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Abstract

We provide a brief overview of the variational framework @taining determinis-

tic approximations or upper bounds for the log-partitiondiion. We also review
some of the Monte Carlo based methods for estimating martftinctions of arbi-

trary Markov Random Fields. We then develop an annealed ritapoe sampling

(AIS) procedure for estimating partition functions of reged Boltzmann machines
(RBM's), semi-restricted Boltzmann machines (SRBM’s)] @oltzmann machines
(BM’s). Our empirical results indicate that the AIS proceslprovides much better
estimates of the partition function than some of the popuaiational-based meth-
ods. Finally, we develop a new learning algorithm for tnagnigeneral Boltzmann
machines and show that it can be successfully applied toite@igood generative
models.
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1 Introduction

Undirected graphical models, also known as Markov randolusfidMRF’s), or general Boltzmann ma-
chines, provide a powerful tool for representing depengatiticture between random variables. They
have successfully been used in various application domaiclsiding machine learning, computer vi-
sion, and statistical physics. The major limitation of uedted graphical models is the need to compute
the partition function, whose role is to normalize the jgimbability distribution over the set of random
variables. In addition, the derivatives of the partitiomdtion are needed for parameter learning. For
many problems, however, the exact calculation of the pamtfiunction or its derivatives is intractable,
because it requires enumeration over an exponential nuofilberms.

There has been extensive research on obtaining deterimisgiroximations [30, 31] or determin-
istic upper bounds [26, 28, 5] on the log-partition functafran arbitrary discrete MRF. These methods
take a variational view of estimating the log-partition ¢tion and rely critically on approximating the
entropy of the undirected graphical model. Variational et have become very popular, since they
typically scale well to large applications.

There have also been many developments in the use of Monte @athods for estimating the
partition function, including Annealed Importance SamgI{AlS) [15], Bridged Sampling [11], Linked
Importance Sampling [16], Nested Sampling [21], sequEMiante Carlo [12], and many others [14].
These methods are perceived to be computationally very wigimg, so in practice, they are rarely
applied to large-scale problems.

In the next section, we will describe the variational vievapproximating the partition function and
will review various methods that fall under this framewoikor more thorough discussions on these
topics refer to [27]. In section 3 we will review some MonterlBamethods of estimating partition
functions. In section 4 we will provide a brief overview ofstected Boltzmann machines (RBM’s),
semi-restricted Boltzmann machines (SRBM’s) and Boltzmarachines (BM’s), and will present a
new learning algorithm for general Boltzmann Machines. Wefwrther show how a stochastic method,
Annealed Importance Sampling (AIS), can be used to effilieagtimate partition functions of these
models [20]. In the experimental results section we willvghbat our new learning algorithm can be
successfully applied to learning a good generative modMSIST digits. We will also compare AIS
to variational methods for estimating partition functimigarge Boltzmann Machines, carefully trained
on real data.

2 Variational Framework

2.1 Notation

Let x eX’ be a random vector oK variables, where each, takes on the values in some discrete
alphabetA™ = {0,1,..,m — 1}. LetT(x) = {tq(x)}L_, be aD-dimensional vector of sufficient



statistics or potential functions, whetg : X% — R, andf € RP is a vector of canonical parameters.
The exponential family associated with sufficient statsii' consists of the following parametrized set
of probability distributions:

poc) = o exp (677(0) @
20) = Y ew@7T()), @

whereZ(6) is known as the partition function.

An undirected graphical modél = (V, E) contains a set of vertexds that represent random
variables, and a set of undirected edggshat represent dependencies between those random eariabl
Throughout this paper, we will concentrate pairwise MRF’s. For example, consider the following
binary pairwise MRF, also known as an Ising model:
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p(x;0) = 7 oxp (07T(x)), (3)

wherex; is a Bernoulli random variable associated with vertex V. This exponential representation
of the Ising model is minimal. In general, we will use an owenplete exponential representation. Let
I{z; = s} be an indicator function that is equal to Lif = s and zero otherwise. For a pairwise MRF,

we have:
exp Z ZQU stz = s,2; =t} + ZZHHI{JU, = s}

p(x;0) =
(i,7)EE st i€V s

so the sufficient statistic is a collection of indicator ftions. We will use the following convenient
notation for the marginal probabilitiegt;.s = p(z; = s;6), andyj.«+ = p(x; = s,z; = t;6). For the
Ising model, we simply denote; = p(x; = 1;6), andu;; = p(x; = 1,2, = 1;0).

2.2 Variational Framework

Following [26], the log partition function for any given @ameter vecto# is given by:
log 2(6) = sup (71— A*(n)), 4
where M is the set of mean parameters or marginals, known as the iMigolytope:
M= {peRP|3p() st.u=E,[T(x))}.
A*(u) is known as Fenchel-Legendre conjugatéogfZ (¢) and is given by:
400 ={ 10" orermise

whereH () is the maximum entropy amongst all distributions consistdth marginalsu.. Moreover,
the supremum is achieved at the veqigr= E,,.¢)[7'(x)].

First, note that this variational problem |s convex, sinCe.) is convex and the seW is convex.
Second, it is quite simple to derive Eq. 4 (see [17, 27, 22nsier any distribution in the exponential
family p(x; n). Using Jensen’s inequality we have:

log Z(6) = logZexp{HTT }=1o Zp xp{0TT(x)} > (5)

ex T
> Zp (x5 logp{fx—:; Zp ({07 T(x)} + H(p(x:n)) =

= GTun +H(p(x;n) =0 iy + H(un),
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wherep, = B, . [T(x)], andH(u,) is the maximum entropy of all distributions consistent vt
marginal vectoy.,. The last equality holds singgx; ) is the maximum entropy distribution consistent
with p,, asp(x;n) is in the exponential family. Clearly, the above inequalitids for any distribution

@ (provided the marginalgg € M), and the setM is the set of all marginals that can be realized under
some distribution (see [27, 22]). We therefore have:

log Z(6) > sup (6" p+ H(u)). (6)
neM

The bound in Eq. 5 becomes tight if and onlypifx;n) = p(x;6). In this case we recover Eq. 4.
Moreover, it is now clear that the supremum is attained avéluor .., which represents the marginals
of the distributionp(x; 0).

