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Abstract

Building intelligent systems that are capable of extracting high-level rep-
resentations from high-dimensional sensory data lies at the core of solv-
ing many artificial intelligence–related tasks, including object recognition,
speech perception, and language understanding. Theoretical and biological
arguments strongly suggest that building such systems requires models with
deep architectures that involve many layers of nonlinear processing. In this
article, we review several popular deep learning models, including deep belief
networks and deep Boltzmann machines. We show that (a) these deep gen-
erative models, which contain many layers of latent variables and millions of
parameters, can be learned efficiently, and (b) the learned high-level feature
representations can be successfully applied in many application domains, in-
cluding visual object recognition, information retrieval, classification, and
regression tasks.
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1. INTRODUCTION

Extraction of meaningful representations from rich sensory input lies at the core of solving many
artificial intelligence (AI)-related tasks, including visual object recognition, speech perception,
and language comprehension. Theoretical and biological arguments strongly suggest that build-
ing such systems requires deep architectures—models composed of several layers of nonlinear
processing.

Many existing machine learning algorithms use what are called shallow architectures, including
neural networks with only one hidden layer, kernel regression, and support vector machines,
among many others. Theoretical results show that the internal representations learned by such
systems are necessarily simple and are incapable of extracting certain types of complex structure
from rich sensory input (Bengio & LeCun 2007, Bengio 2009). Training these systems also requires
large amounts of labeled training data. By contrast, it appears that, for example, object recognition
in the visual cortex uses many layers of nonlinear processing and requires very little labeled input
(Lee et al. 1998). Thus, development of new and efficient learning algorithms for models with
deep architectures that can also make efficient use of a large supply of unlabeled sensory input is
of crucial importance.

In general, models with deep architectures, including multilayer neural networks, are com-
posed of several layers of parameterized nonlinear modules, so the associated loss functions are
almost always nonconvex. The presence of many bad local optima or plateaus in the loss func-
tion makes deep models far more difficult to optimize in comparison with shallow models. Local
gradient-based optimization algorithms, such as the backpropagation algorithm (Rumelhart et al.
1986), require careful parameter initialization and can often get trapped in a poor local optimum,
particularly when training models with more than two or three layers (Sutskever et al. 2013). By
contrast, models with shallow architectures (e.g., support vector machines) generally use convex
loss functions, typically allowing one to carry out parameter optimization efficiently. The appeal
of convexity has steered most machine learning research into developing learning algorithms that
can be cast in terms of solving convex optimization problems.

Recently, Hinton et al. (2006) introduced a moderately fast, unsupervised learning algorithm
for deep generative models called deep belief networks (DBNs). DBNs are probabilistic graphical
models that contain multiple layers of hidden variables. Each nonlinear layer captures progressively
more complex patterns of data, which represents a promising way of solving problems associated
with visual object recognition, language comprehension, and speech perception (Bengio 2009).
A key feature of the new learning algorithm for DBNs is its layer-by-layer training, which can
be repeated several times to efficiently learn a deep, hierarchical probabilistic model. The new
learning algorithm has excited many researchers in the machine learning community, primarily
because of the following three crucial characteristics:

1. The greedy layer-by-layer learning algorithm can find a good set of model parameters
fairly quickly, even for models that contain many layers of nonlinearities and millions of
parameters.

2. The learning algorithm can make efficient use of very large sets of unlabeled data, so the
model can be pretrained in a completely unsupervised fashion. The very limited labeled
data can then be used to only slightly fine-tune the model for a specific task at hand using
standard gradient-based optimization.

3. There is an efficient way of performing approximate inference, which makes the values of
the latent variables in the deepest layer easy to infer.

The strategy of layerwise unsupervised training followed by supervised fine-tuning allows
efficient training of deep networks and gives promising results for many challenging learning
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problems, substantially improving upon the current state of the art (Hinton et al. 2012, Krizhevsky
et al. 2012). Many variants of this model have been successfully applied not only for classification
tasks (Hinton et al. 2006, Bengio et al. 2007, Larochelle et al. 2009), but also for regression
tasks (Salakhutdinov & Hinton 2008), visual object recognition (Krizhevsky et al. 2012, Lee
et al. 2009, Ranzato et al. 2008), speech recognition (Hinton et al. 2012, Mohamed et al.
2012), dimensionality reduction (Hinton & Salakhutdinov 2006, Salakhutdinov & Hinton 2007),
information retrieval (Torralba et al. 2008, Salakhutdinov & Hinton 2009c, Uria et al. 2014),
natural language processing (Collobert & Weston 2008, Socher et al. 2011, Wang et al. 2012),
extraction of optical flow information (Memisevic & Hinton 2010), prediction of quantitative
structure–activity relationships (QSARs) (Dahl et al. 2014), and robotics (Lenz et al. 2013).

Another key advantage of these models is that they are able to capture nonlinear distributed
representations. This is in sharp contrast to traditional probabilistic mixture-based latent variable
models, including topic models (Hofmann 1999, Blei 2014) that are often used to analyze and
extract semantic topics from large text collections. Many of the existing topic models, including
a popular Bayesian admixture model, latent Dirichlet allocation (Blei et al. 2003), are based on
the assumption that each document is represented as a mixture of topics, and each topic defines
a probability distribution over words. All of these models can be viewed as graphical models in
which latent topic variables have directed connections to observed variables that represent words
in a document. One major drawback is that exact inference in these models is intractable, so one
has to resort to slow or inaccurate approximations to compute the posterior distribution over
topics. A second major drawback, which is shared by all mixture models, is that these models
can never make predictions for words that are sharper than the distributions predicted by any of
the individual topics. They are unable to capture the essential idea of distributed representations,
namely that the distributions predicted by individual active features get multiplied together (and
renormalized) to give the distribution predicted by a whole set of active features. This allows
individual features to be fairly general but their intersection to be much more precise. For example,
distributed representations allow the topics “government,” “mafia,” and “playboy” to combine to
give very high probability to the word “Berlusconi,” which is not predicted nearly as strongly
by each topic alone. As shown by Welling et al. (2005) and Salakhutdinov & Hinton (2009b),
models that use nonlinear distributed representations are able to generalize much better than
latent Dirichlet allocation in terms of both the log-probability on previously unseen data vectors
and the retrieval accuracy.

In this article, we provide a general overview of many popular deep learning models, including
deep belief networks (DBNs) and deep Boltzmann machines (DBMs). In Section 2, we introduce
restricted Boltzmann machines (RBMs), which form component modules of DBNs and DBMs,
as well as their generalizations to exponential family models. In Section 3, we discuss DBNs
and provide a thorough technical review of the greedy learning algorithm for DBNs. Section 4
focuses on new learning algorithms for a different type of hierarchical probabilistic model, the
DBM. Finally, Section 5 presents a multimodal DBM that can extract a unified representation by
learning a joint density model over the space of multimodal inputs (e.g., images and text, or video
and sound).

2. RESTRICTED BOLTZMANN MACHINES
AND THEIR GENERALIZATIONS

Restricted Boltzmann machines (RBMs) have been used effectively in modeling distributions over
binary-valued data. Recent work on Boltzmann machines and their generalizations to exponential
family distributions (Welling et al. 2005) have allowed these models to be successfully used in
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Figure 1
Restricted Boltzmann machine. The top layer represents a vector of “hidden” stochastic binary variables h,
and the bottom layer represents a vector of “visible” stochastic binary variables v.

many application domains. In addition to reviewing standard RBMs, this section also reviews
Gaussian–Bernoulli RBMs suitable for modeling real-valued inputs for image classification and
speech recognition tasks (Lee et al. 2009, Taylor et al. 2010, Mohamed et al. 2012), as well as the
replicated softmax model (Salakhutdinov & Hinton 2009b), which have been used for modeling
sparse count data, such as word count vectors in a document. These models serve as our building
blocks for other hierarchical models, including DBNs and DBMs.

