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Abstract

We provide a brief overview of the variational framework forobtaining determinis-
tic approximations or upper bounds for the log-partition function. We also review
some of the Monte Carlo based methods for estimating partition functions of arbi-
trary Markov Random Fields. We then develop an annealed importance sampling
(AIS) procedure for estimating partition functions of restricted Boltzmann machines
(RBM’s), semi-restricted Boltzmann machines (SRBM’s), and Boltzmann machines
(BM’s). Our empirical results indicate that the AIS procedure provides much better
estimates of the partition function than some of the popularvariational-based meth-
ods. Finally, we develop a new learning algorithm for training general Boltzmann
machines and show that it can be successfully applied to learning good generative
models.
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1 Introduction

Undirected graphical models, also known as Markov random fields (MRF’s), or general Boltzmann ma-
chines, provide a powerful tool for representing dependency structure between random variables. They
have successfully been used in various application domains, including machine learning, computer vi-
sion, and statistical physics. The major limitation of undirected graphical models is the need to compute
the partition function, whose role is to normalize the jointprobability distribution over the set of random
variables. In addition, the derivatives of the partition function are needed for parameter learning. For
many problems, however, the exact calculation of the partition function or its derivatives is intractable,
because it requires enumeration over an exponential numberof terms.

There has been extensive research on obtaining deterministic approximations [30, 31] or determin-
istic upper bounds [26, 28, 5] on the log-partition functionof an arbitrary discrete MRF. These methods
take a variational view of estimating the log-partition function and rely critically on approximating the
entropy of the undirected graphical model. Variational methods have become very popular, since they
typically scale well to large applications.

There have also been many developments in the use of Monte Carlo methods for estimating the
partition function, including Annealed Importance Sampling (AIS) [15], Bridged Sampling [11], Linked
Importance Sampling [16], Nested Sampling [21], sequential Monte Carlo [12], and many others [14].
These methods are perceived to be computationally very demanding, so in practice, they are rarely
applied to large-scale problems.

In the next section, we will describe the variational view ofapproximating the partition function and
will review various methods that fall under this framework.For more thorough discussions on these
topics refer to [27]. In section 3 we will review some Monte Carlo methods of estimating partition
functions. In section 4 we will provide a brief overview of restricted Boltzmann machines (RBM’s),
semi-restricted Boltzmann machines (SRBM’s) and Boltzmann machines (BM’s), and will present a
new learning algorithm for general Boltzmann Machines. We will further show how a stochastic method,
Annealed Importance Sampling (AIS), can be used to efficiently estimate partition functions of these
models [20]. In the experimental results section we will show that our new learning algorithm can be
successfully applied to learning a good generative model ofMNIST digits. We will also compare AIS
to variational methods for estimating partition functionsof large Boltzmann Machines, carefully trained
on real data.

2 Variational Framework

2.1 Notation

Let x ∈XK be a random vector onK variables, where eachxk takes on the values in some discrete
alphabetAm = {0, 1, ...,m − 1}. Let T (x) = {td(x)}Dd=1 be aD-dimensional vector of sufficient
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statistics or potential functions, wheretd :XK → R, andθ ∈ RD is a vector of canonical parameters.
The exponential family associated with sufficient statisticsT consists of the following parametrized set
of probability distributions:

p(x; θ) =
1

Z(θ)
exp (θ⊤T (x)) (1)

Z(θ) =
∑

x

exp (θ⊤T (x)), (2)

whereZ(θ) is known as the partition function.
An undirected graphical modelG = (V,E) contains a set of vertexesV that represent random

variables, and a set of undirected edgesE, that represent dependencies between those random variables.
Throughout this paper, we will concentrate onpairwiseMRF’s. For example, consider the following
binary pairwise MRF, also known as an Ising model:

p(x; θ) =
1

Z(θ)
exp

(

∑

(i,j)∈E

θijxixj +
∑

i∈V

θixi

)

=
1

Z(θ)
exp

(

θ⊤T (x)
)

, (3)

wherexi is a Bernoulli random variable associated with vertexi ∈ V . This exponential representation
of the Ising model is minimal. In general, we will use an overcomplete exponential representation. Let
I{xi = s} be an indicator function that is equal to 1 ifxi = s and zero otherwise. For a pairwise MRF,
we have:

p(x; θ) =
1

Z(θ)
exp

(

∑

(i,j)∈E

∑

s,t

θij,stI{xi = s, xj = t}+
∑

i∈V

∑

s

θi,sI{xi = s}
)

,

so the sufficient statistic is a collection of indicator functions. We will use the following convenient
notation for the marginal probabilities:µi;s = p(xi = s; θ), andµij;st = p(xi = s, xj = t; θ). For the
Ising model, we simply denoteµi = p(xi = 1; θ), andµij = p(xi = 1, xj = 1; θ).

2.2 Variational Framework

Following [26], the log partition function for any given parameter vectorθ is given by:

log Z(θ) = sup
µ∈M

(θ⊤µ−A∗(µ)), (4)

whereM is the set of mean parameters or marginals, known as the Marginal Polytope:

M = {µ ∈ RD | ∃p(·) s.t. µ = Ep[T (x)]}.
A∗(µ) is known as Fenchel-Legendre conjugate oflog Z(θ) and is given by:

A∗(µ) =

{

−H(µ) if µ ∈M
+∞ otherwise

,

whereH(µ) is the maximum entropy amongst all distributions consistent with marginalsµ. Moreover,
the supremum is achieved at the vectorµ∗

θ = Ep(x;θ)[T (x)].
First, note that this variational problem is convex, sinceA∗(µ) is convex and the setM is convex.

Second, it is quite simple to derive Eq. 4 (see [17, 27, 22]). Consider any distribution in the exponential
family p(x; η). Using Jensen’s inequality we have:

log Z(θ) = log
∑

x

exp{θ⊤T (x)} = log
∑

x

p(x; η)

p(x; η)
exp{θ⊤T (x)} ≥ (5)

≥
∑

x

p(x; η) log
exp{θ⊤T (x)}

p(x; η)
=

∑

x

p(x; η){θ⊤T (x)} +H(p(x; η)) =

= θ⊤µη +H(p(x; η)) = θ⊤µη +H(µη),
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whereµη = Ep(x;η)[T (x)], andH(µη) is the maximum entropy of all distributions consistent withthe
marginal vectorµη. The last equality holds sincep(x; η) is the maximum entropy distribution consistent
with µη, asp(x; η) is in the exponential family. Clearly, the above inequalityholds for any distribution
Q (provided the marginalsµQ ∈M), and the setM is the set of all marginals that can be realized under
some distribution (see [27, 22]). We therefore have:

log Z(θ) ≥ sup
µ∈M

(θ⊤µ +H(µ)). (6)

The bound in Eq. 5 becomes tight if and only ifp(x; η) = p(x; θ). In this case we recover Eq. 4.
Moreover, it is now clear that the supremum is attained at thevectorµ∗

θ, which represents the marginals
of the distributionp(x; θ).

