
Learning Deep Boltzmann Machines using Adaptive MCMC

Ruslan Salakhutdinov

Brain and Cognitive Sciences and CSAIL, MIT

77 Massachusetts Avenue, Cambridge, MA 02139 rsalakhu@mit.edu

Abstract

When modeling high-dimensional richly
structured data, it is often the case that the
distribution defined by the Deep Boltzmann
Machine (DBM) has a rough energy land-
scape with many local minima separated by
high energy barriers. The commonly used
Gibbs sampler tends to get trapped in one
local mode, which often results in unstable
learning dynamics and leads to poor param-
eter estimates. In this paper, we concentrate
on learning DBM’s using adaptive MCMC al-
gorithms. We first show a close connection
between Fast PCD and adaptive MCMC. We
then develop a Coupled Adaptive Simulated
Tempering algorithm that can be used to bet-
ter explore a highly multimodal energy land-
scape. Finally, we demonstrate that the pro-
posed algorithm considerably improves pa-
rameter estimates, particularly when learn-
ing large-scale DBM’s.

1. Introduction

A Deep Boltzmann Machine (DBM) is a type of bi-
nary pairwise Markov Random Field (MRF) with mul-
tiple layers of hidden random variables. Maximum
likelihood learning in DBM’s is very difficult because
of the hard inference problem induced by the par-
tition function. Moreover, multiple layers of hid-
den units make learning in DBM’s far more difficult.
Recently, (Salakhutdinov & Hinton, 2009) proposed a
variational approach, where inference over the states
of the hidden variables is performed using variational
approaches, such as mean-field. Learning can then
be carried out by applying a stochastic approxima-
tion procedure that uses Markov chain Monte Carlo
(MCMC) in order to approximate the gradients of the

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

intractable partition function.

When modeling high-dimensional structured data, the
distribution we need to infer is likely to be highly
multimodal. This is common when modeling real-
world distributions, in which exponentially large num-
ber of possible input configurations have extremely low
probability, but there are many very different inputs
that occur with similar probabilities. When learn-
ing DBM’s, or general MRF’s, canonical MCMC algo-
rithms, such as the plain Gibbs sampler or Metropolis-
Hasting algorithm, often get trapped in one local
mode. The inability of the Markov chains to effi-
ciently move around the energy landscape often re-
sults in unstable learning dynamics and consequently
leads to poor parameter estimates (Hinton et al., 2003;
Tieleman & Hinton, 2009; Salakhutdinov, 2010).

In this paper we propose a novel learning algorithm,
Coupled Adaptive Simulated Tempering, that is based
on the well-studied class of adaptive MCMC algo-
rithms, and show that it is able to better traverse a
highly multimodal energy landscape. The proposed al-
gorithm is only twice as slow as the original learning al-
gorithm that uses the plain Gibbs sampler, yet it con-
siderably improves parameter estimates, particularly
when learning in large-scale DBM’s. Finally, we also
provide a conceptual connection between the recent
“Fast PCD” algorithm (Tieleman & Hinton, 2009),
aimed at alleviating the problem of poor mixing, and
adaptive MCMC algorithms.

2. Deep Boltzmann Machines

A Deep Boltzmann Machine is a network of symmetri-
cally coupled stochastic binary units. It contains a set
of visible units v ∈ {0, 1}D, and a set of hidden units
forming multiple layers h1 ∈ {0, 1}F1, h2 ∈ {0, 1}F2,...,
hL ∈ {0, 1}FL.

Consider a Deep Boltzmann Machine with two hidden
layers1 (see Fig. 1), with no within-layer connections.

1Extensions to models with more than two layers is



Learning Deep Boltzmann Machines using Adaptive MCMC

h2

h1

v

W2

W1

Deep Boltzmann Machine

X1 X2

X3 X4

Figure 1. Left: Deep Boltzmann Machine: All connec-
tions between layers are undirected. Right: An example
of the state space partition. The goal is to construct a
Markov chain that would spend an equal amount of time
in each partition.

The energy of the state {v,h} is defined as:

E(v,h; θ) = −v⊤W1h1 − h1⊤W2h2, (1)

where h = {h1,h2} are the set of hidden units, and
θ = {W1,W2} are the model parameters, represent-
ing visible-to-hidden and hidden-to-hidden symmetric
interaction terms2. The probability that the model
assigns to a visible vector v is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h1,h2; θ)).