2.1. Binary Restricted Boltzmann Machines

An RBM is a particular type of Markov random field that has a two-layer architecture (Smolensky
1986), in which the “visible” stochastic binary variables v ∈ {0, 1}D are connected to “hidden”
stochastic binary variables h ∈ {0, 1}F , as shown in Figure 1. The energy of the joint state {v, h}
is defined as follows:

E(v, h; θ ) = −v�W h − b�v − a�h

= −
D∑

i=1

F∑
j=1

Wi j vi h j −
D∑

i=1

bivi −
F∑

j=1

a j h j ,

(1)

where θ = {W , b, a} are the model parameters. Wij represents the symmetric interaction term
between visible variable i and hidden variable j, and bi and aj are bias terms. The joint distribution
over the visible and hidden variables is defined by

P (v, h; θ ) = 1
Z(θ )

exp(−E(v, h; θ )), (2)

Z(θ ) =
∑

v

∑
h

exp(−E(v, h; θ )). (3)

Z(θ ) is known as the partition function or normalizing constant. The model then assigns the
following probability to a visible vector v:

P (v; θ ) = 1
Z(θ )

∑
h

exp (−E(v, h; θ )). (4)
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Because RBMs have a special bipartite structure, the hidden variables can be explicitly marginalized
out, as follows:

P (v; θ ) = 1
Z(θ )

∑
h

exp
(
v�W h + b�v + a�h

)
= 1

Z(θ )
exp(b�v)

F∏
j=1

∑
h j ∈{0,1}

exp

(
a j h j +

D∑
i=1

Wi j vi h j

)

= 1
Z(θ )

exp(b�v)
F∏

j=1

(
1 + exp

(
a j +

D∑
i=1

Wi j vi

))
.

(5)

The conditional distributions over hidden variables h and visible vectors v can be easily derived
from Equation 2 and are given by the following logistic functions:

P (h|v; θ ) =
∏

j

p(h j |v), P (v|h; θ ) =
∏

i

p(vi |h), (6)

p(h j = 1|v) = g

(∑
i

Wi j vi + a j

)
, (7)

p(vi = 1|h) = g

⎛
⎝∑

j

Wi j h j + bi

⎞
⎠ , (8)

where g(x) = 1/(1 + exp(−x)) is the logistic function.
Given a set of observations {vn}N

n=1, the derivative of the log-likelihood with respect to the
model parameters Wij is obtained from Equation 4:

1
N

N∑
n=1

∂ log P (vn; θ )
∂Wi j

= EPdata [vi h j ] − EPmodel [vi h j ],

1
N

N∑
n=1

∂ log P (vn; θ )
∂a j

= EPdata [h j ] − EPmodel [h j ],

1
N

N∑
n=1

∂ log P (vn; θ )
∂bi

= EPdata [vi ] − EPmodel [vi ],

(9)

where EPdata [·] denotes an expectation with respect to the data distribution Pdata(h, v; θ ) =
P (h|v; θ )Pdata(v), where Pdata(v) = 1

N

∑
n δ(v − vn) represents the empirical distribution, and

EPmodel [·] is an expectation with respect to the distribution defined by the model, as in Equation 2.
We sometimes refer to EPdata [·] as the data-dependent expectation and to EPmodel [·] as the model’s
expectation.

Exact maximum likelihood learning in this model is intractable because exact computation of
the expectation EPmodel [·] takes time that is exponential in min{D, F}, i.e., the number of visible
or hidden variables. In practice, learning is done by following an approximation to the gradient
of a different objective function, called the Contrastive Divergence (CD) algorithm (Hinton
2002):

�W = α(EPdata [vh�] − EPT [vh�]), (10)

where α is the learning rate and PT represents a distribution defined by running a Gibbs chain
initialized at the data for T full steps. The special bipartite structure of RBMs allows for an
efficient Gibbs sampler that alternates between sampling the states of the hidden variables
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independently given the states of the visible variables and vice versa (see Equation 6). Setting
T = ∞ recovers maximum likelihood learning. In many application domains, however, the CD
learning with T = 1 (or CD1) has been shown to work quite well (Hinton 2002, Welling et al.
2005, Larochelle et al. 2009).

2.2. Gaussian–Bernoulli Restricted Boltzmann Machines

When modeling real-valued vectors, such as pixel intensities of image patches, one can easily
extend RBMs to the Gaussian–Bernoulli variant (Hinton & Salakhutdinov 2006). In particular,
consider modeling visible real-valued variables v ∈ R

D, and let h ∈ {0, 1}F be stochastic binary
hidden variables. The energy of the joint state {v, h} of the Gaussian RBM is defined as follows:

E(v, h; θ ) =
D∑

i=1

(vi − bi )2

2σ 2
i

−
D∑

i=1

F∑
j=1

Wi j h j
vi

σi
−

F∑
j=1

a j h j , (11)

where θ = {W , a, b, σ 2} are the model parameters.
The marginal distribution over the visible vector v takes the following form:

P (v; θ ) =
∑

h

exp(−E(v, h; θ ))∫
v′

∑
h exp(−E(v, h; θ ))dv′ . (12)

From Equation 11, derivation of the following conditional distributions is straightforward:

p(vi = x|h) = 1√
2πσi

exp

⎛
⎜⎝−

(
x − bi − σi

∑
j h j Wi j

)2

2σ 2
i

⎞
⎟⎠ , (13)

p(h j = 1|v) = g

(
b j +

∑
i

Wi j
vi

σi

)
, (14)

where g(x) = 1/(1+exp(−x)) is the logistic function. Observe that conditioned on the states of the
hidden variables (Equation 13), each visible unit is modeled by a Gaussian distribution, the mean
of which is shifted by the weighted combination of the hidden unit activations. The derivative of
the log-likelihood with respect to W takes the following form:

∂ log P (v; θ )
∂Wi j

= EPdata

[
1
σi

vi h j

]
− EPmodel

[
1
σi

vi h j

]
.

As discussed in Section 2.1, learning of the model parameters, including the variance σ 2, can be
carried out using CD. In practice, however, instead of learning σ 2, one would typically use a fixed,
predetermined value for σ 2 (Nair & Hinton 2009, Hinton & Salakhutdinov 2006).

Figure 2 shows a random subset of parameters W, also known as receptive fields, learned
by a standard binary RBM and a Gaussian–Bernoulli RBM using Contrastive Divergence CD1.
Observe that both RBMs learn highly localized receptive fields.

2.3. Replicated Softmax Model

The replicated softmax model represents another extension of the RBM and is used for modeling
sparse count data, such as word count vectors in a document (Salakhutdinov & Hinton 2009b,
2013). Consider an undirected graphical model that consists of one visible layer and one hidden
layer, as shown in Figure 3. This model is a type of RBM in which the visible variables that are
usually binary have been replaced by softmax variables, each of which can have one of a number
of different states.
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Training samples Learned receptive fields
Training samples Learned receptive fields

a b

Figure 2
A random subset of the training images along with the learned receptive fields. (a) The binary restricted
Boltzmann machine (RBM) trained on the Handwritten Characters data set (resolution is 28 × 28). (b) The
Gaussian–Bernoulli RBM trained on the CIFAR-100 data set (resolution is 32 × 32). Each square displays
the incoming weights from all of the visible variables into one hidden unit.

