicly available datasets:

IAPR TC-12 This data set consists of 20,000 images
across various domains, such as landscapes, portraits,
indoor and sports scenes. Accompanying each image is
a text description of one to three sentences describing
the content of the image. The dataset was initially
released for cross-lingual retrieval (Grubinger et al.,
2006) but has since been used extensively for other
tasks such as image annotation. We used a publicly
available train/test split for our experiments.

Attribute Discovery This dataset contains roughly
40,000 images related to products such as bags, cloth-
ing and shoes as well as subcategories of each product,
such as high-heels and sneakers. Each image is accom-
panied by a web-retrieved text description which often
reads as an advertisement for the product. Unlike the
IAPR dataset, the text descriptions are not guaran-
teed to be descriptive of the image and often contain
noisy, unrelated text. This dataset was proposed as a
means of discovering visual attributes from noisy text
(Berg et al., 2010). We used a random train/test split
for our experiments which will be made publicly avail-
able.

SBU Captioned Photos We obtained a subset of
roughly 400,000 images from the SBU dataset (Or-
donez et al., 2011) which contain images and short text
descriptions. This dataset is used to induce word em-
beddings learned from both images and text for qual-
itative comparison.

7.1. Details of Experiments

We perform four experiments, three of which are quan-
titative and one of which is qualitative:

Bleu Evaluation Our main evaluation criteria is
based on Bleu (Papineni et al., 2002). Bleu was de-
signed for automated evaluation of statistical machine
translation and can be used in our setting to measure
similarity of descriptions. Previous work on generat-
ing text descriptions for images use Bleu as a means
of evaluation, where the generated sentence is used
as a candidate for the gold standard reference gen-
eration. Given the diversity of possible image de-
scriptions, Bleu may penalize candidates which are ar-
guably descriptive of image content as noted by Kulka-
rni et al. (2011) and may not always be the most effec-
tive evaluation (Hodosh et al., 2013), though Bleu re-
mains the standard evaluation criteria for such models.
Given a model, we generate a candidate description as
described in Section 6, generating as many words as
there are in the reference sentence and compute the
Bleu score of the candidate with the reference. This
is repeated over all test points ten times, in order to
account for the variability in the generated sentences.
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Table 1. Sample neighbors (by cosine similarity) of words learned from the SBU dataset. First row: neighbors from
Collobert & Weston (2008) (C&W). Second row: neighbors from a LBL model (without images). Third row: neighbors
from a MLBL-F model (with images).

tranquil sensuous somber bleak cheerful dreary
gloomy dismal slower feeble realistic brighter strong

hazy stormy foggy crisp cloudless dull
laptop dorm desk computer canteen darkroom

classroom pub cabin library bedroom office cottage
library desk restroom office cabinet kitchen
bamboo silk gold bark flesh crab

flower bird tiger monster cow fish leaf
plant flowers fruit green plants rose

breakwater icefield lagoon nunnery waterway walkway
lighthouse monument lagoon kingdom mosque skyline truck

pier ship dock castle marina pool
championship trophy bowl league tournament cups

cup cider bottle needle box fashion shoe
bag bottle container oil net jam

shorelines topography vegetation convection canyons slopes
terrain seas paces descent yards rays floors

headland chasm creekbed ranges crest pamagirri

For baselines, we also compare against the log-bilinear
model was well as image-conditioned models condi-
tioned on random images. This allows us to obtain
further evidence of the relevance of generated text. Fi-
nally, we compare against the models of Gupta et al.
(2012) and Gupta & Mannem (2012) who report Bleu
scores for their models on the IAPR dataset.1

Perplexity Evaluation Each of our proposed mod-
els are trained on both datasets and the perplexity
of the language models are evaluated. As baselines,
we also include the basic log-bilinear model as well
as two n-gram models. To evaluate the effectiveness
of using pre-trained word embeddings, we also train
a log-bilinear model where the word representations
are randomly initialized. We hypothesize that image-
conditioned models should result in lower perplexity
than models which are only trained on text without
knowledge of their associated images.

Retrieval Evaluation We quantitatively evaluate
the performance of our model for doing retrieval. First
consider the task of retrieving images from sentence
queries. Given a test sentence, we compute the model
perplexity conditioned on each test image and rank
each image accordingly. Let kr denote the number of
retrieved images. We define a sentence to be correctly
matched if the matching image to the sentence query is
ranked in the top kr images sorted by model perplexity.
Retrieving sentences from image queries is performed
equivalently. Since our models use a shortlist (see Sec-
tion 6) of nearest images for retrieving sentences, we
restrict our search to images within the shortlist, for

1We note that an exact comparison cannot be made
with these methods since Gupta & Mannem (2012) assume
tags are given as input along with images and both meth-
ods apply 10-fold CV. The use of tags can substantially
boost the relevance of generated sentences. Nonetheless,
these methods provide context for our results.

which the matching sentence is guaranteed to be in.