There are two main difficulties associated with the above variational optimization problem. First,
the marginal polytopeM does not have an explicit representation, except for simplemodels, such as
the tree structured graphs. One way to address this problem is to restrict optimization problem to a
tractable subsetMtract ⊆ M. For example, optimization could be carried over a subset of“simpler”
distributions, belonging to the exponential family, such as fully factorized distributions. Alternatively,
one could consider the outer boundMouter ⊇ M, by relaxing the set of necessary constraints that any
point µ ∈Mmust satisfy.

The second major challenge comes from evaluating the entropy functionH(µ) – it too does not
have an explicit form, with the exception of the tree graphs.A common approach to this problem is
to approximate the entropy term in such a way that this approximation becomes exact on a singly-
connected graph.

2.3 Mean-Field

The goal of the mean-field approach is to find a distributionQ from the class of analytically tractable
distributions that best approximates the original distribution P in terms ofKL(Q||P ). It was shown
in [27] that the mean-field theory is based on variational principle of Eq. 4. Consider a set of mean
parametersMtract ⊆ M that are achieved by tractable distributions for which the entropy term can
be calculated exactly. In this case for anyµ ∈ Mtract, the lower bound of Eq. 5 can be calculated
exactly. The mean-field methods attempt to find the best approximation µMF which maximizes this
lower bound.

As an example, consider our Ising model and let us choose a fully factorized distribution in order to
approximate the original distribution. In this case we define:

Mtract = {(µi, µij)|µij = µiµj, 0 ≤ µi ≤ 1}. (7)

The entropy term of this factorized distribution is easy to compute. The mean-field objective is to
maximize:

log Z(θ) ≥ sup
µ∈Mtract

(

θ⊤µ +H(µ)
)

=

max
µ∈[0,1]

(

∑

(i,j)∈E

θijµiµj +
∑

i∈V

θiµi −
∑

i∈V

[µi log µi + (1− µi) log (1− µi)]

)

. (8)

The solution will provide us with the lower bound on the log-partition function. This optimization
problem is equivalent to minimizing Kullback-Leibler divergence between the tractable distribution and
the target distribution [27]. Furthermore, the mean-field objective may not be convex, so the mean-field
updates may have multiple solutions.
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2.4 Bethe Approximation

A close connection between loopy belief propagation and theBethe approximation to the log-partition
function of a pairwise Markov random field was shown by [30, 31]. Let us consider a tree structured
graph. In this case we know that the correct joint probability distribution can be written in terms of
single and pair-wise node marginals:

p(x; θ) =
∏

i

µi;xi

∏

i,j

µij;xi,xj

µi;xi
µj;xj

. (9)

The entropy of this distribution has a closed-form expression and decomposes into a sum of the sin-
gle node entropies and the edgewise mutual information terms between two nodes. For graphs with
cycles, the entropy in general will not have this simple decomposition. Nevertheless, if we use this
decomposition, we obtain the Bethe approximation to the entropy term on a graph with cycles:

HBethe(µ) =
∑

i∈V

Hi(µi)−
∑

(i,j)∈E

Iij(µij), where (10)

Hi(µi) = −
∑

s

µi;s log µi;s, Iij(µij) =
∑

s,t

µij;st log
µij;st

µi;sµj;t
(11)

This approximation is well-defined for anyµ ∈ M. As mentioned before, it is hard to explicitly
characterize the marginal polytope. Let us consider the outer boundMouter ⊇ M, by relaxing the set
of necessary constrains that any pointµ ∈M must satisfy. In particular, consider the following set:

MLOCAL = {µ ≥ 0|
∑

s

µi;s = 1,
∑

t

µij;st = µi;s}. (12)

Clearly,MLOCAL ⊇M, since any member of the marginal polytope must also satisfylocal consistency
constraints. Members ofMLOCAL are referred to as pseudo-marginals since they may not give rise to
any valid probability distribution. The Bethe approximation to the log-partition function reduces to
solving the following optimization problem:

log ZBethe(θ) = sup
µ∈MLOCAL

(θ⊤µ +HBethe(µ)). (13)

The stationary points of loopy belief propagation [30, 31] correspond to the stationary points of the
above objective function. For singly-connected graphs, the Bethe approximation to the partition function
becomes exact. In general,HBethe is not concave, so there is no guarantee that loopy belief propagation
will find a global optimum. Furthermore, the Bethe approximation provides neither lower nor upper
bound on the log-partition function, except for special cases [24].

2.5 Tree-Reweighted Upper Bound

A different way of approximating the entropy term, which results in obtaining an upper bound of the
log-partition function, is taken by [26]. The idea is to use aconvex outer bound on the marginal polytope
and a concave upper bound on the entropy term.

Let us consider a pairwise MRFG = (V,E). We are interested in obtaining an upper bound on the
entropyH(µ). Removing some of the edges from this MRF can only increase the entropy term, since
removing edges corresponds to removing constraints. Consider any spanning treeT = (V,E(T )) of
the graphG. The entropy of the joint distribution defined on this spanning tree with matched marginals
H(µ(T )) must be larger than the entropy of the original distributionH(µ). This bound must also hold
for any convex combination of spanning trees.
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More formally, letS be a set of spanning trees,ρ be any probability distribution over those spanning
trees, andρij =

∑

T∈S ρ(T )I{(i, j) ∈ E(T )} be edge appearance probabilities. We therefore have the
following upper bound on the entropy term:

H(µ) ≤ Eρ(H(µ(T )) =
∑

T∈S

ρ(T )[
∑

i∈V

Hi(µi)−
∑

(i,j)∈E(T )

Iij(µij)] =

=
∑

i∈V

Hi(µi)−
∑

(i,j)∈E

ρijIij(µij) = H̃(µ). (14)

Using variational approach of Eq. 4, we obtain the upper bound on the log-partition function:

log Z(θ) = sup
µ∈M

(θ⊤µ +H(µ)) ≤ sup
µ∈M

(θ⊤µ + H̃(µ)) ≤ sup
µ∈MLOCAL

(θ⊤µ + H̃(µ)). (15)

The nice property of this optimization problem is that it is convex. Indeed, the cost function is concave,
since it consists of a linear term plus a concave term. Moreover, the setMLOCAL is convex. For
any fixedρ, Wainright et.al. [26] further derive a tree-reweighted sum-product (TRW) algorithm that
efficiently solves the above optimization problem.