Specifically, let K be the dictionary size, M be the number of words appearing in a document,
and h ∈ {0, 1}F be stochastic binary hidden topic features. Let V be an M × K observed binary
matrix with vik = 1 if visible unit i takes on value k (meaning the ith word in the document is the
kth dictionary word). The energy of the state {V, h} can be defined as follows:

E(V, h) = −
M∑

i=1

F∑
j=1

K∑
k=1

Wi jkh j vik −
M∑

i=1

K∑
k=1

vikbik −
F∑

j=1

h j a j , (15)

where {W, a, b} are the model parameters. Wijk is a symmetric interaction term between visible
variable i that takes on value k and hidden variable j, bik is the bias of unit i that takes on value
k, and aj is the bias of hidden feature j. The model assigns the following probability to a visible
binary matrix V:

P (V ; θ ) = 1
Z(θ )

∑
h

exp(−E(V, h; θ )), Z(θ ) =
∑

V

∑
h

exp(−E(V, h; θ )). (16)

Now suppose that for each document, we create a separate RBM with as many softmax units
as there are words in the document. Assuming we can ignore the order of the words, all of these
softmax units can share the same set of weights connecting them to binary hidden units. In this
case, the energy of the state {V, h} for a document that contains M words is defined as follows:

E(V, h) = −
F∑

j=1

K∑
k=1

W jkh j v̂k −
K∑

k=1

v̂kbk − M
F∑

j=1

h j a j , (17)

W1

W1 W2

W2

h

v

h

v

W1
W1

W1

W2
W2

W2

W1 W2

Latent topics Latent topics

a b

Observed softmax visibles Multinomial visible

Figure 3
The replicated softmax model. The top layer represents a vector h of stochastic binary hidden topic features, and the bottom layer
consists of softmax visible variables, v. All visible variables share the same set of weights, connecting them to the binary hidden
variables. (a) Two members of a replicated softmax family for documents containing two and three words. (b) A different interpretation
of the replicated softmax model, in which M softmax variables with identical weights are replaced by a single multinomial variable that
is sampled M times.
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where v̂k = ∑M
i=1 vk

i denotes the count for the kth word. The bias terms of the hidden units are
scaled up by the length of the document. This scaling is crucial and allows hidden units to behave
sensibly when dealing with documents of different lengths.

The corresponding conditional distributions are given by the following equations:

p(h j = 1|V ) = g

(
M a j +

K∑
k=1

v̂kW jk

)
, (18)

p(vik = 1|h) =
exp

(
bk + ∑F

j=1 h j W jk

)
∑K

q=1 exp
(

bq + ∑F
j=1 h j W jq

) . (19)

We also note that using M softmax variables with identical weights is equivalent to having a single
visible multinomial variable with support {1, . . . , K } that is sampled M times (see Figure 3b).

A pleasing property of using softmax variables is that the mathematics underlying the learning
algorithm for binary RBMs remains the same. Given a collection of N documents {V n}N

n=1, the
derivative of the log-likelihood with respect to parameters W takes the following form:

1
N

N∑
n=1

∂ log P (Vn)
∂W jk

= EPdata [v̂kh j ] − EPmodel [v̂kh j ].

Similar to other types of RBMs, learning can be performed using CD.
Table 1 shows one-step reconstructions of some bags of words to illustrate what this replicated

softmax model is learning (Srivastava & Salakhutdinov 2014). The model was trained using text
from the MIR-Flickr data set (Huiskes & Lew 2008). The words in the left column were presented
as input to the model, after which Equation 18 was used to compute a distribution over hidden
units. Taking these probabilities as the states of the hidden units, Equation 19 was used to obtain a
distribution over words. The right column shows the words with the highest probabilities in that
distribution. Observe that the model has learned a reasonable notion of semantic similarity. For
example, “chocolate, cake” generalizes to “sweets, desserts, food.” Note that the model is able to
capture some regularities about language, discover synonyms across multiple languages, and learn
about geographical relationships.

3. DEEP BELIEF NETWORKS

A single layer of binary features is not the best way to capture the structure in high-dimensional
input data. In this section, we describe an efficient way to learn additional layers of binary features
using deep belief networks (DBNs).

Table 1 Some examples of one-step reconstruction from the replicated softmax model

Input Reconstruction
chocolate, cake cake, chocolate, sweets, dessert, cupcake, food, sugar, cream, birthday
nyc nyc, newyork, brooklyn, queens, gothamist, manhattan, subway, streetart
dog dog, puppy, perro, dogs, pet, filmshots, tongue, pets, nose, animal
flower, high, flower, , high, japan, sakura, , blossom, tokyo, lily, cherry
girl, rain, station, norway norway, station, rain, girl, oslo, train, umbrella, wet, railway, weather
fun, life, children children, fun, life, kids, child, playing, boys, kid, play, love
forest, blur forest, blur, woods, motion, trees, movement, path, trail, green, focus
españa, agua, granada españa, agua, spain, granada, water, andalucı́a, naturaleza, galicia, nieve
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h

v

W(1)

h1

h2

v

W(1)

W(1)

a b

Figure 4
(a) A restricted Boltzmann machine (RBM). (b) A two-hidden-layer deep belief network (DBN) with tied
weights W (2) = W (1)� . The joint distribution P (v, h(1); W (1)) defined by this DBN is identical to the joint
distribution P (v, h(1); W (1)) defined by an RBM.

DBNs are probabilistic generative models that contain many layers of hidden variables, in
which each layer captures high-order correlations between the activities of hidden features in the
layer below. The top two layers of the DBN form an RBM model in which the lower layers form
a directed sigmoid belief network, as shown in Figure 4. Hinton et al. (2006) introduced a fast
unsupervised learning algorithm for these deep networks. A key feature of their algorithm is its
greedy layer-by-layer training, which can be repeated several times to learn a deep hierarchical
model. The learning procedure also provides an efficient way of performing approximate inference,
which only requires a single bottom-up pass to infer the values of the top-level hidden variables.

Let us first consider learning a DBN with two layers of hidden variables {h(1), h(2)}. We also
assume that the number of second-layer hidden variables is the same as the number of visible
variables (see Figure 4b). The top two layers of the DBN form an undirected bipartite graph, an
RBM, and the lower layers form a directed sigmoid belief network. The joint distribution over v,
h(1), and h(2) defined by this model takes the following form:1

P (v, h(1), h(2); θ ) = P (v|h(1); W (1))P (h(1), h(2); W (2)), (20)

where θ = {W (1), W (2)} are the model parameters, P (v|h(1); W (1)) is the directed sigmoid belief
network, and P (h(1), h(2); W (2)) is the joint distribution defined by the second-layer RBM.