There are two main difficulties associated with the abovéatianal optimization problem. First,
the marginal polytopeM does not have an explicit representation, except for simyuldels, such as
the tree structured graphs. One way to address this prolddmrestrict optimization problem to a
tractable subseM,,...; € M. For example, optimization could be carried over a subsésiofpler”
distributions, belonging to the exponential family, sushfally factorized distributions. Alternatively,
one could consider the outer bound,..., 2 M, by relaxing the set of necessary constraints that any
point u € M must satisfy.

The second major challenge comes from evaluating the gnfroption (u) — it too does not
have an explicit form, with the exception of the tree grapAscommon approach to this problem is
to approximate the entropy term in such a way that this appraton becomes exact on a singly-
connected graph.

2.3 Mean-Field

The goal of the mean-field approach is to find a distributipfrom the class of analytically tractable
distributions that best approximates the original disititm P in terms of K L(Q||P). It was shown
in [27] that the mean-field theory is based on variationah@ple of Eq. 4. Consider a set of mean
parametersM,,.... € M that are achieved by tractable distributions for which theapy term can
be calculated exactly. In this case for anye M, ., the lower bound of Eq. 5 can be calculated
exactly. The mean-field methods attempt to find the best appadion ., Which maximizes this
lower bound.

As an example, consider our Ising model and let us choosdyafdigtorized distribution in order to
approximate the original distribution. In this case we defin

Miract = { (s, pij) | iy = iy, 0 < py < 1} (7)

The entropy term of this factorized distribution is easy tonpute. The mean-field objective is to
maximize:

logZ(0) > sup (HTM—|—H(M)):

,LLEMtract
max ( Z Oijptift; + Z@‘M - Z[#i log ju; + (1 — 1) log (1 — Mz)])- (8)
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The solution will provide us with the lower bound on the logrdition function. This optimization
problem is equivalent to minimizing Kullback-Leibler dirgence between the tractable distribution and
the target distribution [27]. Furthermore, the mean-fiddgkotive may not be convex, so the mean-field
updates may have multiple solutions.



2.4 Bethe Approximation

A close connection between loopy belief propagation andtsthe approximation to the log-partition
function of a pairwise Markov random field was shown by [30]. 3let us consider a tree structured
graph. In this case we know that the correct joint probabdistribution can be written in terms of
single and pair-wise node marginals:

H Lhiszs H Hig; Mgimixy . (9)

iz, g z;

The entropy of this distribution has a closed-form expm@ssind decomposes into a sum of the sin-
gle node entropies and the edgewise mutual informationstdretween two nodes. For graphs with
cycles, the entropy in general will not have this simple degosition. Nevertheless, if we use this
decomposition, we obtain the Bethe approximation to theopgitterm on a graph with cycles:

Hpetne (1) = Y Hilps) — > Tij(pij), where (10)
eV (i,5)EE
- Z Hi;s log Hi;s, Izy sz Z Hig;st log ——— MHigst (11)
B i Hissthjst

This approximation is well-defined for any € M. As mentioned before, it is hard to explicitly
characterize the marginal polytope. Let us consider therdagund M, 2 M, by relaxing the set
of necessary constrains that any pgire M must satisfy. In particular, consider the following set:

Mrocar = {,U > 0| Zﬂi;s =1, Z Hij;st = ﬂi;s}- (12)
s t

Clearly, Mrocar 2 M, since any member of the marginal polytope must also sdtsbf consistency
constraints. Members oM ooy, are referred to as pseudo-marginals since they may not igivéa
any valid probability distribution. The Bethe approxinuatito the log-partition function reduces to
solving the following optimization problem:

10g Zpewne(0) = sup (07 11+ Hpewne(1)). (13)
HEMLoCAL

The stationary points of loopy belief propagation [30, 3&irespond to the stationary points of the
above objective function. For singly-connected graphesBithe approximation to the partition function
becomes exact. In generdl s, iS NOt concave, so there is no guarantee that loopy belighgation
will find a global optimum. Furthermore, the Bethe approxima provides neither lower nor upper
bound on the log-partition function, except for specialesg24].

2.5 Tree-Reweighted Upper Bound

A different way of approximating the entropy term, whichuks in obtaining an upper bound of the
log-partition function, is taken by [26]. The idea is to ussavex outer bound on the marginal polytope
and a concave upper bound on the entropy term.

Let us consider a pairwise MRF = (V, E'). We are interested in obtaining an upper bound on the
entropyH(u). Removing some of the edges from this MRF can only increaseitropy term, since
removing edges corresponds to removing constraints. @enany spanning tre€ = (V, E(T)) of
the graph. The entropy of the joint distribution defined on this spagniree with matched marginals
H(u(7)) must be larger than the entropy of the original distributié(y.). This bound must also hold
for any convex combination of spanning trees.



More formally, letS be a set of spanning tregsbe any probability distribution over those spanning
trees, angh;; = > oo p(T)I{(i,5) € E(T)} be edge appearance probabilities. We therefore have the
following upper bound on the entropy term:

H(p) < B,(H(W(T) = > pMD Hilps) — > Tijlpg) =

TeS eV (4,9)€E(T)
= > Hilw) = D piglig(pij) = H(w). (14)
% (i,J)eE

Using variational approach of Eqg. 4, we obtain the upper daamthe log-partition function:

log Z(0) = sup (0" p+H(u) < sup (0 p+H(u) < sup (07 u+H(w)). (15)
HEM HEM HEMLocAL
The nice property of this optimization problem is that it isweex. Indeed, the cost function is concave,
since it consists of a linear term plus a concave term. Maedhe setMocar is convex. For
any fixedp, Wainright et.al. [26] further derive a tree-reweightednsproduct (TRW) algorithm that
efficiently solves the above optimization problem.