The derivative of the log-likelihood with respect to pa-
rameter vector W 1 takes the following form:

∂ log P (v; θ)

∂W 1
= EPdata

[vh1⊤]− EPmodel
[vh1⊤], (2)

where EPdata
[·] denotes an expectation with respect

to the completed data distribution Pdata(h,v; θ) =
P (h|v; θ)Pdata(v), with Pdata(v) = 1

N

∑

n δ(v − vn)
representing the empirical distribution, and EPmodel

[·]
is an expectation with respect to the distribution de-
fined by the model. The derivatives with respect to
parameters W 2 take similar form.

Exact maximum likelihood learning in this model is
intractable, because both data-dependent and model-
dependent expectations cannot be computed analyt-
ically in less than exponential time. We now briefly
review the learning algorithm for DBM’s. For more
details refer to (Salakhutdinov & Hinton, 2009).

2.1. Variational Learning

Consider any approximating distribution Q(h|v; µ) for
the posterior P (h|v; θ). The log-likelihood of our

straightforward.
2We omit the bias terms for clarity of presentation.

DBM model then has the following variational lower
bound:

logP (v; θ) ≥
∑

h

Q(h|v; µ) log P (v,h; θ) +H(Q),(3)

where H(·) is the entropy functional. In the mean-
field approach, a fully factorized distribution is chosen
in order to approximate the true posterior. Q(h; µ) =
∏

i q(hi), with q(hi = 1) = µi. The learning proceeds
by first maximizing the lower bound with respect to
the variational parameters µ for fixed θ. Given the
variational parameters µ, the model parameters θ are
then updated using stochastic approximation.

2.2. Stochastic Approximation Algorithm

Stochastic approximation procedure (SAP), also called
Persistent CD (PCD) (Tieleman, 2008), belongs to the
general class of well-studied stochastic approximation
algorithms of the Robbins-Monro type (Younes, 1988;
Robbins & Monro, 1951). Let θt and xt be the current
setting of the parameters and the state. Then the state
and the parameters are updated sequentially: Given
xt, we sample a new state xt+1 using the transition
operator Tθt(xt+1← xt) that leaves p(·; θt) invariant.
For DBM’s we use Gibbs sampler. A new parame-
ter θt+1 is then obtained by making a gradient step,
where the intractable model’s expectation EPmodel

[·] is
replaced by a point estimate at sample xt+1. In prac-
tice, we typically keep several Markov chains, which we
will sometimes refer to as persistent chains. We will
also refer to the current state in each of these chains
as a sample particle.

Almost sure convergence guarantees of SAP to an
asymptotically stable point are given in (Younes, 2000;
Yuille, 2004). One necessary condition requires the
learning rate to decrease with time, i.e.

∑∞

t=0
αt =∞

and
∑∞

t=0
α2

t < ∞, which can be easily satisfied by
setting αt = 1/(t0 + t). The proof of convergence re-
lies on the following basic observation: As the learning
rate becomes sufficiently small compared to the mix-
ing rate of the Markov chain, the chain will stay close
to its stationary distribution, even if it is only run for
a few MCMC steps per parameter update.

3. Learning vs. Mixing

The proof of convergence of stochastic approximation,
however, does not tell us why the algorithm works well
when using much larger learning rates. Indeed, when
looking at the behavior of SAP in practice, the al-
gorithm makes very rapid progress towards finding a
good region in the parameter space, even though the
Markov chain stays far from its stationary distribution.



Learning Deep Boltzmann Machines using Adaptive MCMC

Recently, (Tieleman & Hinton, 2009) made a notable
observation that there is a delicate interplay between
the mixing rate of the persistent Markov chain and
parameter learning. In particular, it was empirically
demonstrated that the energy surface is being changed
during learning in a way that improves the mixing rate
of the Markov chain. Note that the learning rule of
Eq. 2 attempts to lower the energy in the vicinity of
the data while raising the energy at the places where
the sample particles reside. Therefore large changes
in energy landscape cause sample particles to quickly
move away from their currently residing modes3. This
in turn allows us to do learning using much larger
learning rates than would be possible if the persistent
chain needed to stay close to its stationary distribu-
tion. This key observation emphasizes the fact that
inference strongly interacts with learning.