P (v|h(1); W (1)) =
∏

i

p(vi |h(1); W (1)), p(vi = 1|h(1); W (1)) = g

⎛
⎝∑

j

W (1)
i j h(1)

j

⎞
⎠ , (21)

P (h(1), h(2); W (2)) = 1
Z(W (2))

exp(h(1)� W (2)h(2)), (22)

where g(x) = 1/(1 + exp(−x)) is the logistic function.
The greedy layer-by-layer learning strategy relies on the following key observation. Consider

a two-hidden-layer DBN with tied parameters W (2) = W (1)� . The joint distribution of this DBN,
P (v, h(1); θ ) = ∑

h(2) P (v, h(1), h(2); θ ), is identical to the joint distributionP (v, h(1); W (1)) of the
RBM (see Equation 2). Indeed, one can easily see from Figure 4 that the marginal distribution over
h(1), P (h(1); W (1)) is the same for both models. Similarly, the conditional distribution P (v|h(1); W (1))
is also the same for both models. To be more precise, using Equations 20–22 and the fact that

1We omit the bias terms here for clarity of presentation.
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W (2) = W (1)� , we obtain the following joint distribution over {v, h(1)} of the DBN:

P (v, h(1); θ ) = P (v|h(1); W (1)) ×
∑
h(2)

P (h(1), h(2); W (2))

=
∏

i

p(vi |h(1); W (1)) × 1
Z(W (2))

∏
i

⎛
⎝1 + exp

⎛
⎝∑

j

W (2)
j i h(1)

j

⎞
⎠

⎞
⎠

=
∏

i

exp
(
vi

∑
j W (1)

i j h(1)
j

)
1 + exp

(∑
j W (1)

i j h(1)
j

) × 1
Z(W (2))

∏
i

⎛
⎝1 + exp

⎛
⎝∑

j

W (2)
j i h(1)

j

⎞
⎠

⎞
⎠

= 1
Z(W (1))

∏
i

⎛
⎝exp

⎛
⎝vi

∑
j

W (1)
i j h(1)

j

⎞
⎠

⎞
⎠[

because W (2)
j i = W (1)

i j ,Z(W (1)) = Z(W (2))
]

= 1
Z(W (1))

exp

⎛
⎝∑

i j

W (1)
i j vi h

(1)
j

⎞
⎠ , (23)

which is identical to the joint distribution over {v, h(1)} defined by an RBM (Equation 2).
The greedy learning algorithm uses a stack of RBMs (see Figure 5) and proceeds as follows.

We first train the bottom RBM with parameters W (1) as described in Section 2. We then initialize
the second layer weights to W (2) = W (1)� , ensuring that the two-hidden-layer DBN is at least
as good as our original RBM. We can now improve the fit of the DBN to the training data by
untying and refitting parameters W (2).

For any approximating distribution Q(h(1)|v) [provided that Q(h(1)|v) �= 0 whenever
P (v, h(1); θ ) �= 0], the log-likelihood of the two-hidden-layer DBN model has the following

RBM

RBM

RBM

Deep belief network

ba

Figure 5
(a) Greedy learning of a stack of restricted Boltzmann machines (RBMs) in which the samples from the
lower-level RBM are used as the data for training the next RBM. (b) The corresponding deep belief network.
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variational lower bound, where the states h(2) are analytically summed out:

log P (v; θ ) = log
∑
h(1)

P (v, h(1); θ ) = log
∑
h(1)

Q(h(1)|v)
P (v, h(1); θ )

Q(h(1)|v)

≥
∑
h(1)

Q(h(1)|v)
[

log
P (v, h(1); θ )

Q(h(1)|v)

]
( Jensen’s inequality)

=
∑
h(1)

Q(h(1)|v)
[
log P (v, h(1); θ )

] +
∑
h(1)

Q(h(1)|v)
[

log
1

Q(h(1)|v)

]

=
∑
h(1)

Q(h(1)|v)
[
log P (h(1); W (2)) + log P (v|h(1); W (1))

] + H (Q(h(1)|v)),

(24)

where H(·) is the entropy functional. We set Q(h(1)|v) = P (h(1)|v; W (1)), as defined by the bottom
RBM (Equation 6). Initially, when W (2) = W (1)� , Q is the true factorial posterior over h(1) of the
DBN, in which case the bound is tight. The strategy of the greedy learning algorithm is to fix
the parameter vector W (1) and attempt to learn a better model for P (h(1); W (2)) by maximizing
the variational lower bound of Equation 24 with respect to W (1). Maximizing this bound with
fixed W (1) amounts to maximizing∑

h(1)

Q(h(1)|v) log P (h(1); W (2)), (25)

which is equivalent to maximum likelihood training of the second-layer RBM with vectors h(1)

drawn from Q(h(1)|v) as data. When presented with a data set of N training input vectors, the
second-layer RBM, P (h(1); W (2)), will learn a better model of the aggregated posterior over h(1),
which is simply the mixture of factorial posteriors for all the training cases, 1

N

∑
n P (h(1)|vn; W (1)).

Note that any increase in the variational lower bound that results from changing W (2) will also
result in an increase of the data likelihood of the DBN.2

Algorithm 1 (Recursive greedy learning procedure for the deep belief network):

1: Fit the parameters W (1) of the first-layer RBM to data.
2: Fix the parameter vector W (1), and use samples h(1) from Q(h(1)|v) = P (h(1)|v, W (1))
as the data for training the next layer of binary features with an RBM.
3: Fix the parameters W (2) that define the second layer of features, and use the samples
h(2) from Q(h(2)|h(1)) = P (h(2)|h(1), W (2)) as the data for training the third layer of binary
features.
4: Proceed recursively for the next layers.

This idea can be extended to training the third-layer RBM on vectors h(2) drawn from the
second-layer RBM. By initializing W (3) = W (2)� , we are guaranteed to improve the lower bound
on the log-likelihood, although changing W (3) to improve the bound can decrease the actual
log-likelihood. This greedy layer-by-layer training can be repeated several times to learn a deep
hierarchical model. The procedure is summarized in Algorithm 1.

2Improving the variational bound by changing W (2) will increase the log-likelihood because the bound is initially tight.
When learning deeper layers, the variational bound is not initially tight, so even the initial improvement in the bound is not
guaranteed to increase the log-likelihood.
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...
h2 ~ P(h2,h3)

h1 ~ P(h1|h2)

v ~ P(v|h1)

h3 ~ Q(h3|h2)

h2 ~ Q(h2|h1)

h1 ~ Q(h1|v)

v

h3 ~ Q(h3|v)

h2 ~ Q(h2|v)

h1 ~ Q(h1|v)

v

Gibbs chaina b
~

~

~

Figure 6
(a) Sample generation from the deep belief network. (b) Sample generation from approximate posterior
Q(h(1), h(2), h(3)|v) (left) versus from fully factorized approximate posterior Q̃(h(1)|v)Q̃(h(2)|v)Q̃(h(3)|v) (right).

Algorithm 2 (Modified recursive greedy learning procedure for the deep belief
network):

1: Fit the parameters W (1) of the first-layer RBM to data.
2: Fix the parameter vector W (1), and use samples h(1) from Q̃(h(1)|v) = P (h(1)|v, W (1))
as the data for training the next layer of binary features with an RBM.
3: Fix the parameters W (2) that define the second layer of features, and use the samples
h(2) from Q̃(h(2)|v) as the data for training the third layer of binary features.
4: Proceed recursively for the next layers.

After training a DBN with L layers, the joint distribution of the model P and its approximate
posterior distribution Q are given by:

P (v, h(1), . . . , h(L)) = P (v|h(1)) . . . P (h(L−2)|h(L−1))P (h(L−1), h(L)),

Q(h(1), . . . , h(L)|v) = Q(h(1)|v)Q(h(2)|h(1)) . . . Q(h(L)|h(L−1)).