2.6 Other approaches

There have been numerous other approaches that eithepattebetter approximate the entropy term
or provide tighter outer bounds on the marginal polytope.

In particular, [28] propose to use a semi-definite outerdgbon the marginal polytope, and a Gaus-
sian bound on the discrete entropy. The key intuition hetlasthe differential entropy of any contin-
uous random vector is upper bounded by a Gaussian distiibwtith matched covariance.

A different approach to approximating the entropy term wagggested by [5]. Using the chain rule
for the entropy we can write:

H(wl, veey l’N) == H(l’l)H($2|l’1)H(l’n|l’1, Ty oey :EN_l). (16)

Removing some of the conditioning variables cannot deerdas entropy, thus allowing us to obtain
the upper bound. Note that there is a close connection batthéeformulation and a tree-based upper
bound. Indeed, for any given spanning tfiéeve can calculate its entropy term as:

N
H=> Hxi|Par(z;)) (17)

i=1

where Par are the parents of the variabtg. This is just an instance of the bound derived from the
chain rule of Eq. 16.

Recently, [23, 22] proposed a cutting plane algorithm tlwtes for an upper bound of the log-
partition function of Eq. 4 by incorporating a set of validnstraints that are violated by the current
pseudo-marginals. The idea is to use cycle inequalitiebtaim a tighter outer bound on the marginal
polytope. Consider a binary MRF. Suppose we start at nedth x; = 0, traverse the cycle, and return
back to node. Clearly, the number of times an assignment changes, cgrberdven. Mathematically,
this constraint is written as follows: for any cyde and anyF' C C such thaf F'| is odd we have:
2apeovk i # x5} + 32 jer {zi = z;} = 1. Since this is true for any valid assignment, it also
holds in expectation, providing us with the cycle inequgditconstraints:

> (migor + pigao) + Y (migioo + pigin) > 1 (18)
(1,§)eC\F (¢,9)eF
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The cutting plane algorithm starts with the loose outer o, o 41, proceeds by solving for an up-
per bound of the log-partition function of Eq. 4, finds viedtcycle inequalities by the current pseudo-
marginals, and adds them as valid constraints, thus prayiditighter outer bound on the marginal

polytope.

3 Stochastic Methods for Estimating Partition Functions

Throughout the remaining sections of this paper we will mage of the following canonical form of
distributions:

p(x:0) = zi%a'exp (- E(z;0)) (19)

where E(x; 0) is the energy function which depends on parameter vettdf we define E(z;0) =
—07T(x), then we recover the canonical form of the exponential faragsociated with sufficient
statisticsT’, as defined in section 2.1.

3.1 Simple Importance Sampling (SIS)

Suppose we have two distributions defined on some spiagith probability density functiong 4 (x) =

P (x)/Z 4 andpp(x) = pj(x)/Zp, wherep*(-) denotes the unnormalized probability density. Oet
andQ)p be the support sets @fs andpp respectively. One way of estimating the ratio of normalizin
constants is to use a simple importance sampling (SIS) rdetlve use the following identity, assuming
thatQp C Qy4, i.e.pa(x) # 0 whenevepp(x) # 0:

Zp  [pp(x)dx [ ph(x) Odx = pp(x)
70" Zn ‘/éw“”d‘%Lﬁm}

Assuming we can draw independent samples fgomthe unbiased estimate of the ratio of partition
functions can be obtained by using a simple Monte Carlo aqmation:

Z pB X(’ 1 ZM (0 _ ¢ (20)
= — w = TsIS,
i=1 P’ A M i=1

wherex(® ~ p4. If we choosep,(x) to be a tractable distribution for which we can compite
analytically, we obtain an unbiased estimate of the partifunctionZz. However, ifp4 andpp are
not close enough, the estimat®yis will be very poor. In high-dimensional spaces, the variantan
estimatorrgig will be very large, or possibly infinite (see [10], chapten,2®nlessp 4 is a near-perfect
approximation tp.

3.2 Annealed Importance Sampling (AIS)

Suppose that we can define a sequence of intermediate gitybdisitributions: py, ..., px, with pg =
p4 andpg = pp, which satisfy the following conditions:

C1 pr(x) # 0 whenevempy1(x) # 0.
C2 We must be able to easily evaluate the unnormalized pildpapy; (x), Vx € X', k =0, ..., K.

C3 For eacht = 1,..., K —1, we must be able to draw a sampiegiven x using a Markov chain
transition operatof} (x’; x) that leave®y, (x) invariant:

/Tk(x’; xX)pr (x)dx = pp(x). (21)

6



C4 We must be able to draw (preferably independent) samimas)f,.

The transition operators), (x’; x) represent the probability density of transitioning frorateix to x’.
Constructing a suitable sequence of intermediate prdbatiktributions will depend on the problem.
One general way to define this sequence is to set:

pr(x) o< pa ()" P p (%)%, (22)

with 0 = By < 61 < ... < Bx = 1 chosen by the user. Once the sequence of intermediatdodigins
has been defined we have:

Annealed Importance Sampling (AlS) run:
1. Generat&;, Xo, ..., xx as follows:
e Samplex; fromp4 = po.
e Samplex, givenx; usingT (x1; x2).
e ...
e Samplexy givenxy 1 UsingT 'k —1 (XK ;XK —1)-
2. Set

(x2) Pi_1(xk-1) pi(xK)
(x2) P _o(xKx-1) PR (XK)’

Note that there is no need to compute the normalizing cotsstdrany intermediate distributions. After
performing M runs of AlS, the importance weightsfj}s can be substituted into Eq. 20 to obtain an
estimate of the ratio of partition functions:

G _ pi(xa)
w =
AIS pa (xl )