2.6 Other approaches

There have been numerous other approaches that either attempt to better approximate the entropy term
or provide tighter outer bounds on the marginal polytope.

In particular, [28] propose to use a semi-definite outer-bound on the marginal polytope, and a Gaus-
sian bound on the discrete entropy. The key intuition here isthat the differential entropy of any contin-
uous random vector is upper bounded by a Gaussian distribution with matched covariance.

A different approach to approximating the entropy term was suggested by [5]. Using the chain rule
for the entropy we can write:

H(x1, ..., xN ) = H(x1)H(x2|x1)...H(xn|x1, x2, .., xN−1). (16)

Removing some of the conditioning variables cannot decrease the entropy, thus allowing us to obtain
the upper bound. Note that there is a close connection between this formulation and a tree-based upper
bound. Indeed, for any given spanning treeT we can calculate its entropy term as:

H =

N
∑

i=1

H(xi|PaT (xi)) (17)

wherePaT are the parents of the variablexi. This is just an instance of the bound derived from the
chain rule of Eq. 16.

Recently, [23, 22] proposed a cutting plane algorithm that solves for an upper bound of the log-
partition function of Eq. 4 by incorporating a set of valid constraints that are violated by the current
pseudo-marginals. The idea is to use cycle inequalities to obtain a tighter outer bound on the marginal
polytope. Consider a binary MRF. Suppose we start at nodei with xi = 0, traverse the cycle, and return
back to nodei. Clearly, the number of times an assignment changes, can only be even. Mathematically,
this constraint is written as follows: for any cycleC and anyF ⊆ C such that|F | is odd we have:
∑

(i,j)∈C\F I{xi 6= xj}+
∑

(i,j)∈F I{xi = xj} ≥ 1. Since this is true for any valid assignment, it also
holds in expectation, providing us with the cycle inequalities constraints:

∑

(i,j)∈C\F

(µij;01 + µij;10) +
∑

(i,j)∈F

(µij;00 + µij;11) ≥ 1 (18)
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The cutting plane algorithm starts with the loose outer boundMLOCAL, proceeds by solving for an up-
per bound of the log-partition function of Eq. 4, finds violated cycle inequalities by the current pseudo-
marginals, and adds them as valid constraints, thus providing a tighter outer bound on the marginal
polytope.

3 Stochastic Methods for Estimating Partition Functions

Throughout the remaining sections of this paper we will makeuse of the following canonical form of
distributions:

p(x; θ) =
1

Z(θ)
exp

(

− E(x; θ)
)

(19)

whereE(x; θ) is the energy function which depends on parameter vectorθ. If we defineE(x; θ) =
−θ⊤T (x), then we recover the canonical form of the exponential family associated with sufficient
statisticsT , as defined in section 2.1.

3.1 Simple Importance Sampling (SIS)

Suppose we have two distributions defined on some spaceX with probability density functionspA(x) =
p∗A(x)/ZA andpB(x) = p∗B(x)/ZB , wherep∗(·) denotes the unnormalized probability density. LetΩA

andΩB be the support sets ofpA andpB respectively. One way of estimating the ratio of normalizing
constants is to use a simple importance sampling (SIS) method. We use the following identity, assuming
thatΩB ⊆ ΩA, i.e. pA(x) 6= 0 wheneverpB(x) 6= 0:

ZB

ZA
=

∫

p∗B(x)dx

ZA
=

∫

p∗B(x)

p∗A(x)
pA(x)dx = EpA

[

p∗B(x)

p∗A(x)

]

.

Assuming we can draw independent samples frompA, the unbiased estimate of the ratio of partition
functions can be obtained by using a simple Monte Carlo approximation:

ZB

ZA
≈ 1

M

M
∑

i=1

p∗B(x(i))

p∗A(x(i))
≡ 1

M

M
∑

i=1

w(i) = r̂SIS, (20)

wherex
(i) ∼ pA. If we choosepA(x) to be a tractable distribution for which we can computeZA

analytically, we obtain an unbiased estimate of the partition functionZB . However, ifpA andpB are
not close enough, the estimatorr̂SIS will be very poor. In high-dimensional spaces, the varianceof an
estimatorr̂SIS will be very large, or possibly infinite (see [10], chapter 29), unlesspA is a near-perfect
approximation topB.

3.2 Annealed Importance Sampling (AIS)

Suppose that we can define a sequence of intermediate probability distributions: p0, ..., pK , with p0 =
pA andpK = pB , which satisfy the following conditions:

C1 pk(x) 6= 0 wheneverpk+1(x) 6= 0.

C2 We must be able to easily evaluate the unnormalized probability p∗k(x), ∀x ∈ X , k = 0, ...,K.

C3 For eachk = 1, ...,K−1, we must be able to draw a samplex
′ givenx using a Markov chain

transition operatorTk(x
′;x) that leavespk(x) invariant:

∫

Tk(x
′;x)pk(x)dx = pk(x

′). (21)
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C4 We must be able to draw (preferably independent) samples from pA.

The transition operatorsTk(x
′;x) represent the probability density of transitioning from statex to x

′.
Constructing a suitable sequence of intermediate probability distributions will depend on the problem.
One general way to define this sequence is to set:

pk(x) ∝ p∗A(x)1−βkp∗B(x)βk , (22)

with 0 = β0 < β1 < ... < βK = 1 chosen by the user. Once the sequence of intermediate distributions
has been defined we have:

Annealed Importance Sampling (AIS) run:

1. Generatex1,x2, ...,xK as follows:

• Samplex1 from pA = p0.

• Samplex2 givenx1 usingT1(x1;x2).

• ...

• SamplexK givenxK−1 usingTK−1(xK ;xK−1).

2. Set

w
(i)
AIS =

p∗1(x1)

p∗0(x1)

p∗2(x2)

p∗1(x2)
...

p∗K−1(xK−1)

p∗K−2(xK−1)

p∗K(xK)

p∗K−1(xK)
.