To generate an approximate sample from the DBN, we can run an alternating Gibbs sampler
(Equation 6) to generate an approximate sample h(L−1) from P (h(L−1), h(L)), defined by the top-
level RBM, followed by a top-down pass through the sigmoid belief network by stochastically
activating each lower layer in turn (see Figure 6a). To get a sample from the approximate poste-
rior distribution Q, we simply perform a bottom-up pass by stochastically activating each higher
layer in turn. The marginal distribution of the top-level hidden variables of our approximate
posterior Q(h(L)|v) will be nonfactorial and, in general, could be multimodal. For many practical
applications (e.g., information retrieval), having an explicit form for Q(h(L)|v), which allows ef-
ficient approximate inference, is of crucial importance. One possible alternative is to choose the
following fully factorized approximating distribution Q̃:

Q̃(h(1), . . . , h(L)|v) =
L∏

l=1

Q̃(h(l)|v), (26)

where we define

Q̃(h(1)|v) =
∏

j

q (h(1)
j |v), q (h(1)

j = 1|v) = g

(∑
i

W (1)
i j vi + a (1)

j

)
, and (27)

Q̃(h(l)|v) =
∏

j

q (h(l)
j |v), q (h(l)

j = 1|v) = g

(∑
i

W (l)
i j q (h(l−1)

i = 1|v) + a (l)
j

)
, (28)
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where g(x) = 1/(1 + exp(−x)) and l = 2, . . . , L. The factorial posterior Q̃(h(L)|v) is obtained
by simply replacing the stochastic hidden variables with real-valued probabilities and then per-
forming a single deterministic bottom-up pass to compute q (h(L)

j = 1|v). This fully factorized
approximation also suggests a modified greedy learning algorithm, summarized in Algorithm 2.
In this modified algorithm, the samples used for training higher-level RBMs are instead taken from
a fully factorized approximate posterior Q̃. Note that the modified algorithm does not guarantee
to improve the lower bound on the log-probability of the training data. Nonetheless, this is the
actual algorithm commonly used in practice (Hinton & Salakhutdinov 2006, Taylor et al. 2006,
Torralba et al. 2008, Bengio 2009). The modified algorithm works well, particularly when a fully
factorized Q̃ is used to perform approximate inference in the final model.

DBNs can also be used for classification and regression tasks. Many of the resulting extensions
exploit the following two key properties of DBNs. First, they can be learned efficiently from large
amounts of unlabeled data. Second, they can be discriminatively fine-tuned using the standard
backpropagation algorithm. For example, a DBN can be used to extract useful feature representa-
tions that allow one to learn a good covariance kernel for a Gaussian process model (Salakhutdinov
& Hinton 2008). The greedy learning algorithm can also be used to make nonlinear autoencoders
work considerably better than widely used methods, such as principal component analysis (PCA)
and singular value decomposition (SVD) (Hinton & Salakhutdinov 2006). Similarly, layer-by-
layer pretraining followed by discriminative fine-tuning achieves good performance on phone
recognition tasks, as well as on various audio classification tasks (Lee et al. 2009, Taylor et al.
2010, Mohamed et al. 2012).

4. DEEP BOLTZMANN MACHINES

In this section we present a new learning algorithm for a different type of hierarchical probabilis-
tic model, called a deep Boltzmann machine (DBM). Unlike DBNs, a DBM is a type of Markov
random field, or undirected graphical model, in which all connections between layers are undi-
rected. DBMs are interesting for several reasons. First, similar to DBNs, DBMs have the ability
to learn internal representations that capture complex statistical structure in the higher layers. As
has already been demonstrated for DBNs, this is a promising way of solving object and speech
recognition problems (Bengio 2009, Bengio & LeCun 2007, Hinton et al. 2006, Mohamed et al.
2012). High-level representations are built from a large supply of unlabeled data, and a much
smaller supply of labeled data can then be used to fine-tune the model for a specific discrimination
task. Second, if DBMs are learned in the right way there is a very fast way to initialize the states of
the variables in all layers by a simple bottom-up pass. Third, unlike DBNs and many other models
with deep architectures (Ranzato et al. 2007, Vincent et al. 2008, Serre et al. 2007), the approx-
imate inference procedure, after the initial bottom-up pass, can incorporate top-down feedback,
allowing DBMs to use higher-level knowledge to resolve uncertainty about intermediate-level
features, thus creating better data-dependent representations, as well as better data-dependent
statistics for learning.

Consider a three-hidden-layer DBM, as shown in Figure 7b, with no within-layer connections.
The energy of the state {v, h(1), h(2), h(3)} is defined as

E(v, h(1), h(2), h(3); θ ) = −v�W (1)h(1) − h(1)�W (2)h(2) − h(2)�W (3)h(3), (29)

where θ = {W (1), W (2), W (3)} are the model parameters, representing visible-to-hidden and
hidden-to-hidden symmetric interaction terms. The model assigns the following probability to a

www.annualreviews.org • Deep Learning 373

A
nn

ua
l R

ev
ie

w
 o

f 
St

at
is

tic
s 

an
d 

It
s 

A
pp

lic
at

io
n 

20
15

.2
:3

61
-3

85
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 L

ib
ra

ry
 o

n 
04

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ST02CH15-Salakhutdinov ARI 14 March 2015 8:3

h(1)

h(2)

h(3)

v

W(3)

W(2)

W(1)

h(1)

h(2)

h(3)

v

W(3)

W(2)

W(1)

Deep belief networka b Deep Boltzmann machine

Figure 7
(a) Deep belief network (DBN) in which the top two layers form an undirected graph and the remaining
layers form a belief net with directed, top-down connections. (b) Deep Boltzmann machine (DBM) with
visible-to-hidden and hidden-to-hidden connections, but no within-layer connections. All of the connections
in a DBM are undirected.

visible vector v:

P (v; θ ) = 1
Z(θ )

∑
h(1),h(2),h(3)

exp(−E(v, h(1), h(2), h(3); θ )). (30)

Observe that setting both W (2) = 0 and W (3) = 0 recovers the simpler RBM model. The condi-
tional distributions over the visible and the three sets of hidden variables are given by the following
logistic functions:

p(h(1)
j = 1|v, h(2)) = g

(∑
i

W (1)
i j vi +

∑
m

W (2)
jmh(2)

m

)
, (31)

p(h(2)
m = 1|h(1), h(3)) = g

⎛
⎝∑

j

W (2)
jmh(1)

j +
∑

l

W (3)
ml h(3)

l

⎞
⎠ , (32)

p(h(3)
l = 1|h(2)) = g

(∑
m

W (3)
ml h(2)

m

)
, (33)

p(vi = 1|h(1)) = g

⎛
⎝∑

j

W (1)
i j h(1)

j

⎞
⎠ . (34)

The derivative of the log-likelihood with respect to the model parameters takes the following
form:

∂ log P (v; θ )
∂W (1)

= EPdata [vh(1)� ] − EPmodel [vh(1)� ], (35)

where EPmodel [·] denotes an expectation with respect to the distribution defined by the model,
and EPdata [·] is an expectation with respect to the completed data distribution Pdata(h, v; θ ) =
P (h|v; θ )Pdata(v), where Pdata(v) = 1

N

∑
n δ(v − vn) represents the empirical distribution. The

derivatives with respect to parameters W (2) and W (3) take similar forms, but they involve the
outer products h(1)h(2)� and h(2)h(3)� , respectively. Unlike RBMs, the conditional distribution over
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the states of the hidden variables conditioned on the data is no longer factorial. The exact compu-
tation of the data-dependent expectation takes time that is exponential in the number of hidden
variables, whereas the exact computation of the model’s expectation takes time that is exponential
in the number of hidden and visible variables.

4.1. Approximate Maximum Likelihood Learning

The original learning algorithm for general Boltzmann machines used randomly initialized
Markov chains to approximate both of the expectations needed to approximate gradients of the
likelihood function (Hinton & Sejnowski 1983). This learning procedure is too slow to be practical,
however, so we now consider a variational approach to alleviate this problem. In the variational
approach, mean-field inference is used to estimate data-dependent expectations, and a Markov
chain Monte Carlo (MCMC)-based stochastic approximation procedure is used to approximate
the model’s expected sufficient statistics (Tieleman 2008, Salakhutdinov 2008, Salakhutdinov &
Hinton 2009a).