*
2
*
1

Zs . Lm0 g 23
Z_A ~ MZwAIS_TAIS' ( )
i=1

It is shown in [15, 16] that for sufficiently large number ofémmediate distributiond(, the variance
of 7#a1s Will be proportional tol /M K. ProvidedK is kept large, the total amount of computation can
be split in any way between the number of intermediate 8istions K and the number of anneal-
ing runsM without adversely affecting the accuracy of the estimatbsamples drawn fromp 4 are
independent, the AIS runs can be used to obtain the varidrbe estimate’sg:
. 1 M)y 52 o
Var(fais) = MVar(wjjIS) ~ =0 (24)
wheres? is estimated simply from the sample variance of the impogameights.
The intuition behind AIS is the following. Consider the faling identity:

Zx 42
Zo ZoZi Zi-—

(25)

Provided the two intermediate distributiops andpy; are close enough, a simple importance sampler
can be used to estimate each rdfig, 1 / Zy:

M (x0)
Z+1 1 P () (4)
o=y where x¥) ~
Zy, M Z; Py (x®) o

These ratios can then be used to estin%o%e: H{f:_ol Zzl. The problem with this approach is that,
except forpy, we typically cannot easily draw exact samples from intefiate distributiongy,. We

7



could resort to Markov chain methods, but then it is hard temeine when the Markov chain has
converged to the desired distribution.

A remarkable fact shown by [15, 9] is that the estimate&Zaf/Z, will be exactly unbiased if each
ratio Zy1/ 7y, is estimated using/ = 1, and a sample(® is obtained by using Markov chain starting
at the previous sample. The proof of this fact relies on theeplation that the AIS procedure is just a
simple importance sampling defined on the extended state 3pa- (z1, 2, ..., k). Indeed, consider
the unnormalized joint distribution defined by the AIS prdaes:

K-1
Q*(X) = Zopo(w1) [] Tr(whss;zn). (26)
k=1

We can viewQ (X)) as a proposal distribution for the target distributiBX') on the extended spaceé.
This target distribution is defined by the reverse AlS proced

K-1

P*(X) = Zpk (rx) [ [ Telwr wria), (27)
k=1

whereT" are the reverse transition operators:

T(a's ) = Ty (a5 2y 2L

(28)

If T}, is reversible the}, are the same &&,. Due to invariance ofy, with respect tdl’, (Eq. 21), the
reverse transition operators are valid transition prdhissi, which ensures that the marginal distribution
overx is correct. From Eqg. 20, the importance weight can then bedas:

we DX Zrpk (i) [Ty Ti(ows i) _ pic(ex Peler) ﬁ Py (k) (29)
Q' (X)  Zopo(a) [T Te(zrrian)  Po(n) o Pilenen) 28 g (on)
which are the weights provided by the AIS algorithm. Obsdhet the Markov transition operators do

not necessarily need to be ergodic. In particular, if we werhoose dumb transition operators that do
nothing, T (z"; ) = §(2' — z) for all k, we recover the original simple importance sampling praced

3.3 Bridge Sampling

Suppose that in addition to having two distributigns(x) = p% (x)/Z4 andpp(x) = pj;(x)/Z, we
also have a "bridge distributionjs 5(x) = p} 5(x)/Z., such that it is overlapped with boghy and
pp. We can then use a simple importance sampling procedurptoately estimate, /Z 4 andZ, /Zp

to obtain:
Zp _ Zi|Za _ pA B E, PA B
Za Z*/ZB Boa B '

1 X(O 4 3+ P x(“)) ~ P (30)
MA X(O i MB pB X(l z)) = T'Bridged;

Q

wherex(®9 ~ p, andx(:) ~ pg. Compare this estimator to the SIS estimator of Eq. 20. Wi S
draws fromP,4 are used as proposals B, whereas with bridged sampling, draws from béth and
Pp are used as proposals féy, . The distributionP, g acts as a “connecting bridge” between our



two distributions [11, 4]. One simple choice is to use a geoimeridge: P4 g = \/PaPg, in which

case we get:
ZB EpA[ (X)} / EpB[ pit“(x)} (31)

pi(x) pp(x)

The square root helps to control the magnitude of the impogaveights and ensures that eri?_vz/p*B
and \/p};/p’ are square integrable with respectpig andp 4 respectively. Other choices for bridge
distributions are discussed in more detail in [11, 1].

The advantage of bridge sampling over SIS is that it uses & nveeker requirement on the support
of the proposal distributiop 4. The bridge sampling estimate, that uses for example a geiorbedge,
will converge to the correct estimate provided that( Qs # O, i.e. there is some region that has non-
zero probability under both4 andpg. The SIS, on the other hand, uses a much stronger assumption
thatQ2p C Q4. Consider the following intuitive example, which we borrésem [16]. Letp’ (z) =
{z € (0,3)} andp};(z) = I{z € (2,4)}, so thatZ, = 3 andZp = 2. The bridged sampling that uses
pap(®) = H{z € (2,3)} converges to the correct estimate, since the numeratoeggew to 1/3 and
the denominator converges to 1/2. SIS, on the other hantgaeviVerge to the wrong value of 1/3.

If however,p4 andpp are not close enough, the bridge sampling estimator willdme.pWe could
resort to the same idea of defining a set of intermediatdluligibns as in Eq. 25, and estimate each ratio
using bridge sampling. However, there are two problems thithapproach. First, the estimatgs, ;4.
is biased, and so we cannot average over multiple independgiento get a better estimator. Second, as
previously discussed, it is not clear how we can draw sanfbes the intermediate distributions.

Neal [16] has recently developed a method called Linked hapce Sampling (LIS) that combines
the ideas of AIS and bridge sampling to produce an unbiagédae of the ratio of partition functions
without the need to draw exact samples from the intermediatabutions. The idea of LIS is that each
intermediate distributiony, is “linked” to the next distributiorp1 by a single linked state, which is
chosen using the bridge distributign ;1. Just as AlS, the LIS procedure, can be viewed as a simple
importance sampling defined on the extended state spasepithducing an unbiased estimator.

Furthermore, as pointed out in [16, 2], since we can view Bdhand LIS as simple importance
sampling procedures defined on the extended state spacayvebi@in a bridged sampling estimate by
combining both forward and reverse estimators, as for el@aimpEqg. 31, leading to the bridged AIS
and bridged LIS estimators.