Note that there is no need to compute the normalizing constants of any intermediate distributions. After
performingM runs of AIS, the importance weightsw(i)

AIS can be substituted into Eq. 20 to obtain an
estimate of the ratio of partition functions:

ZB

ZA
≈ 1

M

M
∑

i=1

w
(i)
AIS = r̂AIS. (23)

It is shown in [15, 16] that for sufficiently large number of intermediate distributionsK, the variance
of r̂AIS will be proportional to1/MK. ProvidedK is kept large, the total amount of computation can
be split in any way between the number of intermediate distributionsK and the number of anneal-
ing runsM without adversely affecting the accuracy of the estimator.If samples drawn frompA are
independent, the AIS runs can be used to obtain the variance of the estimatêrAIS:

Var(r̂AIS) =
1

M
Var(w(i)

AIS) ≈ ŝ2

M
= σ̂2, (24)

whereŝ2 is estimated simply from the sample variance of the importance weights.
The intuition behind AIS is the following. Consider the following identity:

ZK

Z0
=

Z1

Z0

Z2

Z1
...

ZK

ZK−1
(25)

Provided the two intermediate distributionspk andpk+1 are close enough, a simple importance sampler
can be used to estimate each ratioZk+1/Zk:

Zk+1

Zk
≈ 1

M

M
∑

i=1

p∗k+1(x
(i))

p∗k(x
(i))

, where x
(i) ∼ pk

These ratios can then be used to estimateZK

Z0
=

∏K−1
k=0

Zk+1

Zk
. The problem with this approach is that,

except forp0, we typically cannot easily draw exact samples from intermediate distributionspk. We
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could resort to Markov chain methods, but then it is hard to determine when the Markov chain has
converged to the desired distribution.

A remarkable fact shown by [15, 9] is that the estimate ofZK/Z0 will be exactly unbiased if each
ratioZk+1/Zk is estimated usingM = 1, and a samplex(i) is obtained by using Markov chain starting
at the previous sample. The proof of this fact relies on the observation that the AIS procedure is just a
simple importance sampling defined on the extended state spaceX = (x1, x2, ..., xK). Indeed, consider
the unnormalized joint distribution defined by the AIS procedure:

Q∗(X) = Z0p0(x1)

K−1
∏

k=1

Tk(xk+1;xk). (26)

We can viewQ(X) as a proposal distribution for the target distributionP (X) on the extended spaceX.
This target distribution is defined by the reverse AIS procedure:

P ∗(X) = ZKpK(xK)

K−1
∏

k=1

T̂k(xk;xk+1), (27)

whereT̂ are the reverse transition operators:

T̂k(x
′;x) = Tk(x;x′)

pk(x
′)

pk(x)
(28)

If Tk is reversible then̂Tk are the same asTk. Due to invariance ofpk with respect toTk (Eq. 21), the
reverse transition operators are valid transition probabilities, which ensures that the marginal distribution
overxK is correct. From Eq. 20, the importance weight can then be found as:

w =
P ∗(X)

Q∗(X)
=

ZKpK(xK)
∏K−1

i=1 T̂k(xk;xk+1)

Z0p0(x1)
∏K−1

k=1 Tk(xk+1;xk)
=

p∗K(xK)

p∗0(x1)

K−1
∏

k=1

p∗k(xk)

p∗k(xk+1)
=

K
∏

k=1

p∗k(xk)

p∗k−1(xk)
, (29)

which are the weights provided by the AIS algorithm. Observethat the Markov transition operators do
not necessarily need to be ergodic. In particular, if we wereto choose dumb transition operators that do
nothing,Tk(x

′;x) = δ(x′−x) for all k, we recover the original simple importance sampling procedure.

3.3 Bridge Sampling

Suppose that in addition to having two distributionspA(x) = p∗A(x)/ZA andpB(x) = p∗B(x)/ZB , we
also have a ”bridge distribution”pA,B(x) = p∗A,B(x)/Z∗, such that it is overlapped with bothpA and
pB. We can then use a simple importance sampling procedure to separately estimateZ∗/ZA andZ∗/ZB

to obtain:

ZB

ZA
=

Z∗/ZA

Z∗/ZB
= EpA

[

p∗A,B(x)

p∗A(x)

]/

EpB

[

p∗A,B(x)

p∗B(x)

]

.

≈ 1

MA

MA
∑

i=1

p∗A,B(x(0,i))

p∗A(x(0,i))

/

1

MB

MB
∑

i=1

p∗A,B(x(1,i))

p∗B(x(1,i))
= r̂Bridged, (30)

wherex
(0,i) ∼ pA andx

(1,i) ∼ pB. Compare this estimator to the SIS estimator of Eq. 20. With SIS,
draws fromPA are used as proposals forPB , whereas with bridged sampling, draws from bothPA and
PB are used as proposals forPA,B. The distributionPA,B acts as a “connecting bridge” between our
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two distributions [11, 4]. One simple choice is to use a geometric bridge: PA,B =
√

PAPB , in which
case we get:

ZB

ZA
= EpA

[

√

p∗B(x)

p∗A(x)

]/

EpB

[

√

p∗A(x)

p∗B(x)

]

. (31)

The square root helps to control the magnitude of the importance weights and ensures that both
√

p∗A/p∗B
and

√

p∗B/p∗A are square integrable with respect topB andpA respectively. Other choices for bridge
distributions are discussed in more detail in [11, 1].

The advantage of bridge sampling over SIS is that it uses a much weaker requirement on the support
of the proposal distributionpA. The bridge sampling estimate, that uses for example a geometric bridge,
will converge to the correct estimate provided thatΩA

⋂

ΩB 6= Ø, i.e. there is some region that has non-
zero probability under bothpA andpB. The SIS, on the other hand, uses a much stronger assumption
thatΩB ⊆ ΩA. Consider the following intuitive example, which we borrowfrom [16]. Let p∗A(x) =
I{x ∈ (0, 3)} andp∗B(x) = I{x ∈ (2, 4)}, so thatZA = 3 andZB = 2. The bridged sampling that uses
p∗A,B(x) = I{x ∈ (2, 3)} converges to the correct estimate, since the numerator converges to 1/3 and
the denominator converges to 1/2. SIS, on the other hand, will converge to the wrong value of 1/3.

If however,pA andpB are not close enough, the bridge sampling estimator will be poor. We could
resort to the same idea of defining a set of intermediate distributions as in Eq. 25, and estimate each ratio
using bridge sampling. However, there are two problems withthis approach. First, the estimatorrBridge

is biased, and so we cannot average over multiple independent runs to get a better estimator. Second, as
previously discussed, it is not clear how we can draw samplesfrom the intermediate distributions.

Neal [16] has recently developed a method called Linked Importance Sampling (LIS) that combines
the ideas of AIS and bridge sampling to produce an unbiased estimate of the ratio of partition functions
without the need to draw exact samples from the intermediatedistributions. The idea of LIS is that each
intermediate distributionpk is “linked” to the next distributionpk+1 by a single linked state, which is
chosen using the bridge distributionpk,k+1. Just as AIS, the LIS procedure, can be viewed as a simple
importance sampling defined on the extended state space, thus producing an unbiased estimator.