As the learning proceeds, it is necessary to decrease
the learning rate in order to avoid strong oscilla-
tions in the parameter estimates. This, however,
reduces the changes made to the energy landscape,
which causes persistent chains to mix poorly. When
learning Restricted Boltzmann Machines (RBM’s),
(Desjardins et al., 2010; Salakhutdinov, 2010) show
that this can often lead to poor generative models. The
problem of poor mixing becomes considerably worse
when learning Deep Boltzmann Machines.

One way to encourage the sample particles to mix
would be to use Fast PCD (FPCD) algorithm
(Tieleman & Hinton, 2009). In addition to the reg-
ular parameters θ = {W1,W2}, also termed “slow
weights”, FPCD uses a set of “fast weights” θf =
{W1

f ,W2
f}. Slow weights represent our standard gen-

erative model and they are used to estimate data-
dependent expectations. The role of the fast weights
is to improve mixing. In particular, sample particles
are updated using a persistent Markov chain with pa-
rameters θ+θf . To facilitate mixing, fast weights have
a large fixed learning rate, which is different from the
learning rate used by the slow weights4. As training
progresses, slow weights can be fine-tuned by decreas-
ing its learning rate, whereas fast weights will still en-
sure that the particles move around the energy land-
scape quickly.

While it has been shown empirically that fast weights
tend to improve mixing of the sample particles, it is
not clear what distribution FPCD is sampling from
and what kind of biases fast weights introduce into

3Unless sample particles are perfectly balanced by the
presence of the training data at those modes, in which case
the gradient of Eq. 2 is zero.

4Fast weights also have a strong weight decay.

the learning algorithm. We next describe the Wang-
Landau algorithm, which belongs to the class of adap-
tive MCMC methods, and show that it is very similar
in spirit to the idea of introducing fast weights in order
to improve mixing.

4. Wang-Landau (WL) Algorithm

Suppose that our target distribution, given by
p(x; θ) = 1/Z exp(−E(x; θ)), is defined over some state
space X . For the case of a two-layer DBM, we have
X = {v,h1,h2}. Consider partitioning the state space
into K disjointed sets {Xk}

K
k=1

. The goal is to con-
struct a Markov chain that would spend an equal
amount of time in each partition and where the moves
within each partition are carried out using standard
Metropolis-Hastings or Gibbs updates (see Fig 1, right
panel). The main difficulty here lies in estimating a set
of weights that would properly reweight the probabil-
ity in each partition to ensure that the chain spends
the same amount of time in each set Xk. A recent
breakthrough, introduced by (Wang & Landau, 2001),
solves both the weight estimation and sampling prob-
lem in a single run. Their proposed algorithm is very
reminiscent of the stochastic approximation algorithm.

Let g be a vector of length K, that contains our cur-
rent unnormalized weight estimates. At time t = 0,
all elements of gt are initialized to 1. The algorithm
proceeds as follows:

• Given xt, sample a new state xt+1 from transition
operator Tgt(xt+1← xt), whose invariant proba-
bility distribution is proportional to:

p(x; θ,gt) ∝
K

∑

k=1

p∗(x; θ)

gt
k

I(x ∈ Xk). (4)

• Update weights:

gt+1

k = gt
k(1 + γtI(x

t+1 ∈ Xk)), (5)

where I is the indicator function, and γt > 0 is known
as the weight adapting factor. As the chain stays in
the set Xk, the weight gk will increase, exponentially
increasing the probability of moving outside Xk.

The algorithm was further generalized to general state
spaces (Atchade & Liu, 2004) and can be viewed and
analyzed within the framework of adaptive MCMC
and stochastic approximation algorithms. In particu-
lar, under certain regularity conditions, as t→∞ and
γt → 0, for all k ∈ {1, 2, ..., K} and any measurable



Learning Deep Boltzmann Machines using Adaptive MCMC

function f , we have convergence in probability:

gt
k

∑

i gt
i

−→ p(x ∈ Xk), (6)

1

tk

t
∑

i=1

f(xi)I(xi ∈ Xk) −→
∑

x∈Xk

f(x)
p(x)

p(x ∈ Xk)
,

where tk =
∑

i I(xi ∈ Xk). This result states that
asymptotically, the sequence of weights converges to
the set of optimal weights, so that the Markov chain
spends an equal amount of time in each partition.
More importantly, the Monte Carlo estimates converge
to the correct limits as well.