4 Learning Boltzmann Machines

In this section we will provide a brief overview of restridtdoltzmann machines (RBM’s), semi-
restricted Boltzmann machines (SRBM's), and Boltzmannhimeas (BM's). We will focus on showing
how AIS can be used to estimate partition functions of thesdets. However, we could just as easily
apply LIS, or bridged versions of AIS and LIS, which could gutially provide better estimates. This
we leave for future study. We will further present a new l@agralgorithm for general Boltzmann
machines.

4.1 Restricted Boltzmann Machines (RBM'’s)

A restricted Boltzmann machine is a particular type of MR&t thas a two-layer architecture, in which
the visible, binary stochastic units € {0,1}” are connected to hidden binary stochastic uhits
{0,1}7 (see Fig. 1, left panel). The energy of the stateh} is:

E(v,h;0) ZZWM vaz Zaj i (32)

=1 j=1



wheref = {W, b, a} are the model parameterd’;; represents the symmetric interaction term between
visible unit: and hidden unifj; b; anda; are the bias terms. The probability that the model assigns to
a visible vectow is:

Zexp E(v,h;0)). (33)
The conditional distributions over hidden unitsand visible vectowr are given by logistic functions:
p(h|v;0) = th]v@ p(v|h;0) = Hp v;|h; 6),
p(h; =1lvif) =0 Z Wijvi +aj),  p(vi = 1|h;0) = U(Z Wijhj + b;), (34)
i J

whereo(z) = 1/(1 + exp(—z)). The derivative of the log-likelihood with respect to thedrbparam-
eterV can be obtained from Eq. 33:

dlogp(v;0) e

—aw Paata |
where B, ,_[-] denotes an expectation with respect to the data distriiRig:, (h, v; 6) = p(h|v; 0) Piata (V).
with Pdata( ) representing the empirical distribution, ang E, _ [-] is an expectation with respect to the
distribution defined by the model. The learning rule for tiesbs is just a simplified version of Eq. 35.

The expectation E,__,[-] cannot be computed analytically.

vh'] - Ep

model [

vh'], (35)

4.1.1 Stochastic Approximation Procedure (SAP)

Stochastic Approximation Procedure (SAP) [25, 32, 33, 18suMCMC methods to stochastically
approximate the second term of Eqg. 35. The idea behind SAfaigistforward. Letd; and X* be
the current parameter and the state. Th&nandd; are updated sequentially as follows. Giv&H,

a new stateX'*! is sampled from the transition operatfy, (X‘*!; X*) that leavegy, invariant. A
new parameteé,, ; is then obtained by replacing the second term of Eq. 35 by xpecatation with
respect taX'*+!. In practice, we typically maintain a set 8f sample pointsX® = {x"!,...., x"M},
The algorithm proceeds as follows:

Stochastic Approximation Procedure (SAP):
1. Initializedy andX° = {x%1, ..., x%M},
2. Fort=0to T

(a) Fori =1,..., M samplex!*!? givenx®? using transition
operatorTy, (x!+14; xt).

(b) Updat$t+1 = 915 + oth(t?t, Xt+1).

(c) Decreasey,.

For an RBM model, the state is = {v, h}, the transition kernel} is defined by the blocked Gibbs
updates (Egs. 34), and

S

F(Wt,Xt+1) — EPdata VhT Z ~t+1m ht+1 m)T]’ (36)

m:l

1 Y
F(atht+l) = EPdata[h]_M Z[(ht—’_lﬂn)]v

M
1 < m
F(bt’Xt-H) = EPdata[V]_ Z[VH_L ]
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Figure 1:Left: Restricted Boltzmann machine. The top layer representstamef stochastic binary units and
the bottom layer represents a vector of stochastic binailglei variablesr. Right: The Gibbs transition operator
T (v'; v) leavesp(v) invariant when estimating the ratio of partition functiofis /Z 4.

SAP belongs to the class of well-studied stochastic appration algorithms of Robbins-Monro type
[32, 33, 19]. The proof of convergence of these algorithnies®n the following basic decomposition.
Let S(§) = 210820 then:

01 = 0; + .S (0;) + e (F(0;, X)) — S(8,)) = 0, + 0, S(8;) + cversr. (37)

The first term is the discretization of the ordinary diffeiehequationd = S(#). The algorithm is
therefore a perturbation of this discretization with thésederme. The proof then proceeds by showing
that the noise term is not too large.

Precise sufficient conditions that ensure almost sure cgexee to an asymptotically stable point
of = S(#) are given in [32, 33]. One necessary condition requiresehming rate to decrease with
time, i.e. Y ;°gar = oo and ;a7 < oo. This condition can for example be satisfied simply by
settinga, = 1/t. Other conditions basically ensure that the speed of cgavnee of the Markov chain,
govern by the transition operat®p, does not decrease too fastéaends to infinity, and that the noise
terme in the update of Eq. 37 is bounded.

Typically, in practice, the sequend | is bounded, and the Markov chain, governed by the tran-
sition kernelTy, is ergodic. Together with the condition on the learning réltis ensures almost sure
convergence of SAP to an asymptotically stable poird ef S(6). When applied to learning RBM's,
[25] shows that this stochastic approximation algorithteg &ermed Persistent Contrastive Divergence,
performs quite well compared to Contrastive Divergencenieg [7].

4.1.2 Estimating the Ratio of Partition Functions of two RBM's

Suppose we have two RBM'’s with parameter valdgs= {IWW4, b4 a4} andfp = {WW5,bP af}
that define probability distributions, andpp overV < {0, 1}”. Each RBM can have a different number
of hidden unitsh* € {0,114 andh? ¢ {0,1}"2. We could define intermediate distributions using
Eqg. 22. However, sampling from these distributions wouldriveh harder than from an RBM. Instead
we introduce the following sequence of distributions #o 0, ..., K [20]:

pu(0) = 2 = S e (- B (v, ), (38)
h

whereh = {h“, hP}, and the energy function is given by:
E(v,h) = (1= Br)E(v,h*;04) + BLE(v,h";0p), (39)

with 0 = Gy < B < ... < Bg = 1. Fori = 0, we haveGy = 0 and sopy = pa. Similarly, for
i = K, we havepx = pp. For the intermediate values bf we will have some interpolation between
p4 andpp.