Furthermore, as pointed out in [16, 2], since we can view bothAIS and LIS as simple importance
sampling procedures defined on the extended state space, we can obtain a bridged sampling estimate by
combining both forward and reverse estimators, as for example in Eq. 31, leading to the bridged AIS
and bridged LIS estimators.

4 Learning Boltzmann Machines

In this section we will provide a brief overview of restricted Boltzmann machines (RBM’s), semi-
restricted Boltzmann machines (SRBM’s), and Boltzmann machines (BM’s). We will focus on showing
how AIS can be used to estimate partition functions of these models. However, we could just as easily
apply LIS, or bridged versions of AIS and LIS, which could potentially provide better estimates. This
we leave for future study. We will further present a new learning algorithm for general Boltzmann
machines.

4.1 Restricted Boltzmann Machines (RBM’s)

A restricted Boltzmann machine is a particular type of MRF that has a two-layer architecture, in which
the visible, binary stochastic unitsv ∈ {0, 1}D are connected to hidden binary stochastic unitsh ∈
{0, 1}P (see Fig. 1, left panel). The energy of the state{v,h} is:

E(v,h; θ) = −
D

∑

i=1

P
∑

j=1

Wijvihj −
D

∑

i=1

bivi −
P

∑

j=1

ajhj, (32)
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whereθ = {W,b,a} are the model parameters:Wij represents the symmetric interaction term between
visible unit i and hidden unitj; bi andaj are the bias terms. The probability that the model assigns to
a visible vectorv is:

p(v; θ) =
1

Z(θ)

∑

h

exp (−E(v,h; θ)). (33)

The conditional distributions over hidden unitsh and visible vectorv are given by logistic functions:

p(h|v; θ) =
∏

j

p(hj |v; θ), p(v|h; θ) =
∏

i

p(vi|h; θ),

p(hj = 1|v; θ) = σ(
∑

i

Wijvi + aj), p(vi = 1|h; θ) = σ(
∑

j

Wijhj + bi), (34)

whereσ(x) = 1/(1 + exp(−x)). The derivative of the log-likelihood with respect to the model param-
eterW can be obtained from Eq. 33:

∂ log p(v; θ)

∂W
= EPdata

[vh
⊤]− EPmodel

[vh
⊤], (35)

where EPdata
[·] denotes an expectation with respect to the data distribution Pdata(h,v; θ) = p(h|v; θ)Pdata(v),

with Pdata(v) representing the empirical distribution, and EPmodel
[·] is an expectation with respect to the

distribution defined by the model. The learning rule for the biases is just a simplified version of Eq. 35.
The expectation EPmodel

[·] cannot be computed analytically.

4.1.1 Stochastic Approximation Procedure (SAP)

Stochastic Approximation Procedure (SAP) [25, 32, 33, 13] uses MCMC methods to stochastically
approximate the second term of Eq. 35. The idea behind SAP is straightforward. Letθt andXt be
the current parameter and the state. ThenXt andθt are updated sequentially as follows. GivenXt,
a new stateXt+1 is sampled from the transition operatorTθt

(Xt+1;Xt) that leavespθt
invariant. A

new parameterθt+1 is then obtained by replacing the second term of Eq. 35 by the expectation with
respect toXt+1. In practice, we typically maintain a set ofM sample pointsXt = {xt,1, ....,xt,M}.
The algorithm proceeds as follows:

Stochastic Approximation Procedure (SAP):

1. Initializeθ0 andX0 = {x0,1, ....,x0,M}.
2. For t=0 to T

(a) Fori = 1, ..., M samplext+1,i givenx
t,i using transition

operatorTθt
(xt+1,i;xt,i).

(b) Updateθt+1 = θt + αtF (θt, X
t+1).

(c) Decreaseαt.

For an RBM model, the state isx = {ṽ, h̃}, the transition kernelTθ is defined by the blocked Gibbs
updates (Eqs. 34), and

F (Wt,X
t+1) = EPdata

[vh
⊤]− 1

M

M
∑

m=1

[ṽt+1,m(h̃t+1,m)⊤], (36)

F (at,X
t+1) = EPdata

[h]− 1

M

M
∑

m=1

[(h̃t+1,m)],

F (bt,X
t+1) = EPdata

[v]− 1

M

M
∑

m=1

[ṽt+1,m].
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Figure 1:Left: Restricted Boltzmann machine. The top layer represents a vector of stochastic binary unitsh and
the bottom layer represents a vector of stochastic binary visible variablesv. Right: The Gibbs transition operator
Tk(v′;v) leavespk(v) invariant when estimating the ratio of partition functionsZB/ZA.

SAP belongs to the class of well-studied stochastic approximation algorithms of Robbins-Monro type
[32, 33, 19]. The proof of convergence of these algorithms relies on the following basic decomposition.
Let S(θ) = ∂ log p(v;θ)

∂θ
, then:

θt+1 = θt + αtS(θt) + αt(F (θt,X
t+1)− S(θt)) = θt + αtS(θt) + αtǫt+1. (37)

The first term is the discretization of the ordinary differential equationθ̇ = S(θ). The algorithm is
therefore a perturbation of this discretization with the noise termǫ. The proof then proceeds by showing
that the noise term is not too large.

Precise sufficient conditions that ensure almost sure convergence to an asymptotically stable point
of θ̇ = S(θ) are given in [32, 33]. One necessary condition requires the learning rate to decrease with
time, i.e.

∑∞
t=0 αt = ∞ and

∑∞
t=0 α2

t < ∞. This condition can for example be satisfied simply by
settingαt = 1/t. Other conditions basically ensure that the speed of convergence of the Markov chain,
govern by the transition operatorTθ, does not decrease too fast asθ tends to infinity, and that the noise
termǫ in the update of Eq. 37 is bounded.

Typically, in practice, the sequence|θt| is bounded1, and the Markov chain, governed by the tran-
sition kernelTθ, is ergodic. Together with the condition on the learning rate, this ensures almost sure
convergence of SAP to an asymptotically stable point ofθ̇ = S(θ). When applied to learning RBM’s,
[25] shows that this stochastic approximation algorithm, also termed Persistent Contrastive Divergence,
performs quite well compared to Contrastive Divergence learning [7].