Consider any approximating distribution Q(h|v; μ) for the posterior P (h|v; θ ). Similar to the
DBN bound given in Equation 24, the DBM’s variational lower bound on the log-likelihood takes
the following form:

log P (v; θ ) ≥
∑

h

Q(h|v; μ) log P (v, h; θ ) + H(Q), (36)

whereH(·) is the entropy functional. The bound becomes tight if and only if Q(h|v; μ) = P (h|v; θ ).
For simplicity and speed, we approximate the true posterior using a fully factorized distribution

(i.e., the naive mean-field approximation) over the three sets of hidden variables:

QMF(h|v; μ) =
F1∏
j=1

F2∏
k=1

F3∏
m=1

q (h(1)
j )q (h(2)

k )q (h(3)
m ), (37)

where μ = {μ(1), μ(2), μ(3)} are the mean-field parameters with q (hl
i = 1) = μl

i for l = 1,2,3. In
this case, the lower bound of Equation 36 takes a particularly simple form:

log P (v; θ ) ≥ v�W (1)μ(1) + μ(1)� W (2)μ(2) + μ(2)� W (3)μ(3)

− logZ(θ ) + H(Q).
(38)

Learning proceeds as follows: For each training example, we find the value of μ that maximizes
this lower bound for the current value of θ . This optimum must satisfy the following mean-field
fixed-point equations:

μ
(1)
j ← σ

(
D∑

i=1

W (1)
i j vi +

F2∑
k=1

W (2)
j k μ

(2)
k

)
, (39)

μ
(2)
k ← σ

⎛
⎝ F1∑

j=1

W (2)
j k μ

(1)
j +

F3∑
m=1

W (3)
kmμ(3)

m

⎞
⎠ , (40)

μ(3)
m ← σ

( F2∑
k=1

W (3)
kmμ

(2)
k

)
. (41)

Note the close connection between the form of the mean-field fixed-point updates and the
form of the conditional distributions defined by Equations 31–33.3 To solve these fixed-point

3Implementing the mean-field requires no extra work beyond implementing the Gibbs sampler.
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equations, we simply cycle through layers, updating the mean-field parameters within a single
layer. The variational parameters μ are then used to compute the data-dependent statistics in
Equation 35. For example,

EPdata [vh(1)� ] = 1
N

N∑
n=1

vnμ
(1)�
n

EPdata [h
(1)h(2)� ] = 1

N

N∑
n=1

μ(1)
n μ(2)�

n ,

where the averages are taken over the training cases.
Given the variational parameters μ, the model parameters θ are then updated to maximize

the variational bound using an MCMC-based stochastic approximation (Younes 2000, Tieleman
2008, Salakhutdinov & Hinton 2009a). In particular, let θt and xt = {v, h(1), h(2)} be the current
parameters and the state, respectively. Then xt and θ t are updated sequentially as follows:

1. Given xt, sample a new state xt+1 from the transition operator T θt (xt+1 ← xt) that leaves
P (·; θt) invariant. Sampling this new state is accomplished using Gibbs sampling (see
Equations 31–33).

2. A new parameter θt+1 is then obtained by making a gradient step, in which the intractable
model’s expectation EPmodel [·] in the gradient is replaced by a point estimate at sample xt+1.

In practice, to reduce the variance of the estimator, we typically maintain a set of S Markov
chains X t = {xt,1, . . . , xt,S} and use an average over those particles.

Stochastic approximation provides asymptotic convergence guarantees and belongs to the gen-
eral class of Robbins–Monro approximation algorithms (Robbins & Monro 1951, Younes 2000).
Sufficient conditions that ensure almost sure convergence to an asymptotically stable point are
given in articles by Younes (1989, 2000) and Yuille (2004). One necessary condition requires the
learning rate to decrease with time, such that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α2

t < ∞. For example, this
condition can be satisfied by αt = a/(b + t), for positive constants a > 0, b > 0. In practice, the
sequence |θt | is typically bounded, and the Markov chain, governed by the transition kernel Tθ , is
typically ergodic. Together with the condition on the learning rate, these conditions are sufficient
to ensure almost sure convergence of the stochastic approximation algorithm to an asymptotically
stable point (Younes 2000, Yuille 2004).

The learning procedure for DBMs described above can be used by initializing model parameters
at random. The model performs much better if parameters are initialized sensibly, however, so it
is common to use a greedy layerwise pretraining strategy by learning a stack of RBMs (for details,
see Salakhutdinov & Hinton 2009a). The pretraining procedure is quite similar to the one used
for DBNs discussed in Section 3, and it allows us to perform approximate inference using a single
bottom-up pass. This fast approximate inference can also be used to initialize the mean-field,
which then converges much faster than does a mean-field initialized at random.

4.2. Evaluating Deep Boltzmann Machines as Discriminative Models

After learning, the stochastic activities of the binary features in each layer are replaced by deter-
ministic, real-valued probabilities, and a DBM with two hidden layers can be used to initialize a
multilayer neural network in the following way: For each input vector v, the mean-field inference
is used to obtain an approximate posterior distribution Q(h(2)|v). The marginals q (h(2)

j = 1|v) of
this approximate posterior, together with the data, are used to create what we call an augmented
input for this deep multilayer neural network, as shown in Figure 8. This augmented input is
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v

h(1)

h(2)

W(1)

W(2)

...

vvvv

2W(1) W(1)

W(2) W(2)

Q(h(1))

Q(h(2))

y y

Fine-tune Q(h(2))

W(2) W(1)

W(2)

W(3)
Mean-field updatesa b

Figure 8
(a) A two-hidden-layer Boltzmann machine. (b) After learning, the deep Boltzmann machine is used to
initialize a multilayer neural network. The marginals of the approximate posterior q (h(2)

j = 1|v) are used as
additional inputs. The network is fine-tuned by backpropagation.

important because it maintains the scale of the inputs that each hidden variable expects. For
example, the conditional distribution over h(1), as defined by the DBM model (see Equation 31),
takes the following form:

p(h(1)
j = 1|v, h(2)) = g

(∑
i

W (1)
i j vi +

∑
m

W (2)
jmh(2)

m

)
.

Hence, the layer h(1) receives inputs from both v and h(2). When this DBM is used to initialize
a feed-forward network (Figure 8b), the augmented inputs Q(h(2)|v) serve as a proxy for h(2),
ensuring that when the feed-forward network is fine-tuned using standard backpropagation of
error derivatives, the hidden variables in h(1) initially receive the same input as they would have
received in a mean-field update during the pretraining stage.

The unusual representation of the input is a by-product of converting a DBM into a determin-
istic neural network. In general, the gradient-based fine-tuning may choose to ignore Q(h(2)|v);
that is, the fine-tuning may drive the first-layer connections W (2) to zero, resulting in a stan-
dard neural network. Conversely, the network may choose to ignore the input by driving the
first-layer weights W(1) to zero and making its predictions on the basis of only the approximate
posterior. However, the network typically makes use of the entire augmented input for making
predictions.

4.3. Experimental Results

To illustrate the kinds of probabilistic models DBMs are capable of learning, we conducted ex-
periments on two well-studied data sets: the MNIST and NORB data sets.