19, belongs to some compact set, which ensures its boundedndast, we could always define a procedure that projects
#: onto some compact set.
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Let us now define a Markov chain transition operafpfv’; v) that leavegy(v) invariant. Using
Egs. 38, 39, itis straightforward to derive a block Gibbs gem The conditional distributions are given
by logistic functions:

p(h _1yv)_a<1—gk ZW vi + af ) (40)
p(hi =1|v) = (ﬁk ZWszJra ) (41)
p(vi =1]h) = a<(1 - 5@(2 WihE + ) + B ZWZ%B +bP) > (42)

Givenv, Egs. 40, 41 are used to stochastically activate hiddes hdliandh?. Eq. 42 is then used to
draw a new sample’ as shown in Fig. 1 (right panel). Due to the special structfif@BM'’s, the cost
of summing outh is linear in the number of hidden units. We can thereforelyasaluate:

pr(v) = Z o(1=Br)E(v.h*0.4)+6. E(v,n":0p)
hA hB
Py Py
— (1=Br) X bftvi H(l + (1= Wi?vi—kaf)) Bk 22 b v H(l + PR (X Wiffvﬁaf))'
Jj=1 i

We will assume that the parameter values of each RBM are lgolimiwhich case(v) > 0 for
all v € V. This will ensure that condition C1 of the AIS procedure iwals satisfied. We have al-
ready shown that conditions C2 and C3 are satisfied. For tondC4, we can run a blocked Gibbs
sampler (Eq. 34) to generate samples from These sample points will not be independent, but the
AIS estimator will still converge to the correct value, pided our Markov chain is ergodic [15]. How-
ever, assessing the accuracy of this estimator can be diffasuit depends on both the variance of the
importance weights and on autocorrelations in the Gibbgptam

4.1.3 Estimating Partition Functions of RBM’s

In the previous section we showed that we can use AIS to obtaiestimate of/z/Z 4. Consider an
RBM with parameter vectof 4 = {0, b4,0}, or an RBM with a zero weight matrix. From Eq. 33, we
know:

Z4 =2 H(l +e), palv) = HPA(Ui) = H 1/(14e%), (43)

so we can draw exact independent samples from this “bas&fR&M. AIS in this case allows us to
obtain anunbiasedestimate of the partition functio@z. This approach closely resembles simulated
annealing, since the intermediate distributions of Eq.a&@ form:

exp((1—B,)v' b?)
Z;

pr(v) = > exp(—BeE(v,h?;0p)). (44)

hB

We gradually changg;. (or inverse temperature) from 0 to 1, annealing from a sirfidse-rate” model
to the final complex model. The importance Welgmf/é}s ensure that AlS produces correct estimates.
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Figure 2:Left: Semi-restricted Boltzmann machine. The visible units farfally or partially connected condi-
tional MRF, with hidden units determining the biases of tighle units. Right: Boltzmann Machine with both
visible-to-visible and hidden-to-hidden connections.

4.2 Semi-Restricted Boltzmann Machines (SRBM’s)

Semi-restricted Boltzmann machines were introduced by [h&ontrast to RBM's, the visible units of
SRBM'’s form a fully or partially connected conditional MRFith hidden states determining the biases
of the visible units (see Fig. 2, left panel). The energy efdtate{v, h} takes form:

E(v,h;0) Zlevzvk Z Wijvihj Zb v; — Za] s (45)

i<k

whereL;; represents the symmetric lateral interaction term betwesinle units 7 andj, with diagonal
elements set to 0. The conditional distributions over hiddled visible units are given by:

p(hj =1lv) = O'(Z Wijvi +aj),  p(v; = 1lh,v_;) = o( Z Wijh; + Z Lixvj + b;) (46)
i k\i

The derivative of the log-likelihood with respect to theckat! interaction ternd. is given by:

dlog p(v; )
oL

The crucial aspect of SRBM is that inference of the hiddemabdes in this model is still exact, since
there are no lateral connections between hidden units.eTdrerthe first term in Eq. 47 is still easy to
compute. Learning in this model was originally carried osing Contrastive Divergence with a few
damped mean-field updates on the visible units [29, 18]e&uktwe will apply SAP with the transition
kernel Ty defined by the blocked Gibbs update for the hidden units aqdesdial Gibbs updates for
the visible units (Egs. 46). Since we can explicitly sum dwg hidden units, the AIS procedure for
estimating the ratio of partition functions of two SRBM’sllie almost identical to the AIS procedure
we described for RBM’s.

= EPdata [VV ] EPnodel[ T] ° (47)

4.3 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically couplemthastic binary units with both visible-
to-visible and hidden-to-hidden lateral connections asvshin Fig. 2 (right panel). The energy function
is defined as:

E(v,h;0) = =Y Lywivg — Y Jjmhjhm ZW,M Zb v; — Zaj i (48)

i<k j<m
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The conditional distributions over hidden and visible si@ite given by:

p(hj =1lv,h_;) = ZWZJUZ+ZJJmh +aj), (49)
m\j

p(vi=1h,v_;) = Zwmh + ) Ligvj + by). (50)
k\i

As it was the case for the RBM’s and SRBM'’s, the derivativeha kog-likelihood with respect to the
model parameterd” and L are given by Egs. 35, 47, and

dlogp(v;0)
oJ

This simple learning algorithm was originally derived by.[B contrast to RBM’s and SRBM'’s, exact
inference in this model is intractable. Hinton and Sejna&jproposed an approximate learning algo-
rithm that uses Gibbs sampling to approximate both exgdeoatIn the positive phase, the expectation
Ep,...[-] is approximated by running a separate Markov chain for etraiging data vector, clamped to
the states of the visible units. In the negative phase, aiti@ci chain is run to approximates_,  [-].
The main problem with this algorithm is that it is computaady very demanding and not particularly
practical. For each iteration of learning, we must wait luegich Markov chain reaches its stationary
distribution to do learning.