4.1.2 Estimating the Ratio of Partition Functions of two RBM’s

Suppose we have two RBM’s with parameter valuesθA = {W A,bA,aA} andθB = {W B,bB ,aB}
that define probability distributionspA andpB overV∈{0, 1}D . Each RBM can have a different number
of hidden unitshA ∈ {0, 1}PA andh

B ∈ {0, 1}PB . We could define intermediate distributions using
Eq. 22. However, sampling from these distributions would bemuch harder than from an RBM. Instead
we introduce the following sequence of distributions fork = 0, ...,K [20]:

pk(v) =
p∗k(v)

Zk
=

1

Zk

∑

h

exp (−Ek(v,h)), (38)

whereh = {hA,hB}, and the energy function is given by:

Ek(v,h) = (1− βk)E(v,hA; θA) + βkE(v,hB ; θB), (39)

with 0 = β0 < β1 < ... < βK = 1. For i = 0, we haveβ0 = 0 and sop0 = pA. Similarly, for
i = K, we havepK = pB. For the intermediate values ofk, we will have some interpolation between
pA andpB.

1
θt belongs to some compact set, which ensures its boundedness.In fact, we could always define a procedure that projects

θt onto some compact set.
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Let us now define a Markov chain transition operatorTk(v
′;v) that leavespk(v) invariant. Using

Eqs. 38, 39, it is straightforward to derive a block Gibbs sampler. The conditional distributions are given
by logistic functions:

p(hA
j = 1|v) = σ

(

(1− βk)(
∑

i

W A
ij vi + aA

j )

)

, (40)

p(hB
j = 1|v) = σ

(

βk(
∑

i

W B
ij vi + aB

j )

)

, (41)

p(v′i = 1|h) = σ

(

(1− βk)(
∑

j

W A
ij hA

j + bA
i ) + βk(

∑

j

W B
ij hB

j + bB
i )

)

. (42)

Givenv, Eqs. 40, 41 are used to stochastically activate hidden units h
A andh

B. Eq. 42 is then used to
draw a new samplev′ as shown in Fig. 1 (right panel). Due to the special structureof RBM’s, the cost
of summing outh is linear in the number of hidden units. We can therefore easily evaluate:

p∗k(v) =
∑

hA,hB

e(1−βk)E(v,hA;θA)+βkE(v,hB;θB)

= e(1−βk)
P

i bA
i vi

PA
∏

j=1

(1 + e(1−βk)(
P

i W A
ij vi+aA

j ))× eβk

P

i bB
i vi

PB
∏

j=1

(1 + eβk(
P

i W B
ij vi+aB

j )).

We will assume that the parameter values of each RBM are bounded in which casep(v) > 0 for
all v ∈ V. This will ensure that condition C1 of the AIS procedure is always satisfied. We have al-
ready shown that conditions C2 and C3 are satisfied. For condition C4, we can run a blocked Gibbs
sampler (Eq. 34) to generate samples frompA. These sample points will not be independent, but the
AIS estimator will still converge to the correct value, provided our Markov chain is ergodic [15]. How-
ever, assessing the accuracy of this estimator can be difficult, as it depends on both the variance of the
importance weights and on autocorrelations in the Gibbs sampler.

4.1.3 Estimating Partition Functions of RBM’s

In the previous section we showed that we can use AIS to obtainan estimate ofZB/ZA. Consider an
RBM with parameter vectorθA = {0,bA, 0}, or an RBM with a zero weight matrix. From Eq. 33, we
know:

ZA = 2PA

∏

i

(1 + ebi), pA(v) =
∏

i

pA(vi) =
∏

i

1/(1 + e−bi), (43)

so we can draw exact independent samples from this “base-rate” RBM. AIS in this case allows us to
obtain anunbiasedestimate of the partition functionZB. This approach closely resembles simulated
annealing, since the intermediate distributions of Eq. 38 take form:

pk(v) =
exp((1−βk)v⊤

b
A)

Zk

∑

hB

exp(−βkE(v,hB ; θB)). (44)

We gradually changeβk (or inverse temperature) from 0 to 1, annealing from a simple“base-rate” model
to the final complex model. The importance weightsw

(i)
AIS ensure that AIS produces correct estimates.
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Figure 2:Left: Semi-restricted Boltzmann machine. The visible units forma fully or partially connected condi-
tional MRF, with hidden units determining the biases of the visible units.Right: Boltzmann Machine with both
visible-to-visible and hidden-to-hidden connections.

4.2 Semi-Restricted Boltzmann Machines (SRBM’s)

Semi-restricted Boltzmann machines were introduced by [18]. In contrast to RBM’s, the visible units of
SRBM’s form a fully or partially connected conditional MRF,with hidden states determining the biases
of the visible units (see Fig. 2, left panel). The energy of the state{v,h} takes form:

E(v,h; θ) = −
∑

i<k

Likvivk −
∑

i,j

Wijvihj −
∑

i

bivi −
∑

j

ajhj , (45)

whereLij represents the symmetric lateral interaction term betweenvisible units i andj, with diagonal
elements set to 0. The conditional distributions over hidden and visible units are given by:

p(hj = 1|v) = σ(
∑

i

Wijvi + aj), p(vi = 1|h,v−i) = σ(
∑

j

Wijhj +
∑

k\i

Likvj + bi). (46)

The derivative of the log-likelihood with respect to the lateral interaction termL is given by:

∂ log p(v; θ)

∂L
= EPdata

[vv
⊤]− EPmodel

[vv
⊤]. (47)

The crucial aspect of SRBM is that inference of the hidden variables in this model is still exact, since
there are no lateral connections between hidden units. Therefore the first term in Eq. 47 is still easy to
compute. Learning in this model was originally carried out using Contrastive Divergence with a few
damped mean-field updates on the visible units [29, 18]. Instead, we will apply SAP with the transition
kernelTθ defined by the blocked Gibbs update for the hidden units and sequential Gibbs updates for
the visible units (Eqs. 46). Since we can explicitly sum out the hidden units, the AIS procedure for
estimating the ratio of partition functions of two SRBM’s will be almost identical to the AIS procedure
we described for RBM’s.