For additional comparison, we include a strong image-
based bag-of-words baseline to determine whether a
language model (and word ordering) is necessary for
image-description retrieval tasks. This model works as
follows: given image features, we learn a linear trans-
formation onto independent logistic units, one for each
word in the description. Descriptions are scored as
− 1

N

∑
w1:n

logP (wn = w|x). For retrieving images, we
project each image and rank those which result in the
highest description score. For retrieving sentences, we
return those which result in the highest score given the
word probabilities computed from the image. Since we
use a shortlist for our models when performing sen-
tence retrieval, we also use the same shortlist (relative
to the image features used) to allow for fair compari-
son. A validation batch was used to tune the weight
decay.

Qualitative Results We trained a LBL model and
a MLBL-F model on the SBU examples. Both lan-
guage models were trained on the same text, but the
MLBL-F also conditioned on images using DeCAF fea-
tures (Donahue et al., 2013). Both models were trained
using perplexity as a criteria for early stopping, and
with the same context size and vocabulary. Table 1
shows sample nearest neighbors from both models.
When trained on images and text, the MLBL-F model
can learn to capture both visual and semantic similar-
ities, resulting in very different nearest neighbors than
the LBL model and C&W embeddings. These word
embeddings will be made publicly available.

We use three types of image features in our experi-
ments: Gist (Oliva & Torralba, 2001), DeCAF (Don-
ahue et al., 2013), and features learned jointly with a
convolutional net.
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Table 2. Results on IAPR TC-12. PPL refers to perplexity
while B-n indicates Bleu scored with n-grams. Back-off
GTn refers to n-grams with Katz backoff and Good-Turing
discounting. Models which use a convolutional network are
indicated by -conv, while -conv-R indicates using random
images for conditioning. skmeans refers to the features of
Kiros & Szepesvári (2012).

Model type PPL. B-1 B-2 B-3

Back-off GT2 54.5 0.323 0.145 0.059
Back-off GT3 55.6 0.312 0.131 0.059
LBL 20.1 0.327 0.144 0.068
MLBL-B-conv-r 28.7 0.325 0.143 0.069
MLBL-B-skmeans 18.0 0.349 0.161 0.079
MLBL-F-skmeans 20.3 0.348 0.165 0.085
MLBL-B-Gist 20.8 0.348 0.164 0.083
MLBL-F-Gist 28.8 0.341 0.151 0.074
MLBL-B-conv 20.6 0.349 0.165 0.085
MLBL-F-conv 21.7 0.341 0.156 0.073
MLBL-B-DeCAF 24.7 0.373 0.187 0.098
MLBL-F-DeCAF 21.8 0.361 0.176 0.092
Gupta et al. - 0.15 0.06 0.01
Gupta & Mannem - 0.33 0.18 0.07

7.2. Details of Training

Each of our language models were trained using the
following hyperparameters: all context matrices used
a weight decay of 1.0×10−4 while word representations
used a weight decay of 1.0 × 10−5. All other weight
matrices, including the convolutional network filters
use a weight decay of 1.0×10−4. We used batch sizes of
20 and an initial learning rate of 0.2 (averaged over the
minibatch) which was exponentially decreased at each
epoch by a factor of 0.998. Gated methods used an
initial learning rate of 0.02. Initial momentum was set
to 0.5 and was increased linearly to 0.9 over 20 epochs.
The word representation matrices were initialized to
the 50 dimensional pre-trained embeddings of Turian
et al. (2010). We used a context size of 5 for each of
our models. Perplexity was computed starting with
word C + 1 for all methods where C is the largest
context size used in comparison (5 in our experiments).
Perplexity was not evaluated on descriptions shorter
than C + 3 words for all models. Since features used
have varying dimensionality, an additional layer was
added to map images to 256 dimensions, so that across
all experiments the input size to the bias and gating
units are equivalent. Note that we did not explore
varying the word embedding dimensionalities, context
sizes or number of factors.

For each of our experiments, we split the training set
into 80% training and 20% validation. Each model
was trained while monitoring the perplexity on the
validation set. Once the perplexity no longer improved
for 5 epochs, the objective value on the training set
was recorded. The training and validation sets were
then fused and training continued until the objective

Table 3. Results on the Attributes Discovery dataset.

Model type PPL. B-1 B-2 B-3

Back-off GT2 117.7 0.163 0.033 0.009
Back-off GT3 93.4 0.166 0.032 0.011
LBL 97.6 0.161 0.031 0.009
MLBL-B-conv-r 154.4 0.166 0.035 0.012
MLBL-B-Gist 95.7 0.185 0.044 0.013
MLBL-F-Gist 115.1 0.182 0.042 0.013
MLBL-B-conv 99.2 0.189 0.048 0.017
MLBL-F-conv 113.2 0.175 0.042 0.014
MLBL-B-DeCAF 98.3 0.186 0.045 0.014
MLBL-F-DeCAF 133.0 0.178 0.041 0.012

value on the validation batch matched the recorded
training objective. At this point, training stopped and
evaluation was performed on the test set.

