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Abstract

After drawing a sample from a distribution, further correlated samples can be obtained by sim-
ulating a Markov chain that leaves the target distribution stationary. Often drawing even one
sample from a distribution of interest is intractable, so the Markov chain is initialized arbitrarily.
This note considers the marginal distribution over the Markov chain’s position at each time step.
We show that this marginal never moves further away from the chain’s stationary distribution,
as measured by KL-divergence either way around. This is a known result (Cover and Thomas,
1991). The presentation here is for review purposes only.

1 Introduction
Markov chain Monte Carlo (MCMC) is a method for drawing correlated samples from a tar-
get distribution of interest, π(x). Usually, a Markov chain with unique equilibrium distribution
equal to π(x) is simulated, generating a sequence of states x1, x2, . . . xT . If the chain was initial-
ized at the equilibrium distribution: x0 ∼ π, then the marginal distribution over each state the
chain visits is correct: p(xt)=π(xt).

Often drawing even one sample from a distribution of interest is intractable, so the Markov
chain is initialized arbitrarily. Then the distribution over the position at each iteration, qt, is
biased away from the target equilibrium distribution. Most users pick Markov chains where this
bias disappears over time: limt→∞ qt(x)=π(x).

This note considers the marginal distribution over a Markov chain’s position at each time step.
We see that this marginal never moves further away from the target equilibrium distribution,
as measured by KL-divergence either way around. This has relevance to learning algorithms
that use only one or a few Markov chain steps per iteration, which are sometimes motivated by
improvements in KL.

2 Preliminaries
We will consider a single Markov chain transition drawn from a distribution T . That is, if the
marginal distribution over the chain’s position at time t is qt(x), the distribution at the next time
step is:

qt+1(x
′) =

X
x

T (x′←x) qt(x). (1)

In this note, our only requirement for T is that given a sample from π(x), the marginal distribu-
tion over the next state in the chain is also the target distribution of interest π:

π(x′) =
X

x

T (x′←x) π(x) for all x′. (2)

That is, it leaves the target distribution stationary.

Given any transition operator T satisfying the stationary condition, (2), we can attempt to con-
struct a reverse operator eT defined by

eT (x←x′) ∝ T (x′←x) π(x) =
T (x′←x) π(x)P
x T (x′←x) π(x)

=
T (x′←x) π(x)

π(x′)
. (3)
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Operators satisfying detailed balance are their own reverse operator.

Technical detail: we have not defined the reverse operator for moves starting from states with
zero target probability: π(x′)=0. This could be an issue; some Markov chains define T (x′←x)
between pairs of states that both have zero target probability, i.e. π(x) = π(x′) = 0, and may be
initialized in such zero-probability states. In what follows we can avoid needing to specify the
undefined reverse moves.

We will find it helpful to use p+ to denote a positive function derived from a distribution p, but
with zeros removed:

p+(x) =

(
p(x) p(x) > 0

ε p(x) = 0,
(4)

where ε is an arbitrary positive value.

3 The results
The KL-divergence measured under the target distribution never gets worse:

KL[π ‖ qt+1 ] =
X

x′:π(x′)>0

π(x′) log
π(x′)

qt+1(x′)

If ever qt+1(x
′)=0 when π(x′) > 0 then the KL is defined to be infinite.

=
X

x′:π(x′)>0

π(x′) log
π(x′)P

x T (x′←x) qt(x)
(substituting (1))

If qt+1(x
′)=0 or a restricted sum

P
x:π(x)>0 T (x′←x)qt(x)=0, then equations (1) and (2) imply

that qt(x) = 0 for some x where π(x) > 0. Therefore the previous divergence, KL[π ‖ qt ], was
infinite and KL[π ‖ qt+1 ] can be no worse. We now consider the remaining cases:

≤ −
X

x′:π(x′)>0

π(x′) log
X

x:π(x)>0

T (x′←x)
qt(x)

π(x′)

= −
X

x′:π(x′)>0

π(x′) log
X

x:π(x)>0

eT (x←x′)
qt(x)

π(x)
(substituting (3), minus sign flips log)

When π(x′)>0 and π(x)=0, eT (x←x′) is defined and zero:

= −
X

x′:π(x′)>0

π(x′) log
X

x

eT (x←x′)
qt(x)

π+(x)

≤ −
X

x′:π(x′)>0

π(x′)
X

x

eT (x←x′) log
qt(x)

π+(x)
(Jensen’s inequality, average under eT )

The minus sign flips the log, and we note that (3) implies
P

x′ eT (x←x′) π(x′) = π(x):

=
X

x

π(x) log
π+(x)

qt(x)
=

X
x:π(x)>0

π(x) log
π(x)

qt(x)

KL[π ‖ qt+1 ] ≤ KL[π ‖ qt ] .

2



The divergence measured the other way around also never increases:

KL[qt+1 ‖ π ] =
X

x′:qt+1(x′)>0

qt+1(x
′) log

qt+1(x
′)

π(x′)

If π(x′) = 0 for some x′ where qt+1(x
′) > 0 then the KL is defined to be infinite. From equa-

tions (1) and (2) we see that there must be some x for which qt(x) > 0 and π(x) = 0. Therefore,
the previous divergence, KL[qt ‖ π ], was also infinite. From now on we assume that the KL is
finite.

=
X
x′

qt+1(x
′) log

q+
t+1(x

′)

π+(x′)

=
X
x′

X
x:qt(x)>0

T (x′←x) qt(x) log
q+

t+1(x
′)

π+(x′)
(from (1))

≤
X

x:qt(x)>0

qt(x) log
X
x′

T (x′←x)

π+(x′)
q+

t+1(x
′) (Jensen’s, average under T )

If there is an x where π(x)=0 and qt(x)>0 then KL[qt ‖ π ] was infinite and the new KL can be
no worse. We now assume π(x) > 0 whenever qt(x) > 0. Then, in the expression, T (x′← x) > 0
only if π(x′)>0. Also, note that T (x′←x)>0 implies qt+1(x

′)>0 for qt(x)>0.

=
X

x:qt(x)>0

qt(x) log
X

x′:π(x′)>0

eT (x←x′)

π(x)
qt+1(x

′) (substituted (3))

=
X

x:qt(x)>0

qt(x) log
qt(x)

π(x)

P
x′:π(x′)>0

eT (x←x′) qt+1(x
′)

qt(x)

≤ KL[qt ‖ π ] + log
X

x:qt(x)>0

X
x′:π(x′)>0

eT (x←x′) qt+1(x
′) (Jensen’s again. Second term is ≤ 0.)

KL[qt+1 ‖ π ] ≤ KL[qt ‖ π ] .

4 Discussion
Reducing the KL divergences to be near zero will require more than one step of an ergodic
Markov chain in general.

Note that other divergence measures between distributions, such as max(|π(x)−q(x)|), can in-
crease after a single Markov chain step. It is pleasantly surprising that neither KL ever transiently
increases, and that the only technical condition is (2).

In fact both of these results drop out from a more general treatment result given in Cover and
Thomas (1991, section 2.9). There has since been a generalization to the whole family of so-called
alpha divergence functions, which include the KL-divergences (Friedman et al., 2007).

Acknowledgements

Thanks to Geoffrey Hinton for stating the result for Gibbs sampling; Ilya Sutskever for point-
ing us to Cover and Thomas; Ryan Adams for suggesting looking for generalizations to alpha
divergences. Iain Murray’s research is supported by the government of Canada.

References
T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, Inc., 1991. ISBN

0-471-06259-6.
C. Friedman, J. Huang, and S. Sandow. A utility-based approach to some information measures. En-

tropy, 9:1–26, 2007.

3