4.3.1. MNIST data set. The Mixed National Institute of Standards and Technology (MNIST)
database of handwritten digits contains 60,000 training images and 10,000 test images of ten
handwritten digits (0 to 9), each of which is centered within a 28 × 28 pixel image. Intermediate
intensities between 0 and 255 were treated as probabilities, and we sampled binary values
from these probabilities independently for each pixel each time an image was used. In our first
experiment, we trained two DBMs: One had two hidden layers (500 and 1,000 hidden units), and
the other had three (500, 500, and 1,000 hidden units), as shown in Figure 9. To estimate the
model’s partition function, we used annealed importance sampling (Neal 2001, Salakhutdinov
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4,000 units

4,000 units

4,000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

500 units

1,000 units

500 units

500 units

1,000 units

28 × 28
pixel

image

28 × 28
pixel

image

Two-layer DBM

Three-layer DBM Three-layer DBMba

Figure 9
(a) The architectures of two deep Boltzmann machines (DBMs) used in Mixed National Institute of
Standards and Technology (MNIST) experiments. (b) The architecture of a DBM used in New York
University Object Recognition Benchmark (NORB) experiments.

& Murray 2008). The estimates of the variational lower bound (see Equation 36) on the average
test log-probability were −84.62 and −85.10 for the two- and three-layer DBMs, respectively.
Observe that even though the two DBMs contain about 0.9 and 1.15 million parameters,
respectively, they do not appear to suffer much from overfitting. The difference between the
estimates of the training and test log-probabilities was approximately 1 nat. Figure 10 further
shows samples generated from the two models by randomly initializing all binary states and
running the Gibbs sampler for 100,000 steps. All samples look like the real handwritten digits.

For a simple comparison, we also trained several mixture-of-Bernoullis models. We used
models with 10, 100, 500, 1000, and 2000 components. The corresponding average test
log-probabilities were −168.95, −142.63, −137.64, −133.21, and −135.78. Compared with a
DBM, a mixture-of-Bernoullis model performs very poorly. The difference of about 50 nats per
test case is striking.

Training samples Two-layer DBM Three-layer DBM

Figure 10
Random samples from the training set, and samples generated from two deep Boltzmann machines (DBMs)
by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities of the binary visible
variables given the binary states of the hidden variables.
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Finally, after discriminative fine-tuning, the two-hidden-layer DBM achieves an error rate
of 0.95% on the full MNIST test set.4 The three-layer DBM gives a slightly worse error rate
of 1.01%. These DBM error rates are compared with error rates of 1.4%, achieved by support
vector machines (SVMs) (Decoste & Schölkopf 2002); 1.6%, achieved by a randomly initial-
ized backpropagation algorithm; 1.2%, achieved by the DBN described in articles by Hinton &
Salakhutdinov (2006) and Hinton et al. (2006); and 0.97%, obtained by using a combination of
discriminative and generative fine-tuning on the same DBN (Hinton 2007).

4.3.2. NORB data set. Results on the MNIST data set show that DBMs can significantly out-
perform many other models on the well-studied but relatively simple task of handwritten digit
recognition. In this section we present results on the New York University Object Recognition
Benchmark (NORB) data set, which is a considerably more difficult data set than the MNIST
data set is. NORB (LeCun et al. 2004) contains images of 50 different three-dimensional (3D) toy
objects, with 10 objects in each of 5 generic classes (cars, trucks, planes, animals, and humans).
Each object is photographed from different viewpoints and under various lighting conditions. The
training set contains 24,300 stereo image pairs of 25 objects, 5 per class, and the test set contains
24,300 stereo pairs of the remaining different 25 objects. The goal is to classify each previously
unseen object into its generic class.

We trained a two-hidden-layer DBM in which each layer contained 4,000 hidden variables,
as shown in Figure 9b. Note that the entire model was trained in a completely unsupervised
way. After the subsequent discriminative fine-tuning, the “unrolled” DBM achieves a misclassi-
fication error rate of 10.8% on the full test set. This error rate is compared with rates of 11.6%,
achieved by SVMs (Bengio & LeCun 2007); 22.5%, achieved by logistic regression; and 18.4%,
achieved by the k-nearest-neighbor approach (LeCun et al. 2004). To show that DBMs can benefit
from additional unlabeled training data, we augmented the training data with additional unla-
beled data by applying simple pixel translations, creating a total of 1,166,400 training instances.5

After learning a good generative model, the discriminative fine-tuning (using only the 24,300
labeled training examples without any translation) reduces the misclassification error to 7.2%.
Figure 11 shows samples generated from the model by running prolonged Gibbs sampling. Note
that the model was able to capture many regularities in this high-dimensional, richly structured
data, including variation in object classes, viewpoints, and lighting conditions.

Surprisingly, even though the DBM contains approximately 68 million parameters, it signifi-
cantly outperforms many of the competing models. Clearly, unsupervised learning helps gener-
alization because it ensures that most of the information in the model parameters comes from
modeling the input data. The very limited information in the labels is used only to slightly adjust
the layers of features already discovered by the DBM.

5. EXTENSIONS TO LEARNING FROM MULTIMODAL DATA

DBMs can be easily extended to modeling data that contain multiple modalities. The key idea
is to learn a joint density model over the space of the multimodal inputs. For example, using
a large collection of user-tagged images, we can learn a joint distribution over images and text,
P (vimg, vtxt; θ ) (Srivastava & Salakhutdinov 2014). By drawing samples from P (vtxt|vimg; θ ) and from
P (vimg, vtxt; θ ), we can fill in missing data, thereby doing image annotation [for P (vtxt|vimg; θ )] and
image retrieval [for P (vimg, vtxt; θ )].

4In the permutation-invariant version, the pixels of every image are subjected to the same random permutation, making it
hard to use prior knowledge about images.
5We thank Vinod Nair for sharing his code for blurring and translating NORB images.
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Training samples Generated samples

Figure 11
Random samples from the training set (left), and samples generated from a three-hidden-layer deep
Boltzmann machine by running the Gibbs sampler for 10,000 steps (right).

Let us construct a multimodal DBM using an image–text bimodal DBM as our running example.
Let vm ∈ R

D denote a real-valued image input and vt ∈ {1, . . . , K } denote an associated text input
containing M words, where vt

k denotes the count for the kth word. We model each data modality
using a separate two-layer DBM. We use a Gaussian–Bernoulli RBM as a first-layer model for
the image-specific DBM (see Figure 12a). Hence, the image-specific DBM uses a Gaussian
distribution to model the distribution over real-valued image features. Similarly, a text-specific
DBM uses a replicated softmax model to model the distribution over word count vectors.