4.3 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically coupled stochastic binary units with both visible-
to-visible and hidden-to-hidden lateral connections as shown in Fig. 2 (right panel). The energy function
is defined as:

E(v,h; θ) = −
∑

i<k

Likvivk −
∑

j<m

Jjmhjhm −
∑

i,j

Wijvihj −
∑

i

bivi −
∑

j

ajhj , (48)
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The conditional distributions over hidden and visible units are given by:

p(hj = 1|v,h−j) = σ(
∑

i

Wijvi +
∑

m\j

Jjmhj + aj), (49)

p(vi = 1|h,v−i) = σ(
∑

j

Wijhj +
∑

k\i

Likvj + bi). (50)

As it was the case for the RBM’s and SRBM’s, the derivative of the log-likelihood with respect to the
model parametersW andL are given by Eqs. 35, 47, and

∂ log p(v; θ)

∂J
= EPdata

[hh
⊤]− EPmodel

[hh
⊤]. (51)

This simple learning algorithm was originally derived by [6]. In contrast to RBM’s and SRBM’s, exact
inference in this model is intractable. Hinton and Sejnowski [6] proposed an approximate learning algo-
rithm that uses Gibbs sampling to approximate both expectations. In the positive phase, the expectation
EPdata

[·] is approximated by running a separate Markov chain for everytraining data vector, clamped to
the states of the visible units. In the negative phase, an additional chain is run to approximate EPmodel

[·].
The main problem with this algorithm is that it is computationally very demanding and not particularly
practical. For each iteration of learning, we must wait until each Markov chain reaches its stationary
distribution to do learning.

It was further observed [29, 18] that for Contrastive Divergence to perform well, it is important to
obtain exact samples from the conditional distributionp(h|v). Instead of using Contrastive Divergence
learning, we will combine the ideas of variational learning, introduced in section 2, together with SAP.
Consider the following variational lower bound:

log p(v; θ) ≥ −
∑

h

q(h)E(v,h; θ) +H(q)− log Z(θ), (52)

with equality attained if and only ifq(h) = p(h|v). Using a mean-field approach of section 2.3, we
choose a fully factorized distribution in order to approximate the true posterior:q(h) =

∏P
j=1 q(hi),

with q(hi = 1) = µi and P is the number of hidden units. In this case, the lower bound onthe
log-probability of the data takes form:

log p(v; θ) ≥
∑

i<k

Likvivk +
∑

j<m

Jjmµjµm +
∑

i,j

Wijviµj +
∑

i

bivi +
∑

j

ajµj

−
∑

j

[

µj log(µj) + (1− µj) log (1− µj)
]

− log Z(θ). (53)

The learning proceeds with thepositive phase: maximizing this lower bound with respect to the varia-
tional parametersµ for fixedθ, which results in the mean-field fixed-point equations:

µj ← σ(
∑

i

Wijvi +
∑

m\j

Jmjhm + aj), (54)

followed by thenegative phase: applying SAP to update the model parametersθ. In more detail, con-
sider the training set ofN data vectors{v}Nn=1, the Boltzmann machine learning proceeds as follows:
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Boltzmann Machine Learning Procedure:

1. Randomly initializeθ0 and the negative samples{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M},
2. For t=0 to T (# of iterations)

Positive Phase:

(a) For each training samplevn, n=1 to N

• Randomly initializeµ and run mean-field updates until convergence:

µj ← σ(
∑

i

Wijv
n
i +

∑

m\j

Jmjµm + aj).

• Setµn = µ.

Negative Phase:

(b) For each negative sample m=1 to M

• Obtain a new binary state(ṽt+1,m, h̃t+1,m) by running a k-step Gibbs sam-
pler using Eqs. 49, 50, initialized at(ṽt,m, h̃t,m).

Parameter Update:

(c) Update

W t+1 = W t + αt

(

1

N

N
∑

n=1

v
n(µn)⊤ − 1

M

M
∑

m=1

ṽ
t+1,m(h̃t+1,m)⊤

)

,

J t+1 = J t + αt

(

1

N

N
∑

n=1

µn(µn)⊤ − 1

M

M
∑

m=1

h̃
t+1,m(h̃t+1,m)⊤

)

,

Lt+1 = Lt + αt

(

1

N

N
∑

n=1

v
n(vn)⊤ − 1

M

M
∑

m=1

ṽ
t+1,m(ṽt+1,m)⊤

)

.

(d) Decreaseαt.

The choice of resorting to the naive mean-field approach in the positive phase was deliberate. First,
the convergence is usually very fast, which greatly facilitates learning. More importantly, conditioned
on the data, we do not want the posterior distribution over the hidden units to be multimodal, since
we would not want to have multiple alternative explanationsabout the data. The mean-field inference
exactly solves this problem. During learning, if the posterior given a training data is multimodal, the
mean-field will lock onto exactly one mode, and learning willmake it more probable. Hence, our
learning procedure will attempt to find regions in the parameter space in which the true posterior is
unimodal. It is also interesting to observe that if we set hidden-to-hidden connections to 0, we exactly
recover the learning procedure for SRBM’s.

In the next section we will show that together with the stochastic approximation procedure in the
negative phase, we are able to efficiently learn a good generative model of MNIST digits. It is important
to point out that this procedure readily extends to learningwith real-valued, count, or tabular data,
provided the distributions are in the exponential family.

4.3.1 Estimating Partition Functions of BM’s

AIS can be used to estimate the partition function of a Boltzmann machine. In contrast to RBM’s and
SRBM’s, we cannot explicitly sum out hidden units. Nevertheless, we can run the AIS procedure of
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section 3.2 by settingx = {v,h}. The intermediate distributions (see Eq. 22) are given by:

pk(v,h) =
exp ((1− βk)v

⊤
b

A)

Zk

exp (−βkE(v,hB ; θ)),

wherebA are the biases of the base-rate model, and the energy term is defined in Eq. 48. The transition
operatorTk is straightforward to derive from Eqs. 55,48. Furthermore,using the variational lower
bound of Eq. 52, the estimate of the partition function, together with the mean-field updates of Eq. 54,
will allow us to easily estimate the lower bound on the log-probability of test data.

5 Empirical Comparisons

In our experiments we used the MNIST digit dataset, which contains 60,000 training and 10,000 test
images of ten handwritten digits (0 to 9), with 28×28 pixels. The dataset was binarized: each pixel value
was stochastically set to 1 in proportion to its pixel intensity. We also created a toy dataset containing
60,000 training patches with 4×4 pixels, which were extracted from images of digits simply by placing
a square at a random position in each of the 28×28 image.

Annealed importance sampling requires settingβk ’s that define a sequence of intermediate distribu-
tions. In all of our experiments this sequence was chosen by quickly running a few preliminary experi-
ments and picking the spacing ofβk so as to minimize the log variance of the final importance weights.
The biasesbA of a base-rate model (see Eq. 43) were set by maximum likelihood, then smoothed to
ensure thatp(v) > 0, ∀ v ∈ V.