7.3. Generation and Perplexity Results

Tables 2 and 3 show results on the IAPR and At-
tributes dataset, respectively. On both datasets, each
of our multimodal models outperforms both the log-
bilinear and n-gram models on Bleu scores. Our mul-
timodal models also outperform Gupta et al. (2012)
and result in comparable performance to Gupta &
Mannem (2012). It should be noted that Gupta &
Mannem (2012) assumes that both images and tags
are given as input, where the presence of tags give
substantial information about general image content.
What is perhaps most surprising is that simple lan-
guage models independent of images can also achieve
non-trivial Bleu scores. For further comparison, we
computed Bleu scores on the convolutional MLBL-B
model when random images are used for condition-
ing. Moreover, we also computed Bleu scores on IAPR
with LBL and MLBL-B-DeCAF when stopwords are
removed, obtaining (0.166, 0.052, 0.013) and (0.224,
0.082, 0.028) respectively. This gives us strong evi-
dence that the gains in Bleu scores are obtained di-
rectly from capturing and associating word represen-
tations from image content.

One observation from our results is that perplexity
does not appear to be correlated with Bleu scores.2

On the IAPR dataset, the best perplexity is obtained
using the MLBL-B model with fixed features, even
though the best Bleu scores are obtained with a con-
volutional model. Similarly, both Back-off GT3 and
LBL have the lowest perplexities on the Attributes
dataset but are worse with respect to Bleu. Using
more than 3-grams did not improve results on either
dataset. For additional comparison, we also ran an
experiment training LBL on both datasets using ran-
dom word initialization, achieving perplexity scores of
23.4 and 109.6. This indicates the benefit of initializa-

2This is likely due to high variance on held-out perplex-
ities due to the shortness of text. We note that perplexity
is lower on the training set with multimodal models.
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Table 4. F-scores for retrieval on IAPR TC-12 when a text
query is used to retrieve images (T → I) or when an image
query is used to retrieve text (I → T ). Each row corre-
sponds to DeCAF, Conv and Gist features, respectively.

T → I I → T

bow mlbl-b mlbl-f bow mlbl-b mlbl-f

0.890 0.889 0.899 0.755 0.731 0.568
0.726 0.788 0.851 0.687 0.719 0.736
0.832 0.799 0.792 0.599 0.675 0.612

tion from pre-trained word representations. Perhaps
unsurprisingly, perplexity is much worse on the con-
volutional MLBL-B model when random images are
used for conditioning.

7.4. Retrieval Results

Tables 4 and 5 illustrate the results of our retrieval
experiments. In the majority of our experiments ei-
ther the multimodal models outperform or are com-
petitive with the bag-of-words baseline. The baseline
when combined with DeCAF features is exceptionally
strong. Perhaps this is unsurprising, given that these
features were trained to predict object classes on Im-
ageNet. The generality of these features also make it
effective for predicting word occurrences, particularly
if they are visual. For non-DeCAF experiments, our
models improve on the baseline for 6 out of 8 tasks
and result in near similar performance on another.
The MLBL-F model performed best when combined
with a convolutional net on IAPR while the MLBL-B
model performed better on the remaining tasks. All
12 retrieval curves are included in the supplementary
material.

7.5. Qualitative results

The supplementary material contains qualitative re-
sults from our models. In general, the model does a
good job at retrieving text with general characteristics
of a scene or retrieving the correct type of product on
the Attributes Discovery dataset, being able to dis-
tinguish between different kinds of sub-products, such
as shoes and boots. The most common mistakes that
the model makes are retrieving text with extraneous
descriptions that do not exist in the image, such as de-
scribing people that are not present. We also observed
errors on shorter queries where single words, such as
sunset and lake, indicate key visual concepts that the
model is not able to pick up on.

For generating text, the model was initialized with
‘in this picture there is’ or ’this product contains a’
and proceeded to generate 50 words conditioned on
the image. The model is often able to describe the

Table 5. F-scores for retrieval on Attributes Discovery.

T → I I → T

bow mlbl-b mlbl-f bow mlbl-b mlbl-f

0.808 0.852 0.835 0.579 0.580 0.504
0.730 0.839 0.815 0.607 0.590 0.576
0.826 0.844 0.818 0.555 0.621 0.579

general content of the image, even if it does not get
specifics correct such as colors of clothing. This gives
visual confirmation of the increased Bleu scores from
our models. Several additional results are included on
the web page of the first author.

8. Conclusion

In this paper we proposed multimodal neural language
models. We described two novel language models and
showed in the context of image-text learning how to
jointly learn word representations and image features.
Our models can obtain improved Bleu scores to exist-
ing approaches for sentence generation while generally
outperforming a strong bag-of-words baseline for de-
scription and image retrieval.

To our surprise, we found additive biasing with high-
level image features to be quite effective. A key ad-
vantage of the multiplicative model though is speed of
training: even with learning rates an order of magni-
tude smaller these models typically required substan-
tially fewer epochs to achieve the same performance.
Unlike MLBL-B, MLBL-F requires additional care in
early stopping and learning rate selection.

This work takes a first step towards generating image
descriptions with a multimodal language model and
sets a baseline when no additional structures are used.
For future work, we intend to explore adding addi-
tional structures to improve syntax as well as combin-
ing our methods with a detection algorithm.
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