To form a multimodal DBM, we combine the two models by adding an additional layer on
top of them. The resulting graphical model is shown in Figure 12c. Let h(1m) ∈ {0, 1}Fm

1 and
h(2m) ∈ {0, 1}Fm

2 denote the two layers of hidden variables of the image-specific DBM, and let h(1t) ∈
{0, 1}Ft

1 , h(2t) ∈ {0, 1}Ft
2 represent the two layers of hidden variables of the text-specific DBM. Then

the joint distribution over the multimodal input, where h = {h(1m), h(2m), h(1t), h(2t), h(3)} denotes

h(2m)

h(1m)

vm

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(2t)

W(1t)

h(3)

h(2m)

h(1m)

vm

W(3m)

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(3t)

W(2t)

W(1t)

Image-specific DBM Text-specific DBM

Multimodal DBMc

ba

Joint representation

Figure 12
(a) Image-specific two-layer deep Boltzmann machine (DBM) that uses a Gaussian model to model the distribution over real-valued
image features. (b) Text-specific two-layer DBM that uses a replicated softmax model to model its distribution over the word count
vectors. (c) A multimodal DBM that models the joint distribution over image and text inputs. All but the first (bottom) layer use
standard binary variables.
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all hidden variables, is written as follows:

P (vm, vt ; θ ) =
∑

h(2m),h(2t),h(3)

P (h(2m), h(2t), h(3))

⎛
⎝∑

h(1m)

P (vm, h(1m)|h(2m))

⎞
⎠

⎛
⎝∑

h(1t)

P (vt, h(1t)|h(2t))

⎞
⎠

= 1
Z(θ, M )

∑
h

exp

⎛
⎝−

∑
i

(vm
i )2

2σ 2
i

+
∑

i j

vm
i

σi
W (1m)

i j h(1m)
j +

∑
j l

W (2m)
j l h(1m)

j h(2m)
l

︸ ︷︷ ︸
Gaussian image pathway∑

kj

W (1t)
kj vt

kh(1t)
j +

∑
j l

W (2t)
j l h(1t)

j h(2t)
l︸ ︷︷ ︸

Replicated softmax text pathway

+
∑

l p

W (3t)h(2t)
l h(3)

p +
∑

l p

W (3m)h(2m)
l h(3)

p +
∑

p

b (3)
p h(3)

p

⎞
⎠

︸ ︷︷ ︸
Joint third layer

.

(42)
The normalizing constant depends on the number of words M in the corresponding document
because the low-level part of the text pathway contains as many softmax variables as there are words
in the document. Similar to the replicated softmax model presented in Section 2.3, the multimodal
DBM can be viewed as a family of different-sized DBMs that are created for documents of different
lengths that share parameters. Approximate learning and inference can proceed in the same way
as discussed in Section 4.1.

As an example, we now consider experimental results of using the MIR-Flickr data set (Huiskes
& Lew 2008), which contains one million images retrieved from the social photography website
Flickr, along with the user-assigned tags for these images. Bimodal data of this kind have become
common in many real-world applications in which we have some image and a few words describing
it. There is a need to build representations that fuse this information into a joint space such that
each data point can be represented as a single vector. Such representation would be useful for
classification and retrieval problems.

Of 1 million images in the MIR-Flickr data set, 25,000 have been annotated using 38 classes
including object categories such as “bird,” “tree,” and “people” and scene categories such as
“indoor,” “sky,” and “night.” The remaining 975,000 images were unannotated. We used 10,000
of the 25,000 annotated images for training, 5,000 for validation, and 10,000 for testing, following
the experimental setup of Huiskes & Lew (2008).

In our multimodal DBM, the image pathway contained 3,857 linear visible variables6 and
1,024 h(1) and 1,024 h(2) hidden variables. The text pathway consisted of a replicated softmax model
with 2,000 visible variables and 1,024 hidden variables, followed by another layer of 1,024 hidden
variables. The joint layer contained 2,048 hidden variables, and all hidden variables were binary.

Many real-world applications often have one or more modalities missing. The multimodal
DBM can be used to generate such missing data modalities by clamping the observed modalities at
the inputs and sampling the hidden modalities by running a standard Gibbs sampler. For example,
consider the generation of text conditioned on a given image7 vm. The observed modality vm

is clamped at the inputs, and all hidden variables are initialized randomly. Alternating Gibbs
sampling can be used to draw samples (or words) from P (vt |vm) by updating each hidden layer
given the states of the adjacent layers.8 This process is illustrated for a test image in Figure 13,

6Images were represented by 3,857-dimensional features, which were extracted by concatenating Pyramid Histogram of
Words (PHOW) features, Gist, and MPEG-7 descriptors (for details, see Srivastava & Salakhutdinov 2014).
7Generation of image features conditioned on text can be done in a similar way.
8Remember that the conditional distribution P (vt |h(1t)) defines a multinomial distribution over the text vocabulary (see
Equation 19). This distribution can then be used to sample words.
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Step 50 Step 100 Step 150 Step 200 Step 250

travel beach sea water italy
trip

vacation
africa

earthasia
asia
men
2007
india

tourism

ocean beach canada water
waves island bc sea

sea vacation britishcolumbia boat
sand travel reflection italia
nikon ocean alberta mare
surf caribbean lake venizia

rocks tropical quebec acqua
coast resort ontario ocean
shore trip ice venice

Figure 13
Text generated by the deep Boltzmann machine conditioned on an image by running a Gibbs sampler. The
ten words with the highest probability are shown at the end of every 50 sampling steps.

which shows the text generated after every 50 Gibbs steps. Observe that the sampler generates
meaningful text while showing some evidence of jumping across different modes. For example, it
generates “tropical,” “caribbean,” and “resort” together, then moves on to “canada,” “bc,” “quebec
lake,” “ice,” and then to “italia,” “venizia,” and “mare.” Each of these groups of words represent
plausible descriptions of the image. Moreover, each group is consistent within itself, suggesting
that that the model has been able to associate clusters of consistent descriptions with the same
image. The model can also be used to generate images conditioned on text. Figure 14 shows
examples of two such runs.

The same DBM also achieves state-of-the-art classification results on the multimodal MIR-
Flickr data set (Huiskes & Lew 2008), compared with linear discriminant analysis (LDA),
RBF-kernel support vector machines (SVMs) (Huiskes & Lew 2008), and the multiple kernel
learning approach of Guillaumin et al. (2010) (for details, see Srivastava & Salakhutdinov 2014).

6. CONCLUSIONS

This article has reviewed several deep generative models, including DBNs and DBMs. We showed
that learning deep generative models that contain many layers of latent variables and millions
of parameters can be carried out efficiently. Learned high-level feature representations can be

Input tags

purple,
flowers

car,
automobile

Step 50 Step 100 Step 150 Step 200 Step 250

Figure 14
Images retrieved by running a Gibbs sampler conditioned on the input tags “purple,” “flowers” (top row) and
“car,” “automobile” (bottom row). The images shown are those which are closest to the sampled image
features. Samples were taken after every 50 steps.
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successfully applied in a wide spectrum of application domains, including visual object recognition,
information retrieval, classification tasks, and regression tasks. Many of the ideas developed in this
article are based on the following three crucial principles behind learning deep generative models:
First, multiple layers of representation can be greedily learned one layer at a time. Second, greedy
learning can be carried out in a completely unsupervised way. Third, a separate fine-tuning stage
can be used to further improve either generative or discriminative performance of the final model.
Furthermore, using stochastic gradient descent, scaling up learning to billions of data points would
not be particularly difficult.

We also developed a new learning algorithm for DBMs. Similar to DBNs, DBMs contain many
layers of latent variables. High-level representations are built from large amounts of unlabeled
sensory input, and the limited labeled data can then be used to slightly adjust the model parameters
for a specific task at hand. We discussed a novel combination of variational and MCMC algorithms
for training these Boltzmann machines. When applied to DBMs with several hidden layers and
millions of weights, this combination is a very effective way to learn good generative models. We
demonstrated the performance of this algorithm using both the MNIST data set of handwritten
digits and the NORB data set of stereo images of 3D objects with highly variable viewpoints and
lighting.

Finally, we discussed a DBM model for learning multimodal data representations. Large
amounts of unlabeled data can be effectively utilized by the model, in which pathways for each
different modality are pretrained independently and later combined together for performing joint
learning. The model fuses multiple data modalities into a unified representation, capturing fea-
tures that are useful for classification and retrieval. Indeed, this model was able to discover a diverse
set of plausible descriptions given a test image and to achieve state-of-the-art classification results
on the bimodal MIR-Flickr data set.
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