The idea behind the WL algorithm is very similar in
spirit to the idea of FPCD. The log of the weights logg

effectively raise the energy of the partition Xk, so as
to encourage the sample particle xt to move out of the
current partition. We now show that connection more
explicitly.

4.1. Connection to FPCD

Consider a binary Markov random field with only two
nodes x = {x1.x2}, each of which can take on the
value of 1 or -1. Let us partition the state space into 4
sets, each containing only a single point: X1 = {1, 1},
X2 = {−1, 1}, X3 = {−1, 1}, and X4 = {−1,−1}. The
probability that the model assigns to a vector x is:

p(x; θ) =
1

Z

4
∑

k=1

exp (θ(x1, x2))I(x ∈ Xk). (7)

Given unnormalized weights g, the WL algorithm sam-
ples the next state x from (see Eq. 4):

p(x; θ,g) ∝

4
∑

k=1

exp
(

θ(x1, x2)− log gk

)

I(x ∈ Xk). (8)

In this formulation, parameters log gk can be viewed
as a corresponding set of fast weights, defined by the
FPCD algorithm. Given an observation x0, the update
rule for these fast weights in FPCD algorithm can be
easily derived from Eq. 2:

log gt+1

k = log gt
k + αt(I(x

t+1 ∈ Xk)− I(x0 ∈ Xk)).

Note that if the sample particle xt+1 is in the same
partition as the data point, the weight update will be
zero and the chain will not attempt to explore other
partitions. If xt+1 is in a different partition, the fast
weights will adjust so as to push the particle into par-
tition where the data resides. Observe that the update
rule of FPCD is very similar to the corresponding up-
date rule of the WL algorithm (Eq. 5):

log gt+1

k = log gt
k + αt(I(x

t+1 ∈ Xk)), (9)

20 40 60 80 100

 X1

 X2

 X3

 X4

Number of Gibbs updates

P
ar

tit
io

ns

Gibbs Sampler

FPCD

WL algorithm

Figure 2. Mixing behavior of different algorithms for a
simple binary MRF. Gibbs sampler (blue) and FPCD (red)
get stuck in local modes. The WL algorithm (black) spends
roughly the same amount of time in each of four partitions.

where αt = log(1 + γt). The key difference is that the
data-dependent term is missing, so there is no “data-
pulling” bias. The WL algorithm will keep traversing
the energy landscape, asymptotically converging to the
correct limits. This small, yet significant difference
highlights the fact that FPCD cannot be viewed as
a valid Monte Carlo algorithm. This connection also
suggests that FPCD is unlikely to uncover spurious
modes, located far away from the data, because the
data-pulling term will always drive sample particles
into the modes where the data reside.

Figure 2 precisely illustrates this phenomenon on a
simulation experiment. For this toy example we set
θ(1, 1) = θ(−1,−1) = 5, θ(−1, 1) = θ(1,−1) = −5,
and the initial state is x = {−1,−1} ∈ X4. As ex-
pected, the Gibbs sampler gets stuck in a local mode.
The FPCD algorithm quickly jumps into the mode
where the data point x0 = {1, 1} ∈ X1 resides, and
then stops mixing. The WL algorithm, on the other
hand, keeps moving between all four partitions.

In practice, it is often hard to choose a good partition
of the state space. For the partition to be efficient, we
need to make sure that p(Xk) are all approximately
equal. For the case of tempered MCMC, however,
there are natural ways of defining appropriate parti-
tions (Atchade & Liu, 2004; Liang, 2005), which will
lead us to the efficient learning algorithm.

5. Adaptive Simulated Tempering

Simulated tempering (Marinari & Parisi, 1992), is a
single chain MCMC algorithm, that samples from the
joint distribution:

p(x, k) ∝ wk exp(−βkE(x)), (10)

where wi are constants, and 0 < βK < βK−1 < ... <
β1 = 1 are the K “inverse temperatures”. The state



Learning Deep Boltzmann Machines using Adaptive MCMC

space is defined as ∪K
k=1{k} × X . Conditioned on k,

the distribution for x takes form:

p(x|k) =
1

Zk

exp(−βkE(x)). (11)

A sample from our target distribution p(x) can there-
fore be obtained by simulating a Markov chain, whose
stationary distribution is p(x, k), and then only keep-
ing the states for which k = 1. We may also hope that
the high-temperature distributions are more spread
out and easier to sample from than our target dis-
tribution.