It was further observed [29, 18] that for Contrastive Diwarge to perform well, it is important to
obtain exact samples from the conditional distributigh|v). Instead of using Contrastive Divergence
learning, we will combine the ideas of variational learpingroduced in section 2, together with SAP.
Consider the following variational lower bound:

= Ep,.[hh'] - [hh']. (51)

Pmodcl

logp(v;0) > = q(h)E(v,h;0) + H(q) — log Z(6), (52)
h

with equality attained if and only i§(h) = p(h|v). Using a mean-field approach of section 2.3, we
choose a fully factorized distribution in order to approaten the true posteriorg(h) = Hle q(h;),
with ¢(h; = 1) = p; and P is the number of hidden units. In this case, the lower boundhen
log-probability of the data takes form:

log p(v;0) Zlev,fuk + Z Simljpim + Z Wijvip; + Z b;v; + Za],uj
i<k j<m
— Y [ujlog(uy) + (1 — ) log (1 — pj)] —log Z(6). (53)

J
The learning proceeds with tipmsitive phase maximizing this lower bound with respect to the varia-
tional parameterg for fixed &, which results in the mean-field fixed-point equations:

— o ZWZJUZ—I—ZJth + aj), (54)
i m\j

followed by thenegative phase applying SAP to update the model parameterén more detail, con-
sider the training set oV data vectorgv}!'_,, the Boltzmann machine learning proceeds as follows:

n=1
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Boltzmann Machine Learning Procedure:
1. Randomly initialized, and the negative samplés®*, h01}, .. {¥0-M no-M}
2. Fort=0to T (# of iterations)
Positive Phase:

(a) For each training sample*, n=1to N
e Randomly initializey and run mean-field updates until convergence:

pi — oY Wyvl +3 Jmjhm + ).
i m\j
e Sety™ = p.
Negative Phase:
(b) For each negative sample m=1to M

e Obtain a new binary statg**!-™, h**') by running a k-step Gibbs sam
pler using Egs. 49, 50, initialized &&"", h"™).

Parameter Update:

(c) Update
1 N 1 M B
Wt+1 — Wt +ay (N nzlvn(un)'l' _ M 7;1 \~,t+1,m(ht+1,m)'l')’
1 1 &L _
Jt+1 — Jt +oay (N nZ:l‘un(Mn>T _ M mX:th-l,m(ht-ﬁ-l,m)T)’
1 & 1 &
L -t + oy (N ;Vn(vn>"r _ M mz_l ‘~,t+1,m(‘~,t+l,m)T>.

(d) Decrease;.

The choice of resorting to the naive mean-field approachéarptsitive phase was deliberate. First,
the convergence is usually very fast, which greatly faaidis learning. More importantly, conditioned
on the data, we do not want the posterior distribution overhidden units to be multimodal, since
we would not want to have multiple alternative explanatiabsut the data. The mean-field inference
exactly solves this problem. During learning, if the pastegiven a training data is multimodal, the
mean-field will lock onto exactly one mode, and learning wilke it more probable. Hence, our
learning procedure will attempt to find regions in the par@mepace in which the true posterior is
unimodal. It is also interesting to observe that if we setlaito-hidden connections to 0, we exactly
recover the learning procedure for SRBM’s.

In the next section we will show that together with the statitaapproximation procedure in the
negative phase, we are able to efficiently learn a good géveeraodel of MNIST digits. It is important
to point out that this procedure readily extends to learniitlh real-valued, count, or tabular data,
provided the distributions are in the exponential family.

4.3.1 Estimating Partition Functions of BM’s

AIS can be used to estimate the partition function of a Badtmmmachine. In contrast to RBM'’s and
SRBM'’s, we cannot explicitly sum out hidden units. Neveltks, we can run the AIS procedure of
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section 3.2 by setting = {v, h}. The intermediate distributions (see Eq. 22) are given by:

exp ((1 — Br)v'b?)
Z,

pr(v,h) = exp (—BrE(v,hP:0)),

whereb“ are the biases of the base-rate model, and the energy teefirisdlin Eq. 48. The transition
operatorTy, is straightforward to derive from Eqgs. 55,48. Furthermarsing the variational lower
bound of Eqg. 52, the estimate of the partition function, tbgewith the mean-field updates of Eq. 54,
will allow us to easily estimate the lower bound on the loghability of test data.

5 Empirical Comparisons

In our experiments we used the MNIST digit dataset, whicht@os 60,000 training and 10,000 test
images of ten handwritten digits (0 to 9), with:288 pixels. The dataset was binarized: each pixel value
was stochastically set to 1 in proportion to its pixel inignsWe also created a toy dataset containing
60,000 training patches with-4 pixels, which were extracted from images of digits simphplacing

a square at a random position in each of the 28 image.

Annealed importance sampling requires settiig that define a sequence of intermediate distribu-
tions. In all of our experiments this sequence was choseruloklg running a few preliminary experi-
ments and picking the spacing 6f so as to minimize the log variance of the final importance fisig
The biased* of a base-rate model (see Eq. 43) were set by maximum liladihthen smoothed to
ensure thap(v) > 0,V v € V.

To speed-up learning, we subdivided datasets into 600 Inaittihes, each containing 100 cases, and
updated the weights after each mini-batch. The number adtivegsamples was also set to 100. For
SAP, we always used 5 Gibbs updates. Each model was traiimegl 2630 passes (epochs) through the
entire training dataset. The initial learning rate was 809 and was gradually decreased to 0. In all of
our experiments we use natural logarithms, providing \&loaats.