To speed-up learning, we subdivided datasets into 600 mini-batches, each containing 100 cases, and
updated the weights after each mini-batch. The number of negative samples was also set to 100. For
SAP, we always used 5 Gibbs updates. Each model was trained using 500 passes (epochs) through the
entire training dataset. The initial learning rate was set 0.005 and was gradually decreased to 0. In all of
our experiments we use natural logarithms, providing values in nats.

5.1 Toy Models

The RBM model had 25 hidden and 784 visible units, and was trained on the full binarized MNIST
dataset. The SRBM and BM models had 500 and 5 hidden units respectively, and were trained on the
toy 4× 4 patch dataset. For all three models we could calculate the exact value of the partition function.
For all models we also used 1,000βk spaced uniformly from 0 to 0.5, 4,000βk spaced uniformly
from 0.5 to 0.9, and 5,000βk spaced uniformly from 0.9 to 1.0, with a total of 10,000 intermediate
distributions. We also run loopy BP and tree-reweighted sum-product (TRW) algorithms to obtain the
deterministic Bethe approximation and an upper bound on thelog-partition function. For the TRW, the
distributionρ over the spanning trees was also optimized using conditional gradient together with the
maximum weight spanning tree algorithm. For both loopy BP and TRW, the messages passing updates
were damped.

Table 1 shows that for all three models, using only 10 AIS runs, we were able to obtain good
estimates of partition functions. Furthermore, Fig. 3 (toprow) reveals that as the number of annealing
runs is increased, AIS can almost exactly recover the true value of the partition function across all three
models. Bethe provided quite reasonable approximations for the SRBM and BM models, but was off
by about 4 nats for the “semi-simple” RBM model. TRW, on the other hand, provided very loose upper
bounds on the log-partition functions. In particular, for the RBM model withlog Z = 354.88, the
tree-reweighted upper bound was1207.83.
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Figure 3:Estimates of the log-partition functionslog Ẑ in nats as we increase the number of annealing runs. The
error bars showlog (Ẑ ± 3σ̂). For all models we used 10,000 intermediate distributions.

Table 1:Results of estimating partition functions (nats) of toy RBM, SRBM, and BM models. For all models we
used 10,000 intermediate distributions.

AIS True
Estimates

Bethe TRW
Runs log Z log Ẑ log (Ẑ ± σ̂) log (Ẑ ± 3σ̂) log Z log Z

100 RBM 354.88 354.99 354.68, 355.24 353.28, 355.59 350.75 1205.26
SRBM 116.72 116.73 116.68, 116.76 116.60, 116.84 115.90 146.30
BM 8.49 8.49 8.48, 8.51 8.45, 8.53 7.67 20.28

5.2 Real Models

In our second experiment we trained an RBM, an SRBM, and a fully connected BM on the binarized
MNIST images. All models had 500 hidden units. We used exactly the same spacing ofβk as before
and exactly the same base-rate model. Results are shown in table 2. For each model we were also able
to get what appears to be a rather accurate estimate ofZ. Of course, we are relying on an empirical
estimate of AIS’s accuracy, which could potentially be misleading. Nonetheless, Fig. 3 (bottom row)
shows that as we increase the number of annealing runs, the value of the estimator does not fluctuate
drastically. The difference between Bethe approximation and AIS estimate is quite large for all three
models, and TRW did not provide any meaningful upper bounds.

Table 2 further shows an estimate of the average train/test log-probability of the RBM and SRBM
models, and an estimate of the lower bound on the train/test log-probability of the BM model. For the
RBM and SRBM models, the estimate of the test log-probability was−86.90 and−86.06 respectively.
For the BM model, the estimate of the lower bound on the test log-probability was−85.68. Fig. 4 shows
samples generated from all models by randomly initializingbinary states of the visible and hidden units
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Figure 4: Random samples from the training set along with samples generated from RBM, SRBM, and BM
models.

Table 2: Results of estimating partition functions (nats) of real RBM, SRBM, and BM models, along with the
estimates of the average training and test log-probabilities. For the BM model, we report the lower bound on the
log-probability. For all models we used 10,000 intermediate distributions.

AIS True
Estimates Avg. log-prob.

Bethe
Runs log Z log Ẑ log (Ẑ ± σ̂) log (Ẑ ± 3σ̂) Test Train log Z

100 RBM — 390.76 390.56, 390.92 389.99, 391.19 −86.90 −84.67 378.98
SRBM — 159.63 159.42, 159.80 158.82, 160.07 −86.06 −83.39 148.11
BM — 220.17 219.88, 220.40 218.74, 220.74 −85.59 −82.96 197.26

and running Gibbs sampler for 100,000 steps. Certainly, allsamples look like the real handwritten
digits.

We should point out that there are some difficulties with using AIS. There is a need to specify theβk

that define a sequence of intermediate distributions. The number and the spacing ofβk will be problem
dependent and will affect the variance of the estimator. We also have to rely on the empirical estimate
of AIS accuracy, which could potentially be very misleading[15, 16]. Even though AIS provides an un-
biased estimator ofZ, it occasionally gives large overestimates and usually gives small underestimates,
so in practice, it is more likely to underestimate the true value of the partition function, which will result
in an overestimate of the log-probability. But these drawbacks should not result in disfavoring the use
of AIS for RBM’s, SRBM’s and BM’s: it is much better to have a slightly unreliable estimate than no
estimate at all, or an extremely indirect estimate, such as discriminative performance [8].

6 Conclusions

In this paper we provided a brief overview of the variationalframework for estimating log-partition
functions and some of the Monte Carlo based methods for estimating partition functions of arbitrary
MRF’s. We then developed an annealed importance sampling procedure for estimating partition func-
tions of RBM, SRBM and BM models, and showed that they providemuch better estimates compared
to some of the popular variational methods.

We further developed a new learning algorithm for training Boltzmann machines. This learning
procedure is computationally more demanding compared to learning RBM’s or SRBM’s, since it re-
quires mean-field settling. Nevertheless, we were able to successfully learn a good generative model
of MNIST digits. Furthermore, by appropriately setting some of the visible-to-hidden and hidden-to-
hidden connections to zero, we can create a deep multi-layerBoltzmann machine with many layers of
hidden variables. We can efficiently train these deep hierarchical undirected models, and together with
AIS, we can obtain good estimates of the lower bound on the log-probability of thetest data. This
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will allow us to obtain some quantitative evaluation of the generalization performance of these deep
hierarchical models. Furthermore, this learning procedure and AIS can be easily applied to undirected
graphical models that generalize BM’s to exponential family distributions. This will allow future ap-
plication to models of real-valued data, such as image patches [18], or count data, such as word-count
vectors of documents [3].
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