5.1 Toy Models

The RBM model had 25 hidden and 784 visible units, and wasddhbn the full binarized MNIST
dataset. The SRBM and BM models had 500 and 5 hidden unitectaggly, and were trained on the
toy 4 x 4 patch dataset. For all three models we could calculate thet @rlue of the partition function.
For all models we also used 1,00 spaced uniformly from 0 to 0.5, 4,008, spaced uniformly
from 0.5 to 0.9, and 5,000; spaced uniformly from 0.9 to 1.0, with a total of 10,000 imediate
distributions. We also run loopy BP and tree-reweighted-puoduct (TRW) algorithms to obtain the
deterministic Bethe approximation and an upper bound ototiipartition function. For the TRW, the
distribution p over the spanning trees was also optimized using conditgnaaient together with the
maximum weight spanning tree algorithm. For both loopy B& &RW, the messages passing updates
were damped.

Table 1 shows that for all three models, using only 10 AIS rums were able to obtain good
estimates of partition functions. Furthermore, Fig. 3 (tow) reveals that as the number of annealing
runs is increased, AIS can almost exactly recover the trliee\af the partition function across all three
models. Bethe provided quite reasonable approximationth®oSRBM and BM models, but was off
by about 4 nats for the “semi-simple” RBM model. TRW, on thieesthand, provided very loose upper
bounds on the log-partition functions. In particular, foetRBM model withlog Z = 354.88, the
tree-reweighted upper bound wE)7.83.
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Figure 3:Estimates of the log-partition functiohss Z in nats as we increase the number of annealing runs. The
error bars shovog (Z + 35). For all models we used 10,000 intermediate distributions.

Table 1:Results of estimating partition functions (nats) of toy RBBRBM, and BM models. For all models we
used 10,000 intermediate distributions.

AIS True Estimates Bethe TRW

Runs logZ logZ log (Z +4) log (Z + 30) log Z log Z

100 RBM  354.88 354.99 354.68,355.24 353.28,355.59 350.75 1205.26
SRBM 116.72 116.73 116.68,116.76 116.60,116.84 115.90 146.30
BM 8.49  8.49 8.48,8.51 8.45,8.53 7.67  20.28

5.2 Real Models

In our second experiment we trained an RBM, an SRBM, and @ éahnected BM on the binarized
MNIST images. All models had 500 hidden units. We used exdh# same spacing ¢f; as before
and exactly the same base-rate model. Results are showién2taFor each model we were also able
to get what appears to be a rather accurate estimate @f course, we are relying on an empirical
estimate of AlIS’s accuracy, which could potentially be edsling. Nonetheless, Fig. 3 (bottom row)
shows that as we increase the number of annealing runs, line e@ithe estimator does not fluctuate
drastically. The difference between Bethe approximatiod AIS estimate is quite large for all three
models, and TRW did not provide any meaningful upper bounds.

Table 2 further shows an estimate of the average trainkgspiobability of the RBM and SRBM
models, and an estimate of the lower bound on the traintgsptobability of the BM model. For the
RBM and SRBM models, the estimate of the test log-probgbilihs —86.90 and—86.06 respectively.
For the BM model, the estimate of the lower bound on the tgsplobability was-85.68. Fig. 4 shows
samples generated from all models by randomly initializintary states of the visible and hidden units
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Figure 4: Random samples from the training set along with samplesrgartefrom RBM, SRBM, and BM
models.

Table 2: Results of estimating partition functions (nats) of realNRBSRBM, and BM models, along with the
estimates of the average training and test log-probagslitror the BM model, we report the lower bound on the
log-probability. For all models we used 10,000 intermesl@istributions.

Estimates Avg. log-prob.

AIS True . . . Bethe

Runs logZ logZ log(Z +6) log (Z £ 36) Test Train  logZ

100 RBM — 390.76 390.56,390.92 389.99,391.19 —86.90 —84.67 378.98
SRBM  —  159.63 159.42,159.80 158.82,160.07 —86.06 —83.39 148.11
BM — 220.17 219.88,220.40 218.74,220.74 —85.59 —82.96 197.26

and running Gibbs sampler for 100,000 steps. Certainlysaihples look like the real handwritten
digits.

We should point out that there are some difficulties with gguiS. There is a need to specify tjig
that define a sequence of intermediate distributions. Thaben and the spacing of, will be problem
dependent and will affect the variance of the estimator. 18 lbave to rely on the empirical estimate
of AIS accuracy, which could potentially be very misleadjf§, 16]. Even though AIS provides an un-
biased estimator o, it occasionally gives large overestimates and usuallgggsmall underestimates,
S0 in practice, it is more likely to underestimate the true@af the partition function, which will result
in an overestimate of the log-probability. But these drastdsashould not result in disfavoring the use
of AIS for RBM’s, SRBM'’s and BM’s: it is much better to have agitly unreliable estimate than no
estimate at all, or an extremely indirect estimate, suchsasithinative performance [8].

6 Conclusions

In this paper we provided a brief overview of the variatiofraimework for estimating log-partition
functions and some of the Monte Carlo based methods for atighpartition functions of arbitrary
MRF’s. We then developed an annealed importance samplicgedure for estimating partition func-
tions of RBM, SRBM and BM models, and showed that they provideh better estimates compared
to some of the popular variational methods.

We further developed a new learning algorithm for trainingitBmann machines. This learning
procedure is computationally more demanding comparedaimileg RBM’s or SRBM’s, since it re-
quires mean-field settling. Nevertheless, we were able ¢coezssfully learn a good generative model
of MNIST digits. Furthermore, by appropriately setting soof the visible-to-hidden and hidden-to-
hidden connections to zero, we can create a deep multi-Bgiizmann machine with many layers of
hidden variables. We can efficiently train these deep robreal undirected models, and together with
AIS, we can obtain good estimates of the lower bound on theptobability of thetestdata. This
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will allow us to obtain some quantitative evaluation of thengralization performance of these deep
hierarchical models. Furthermore, this learning procedurd AIS can be easily applied to undirected
graphical models that generalize BM'’s to exponential fardiktributions. This will allow future ap-
plication to models of real-valued data, such as image patfl8], or count data, such as word-count
vectors of documents [3].
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