Simulating from the joint p(x, k) is done by iterating
through two transition operators alternately. First,
conditioned on k, the state x is updated according to
some transition operator that leaves p(x|k) invariant
(e.g. the Gibbs sampler). Second, conditioned on x,
we sample k using Metropolis update rule with a pro-
posal distribution q(k + 1← k) = q(k − 1← k) = 1/2,
and q(2←1) = q(K − 1←K) = 1.

The choice of the weights wk greatly affects the ef-
ficiency of the algorithm. In particular, if the high-
temperature distributions are to facilitate mixing be-
tween many local modes, it is necessary for the Markov
chain to spend roughly equal amount of time at each
temperature value. This can be achieved by letting wk

be proportional to 1/Zk, which are of course unknown.

The WL algorithm solves this problem by partitioning
the state space into K sets {k} ∪ X , each correspond-
ing to a different temperature value. The algorithm is
summarized in Algorithm 1. Note that if the move into
a different partition (or temperature value) is rejected,
the adaptive weight for the current partition will in-
crease, thus exponentially increasing the probability of
accepting the next move. As γt → 0, the ratio of adap-
tive weights convergence in probability to the ratio of
partition functions (see Eq. 6), which guarantees that
algorithm will roughly spend the same amount of time
at each temperature value.

6. Learning using Adaptive Simulated
Tempering

We can now use adaptive simulated tempering (adap-
tive ST) algorithm for learning. Given the current
state x of the Markov chain at temperature 1, we can
obtain a new state by applying Algorithm 1 for some
fixed period of time N , chosen by the user. However,
applying adaptive ST after every parameter update
within the stochastic approximation algorithm of Sec
2.2 would be expensive. Instead, we could alternate
between N plain Gibbs updates and a single run of
adaptive ST, where the adaptive weights for subse-

Algorithm 1 The Wang-Landau algorithm for adap-
tive simulated tempering.

1: Given adaptive weights {gk}
K

k=1 and the initial config-
uration of the state x1 at temperature 1, k = 1:

2: for n = 1 : N (number of iterations) do
3: Given xn, sample a new state xn+1 from transition

operator that leaves p(x|kn) invariant.
4: Given kn, sample kn+1 from proposal distribution

q(kn+1←kn). Accept with probability:

min

„

1,
p(xn+1, kn+1)q(kn←kn+1)gkn

p(xn+1, kn)q(kn+1←kn)gkn+1

«

5: Update adaptive weights:

g
n+1

i = g
n

i (1 + γnI(kn+1 ∈ {i})), i = 1, ..., K.

6: end for
7: Obtain (dependent) samples from target distribution

p(x) by keeping states for which k = 1.

quent runs would be initialized to their previous val-
ues. The proposed algorithm is only twice as slow
compared to the standard stochastic approximation,
yet it allows the Markov chain to periodically escape
from local modes.

We emphasize that the adaptation plays a crucial role
in “forcing” the sample particle to move between dif-
ferent temperature values, which greatly facilitates
mixing. This allows the chain to make large changes
to the current state, producing less correlated samples
between successive parameter updates, which signif-
icantly improves the accuracy of the estimator. We
also note that as the amount of adaptation goes to
zero, the transition operator defined by the simulated
tempering algorithm is a valid MCMC transition oper-
ator. This in turn ensures that the original stochastic
approximation will maintain almost sure convergence
guarantees.

This simple algorithm already outperforms the plain
stochastic approximation procedure (SAP) and FPCD
algorithms. However, it is not obvious how to choose
N in order to balance between exploration, or waiting
until adaptive ST escapes from the local mode, and
exploitation, or learning model parameters θ. Instead
we propose a Coupled Adaptive Simulated Tempering
(CAST) algorithm that avoids this problem altogether.

6.1. Coupled Adaptive Simulated Tempering

Consider two Markov chains, both sampling from the
same target distribution p(x). One chain, that we re-
fer to as the “slow” chain, evolves according to simple
Gibbs or Metropolis updates. The second chain, called



Learning Deep Boltzmann Machines using Adaptive MCMC

Slow chain

Fast chaink=1

k=2

k=3

Figure 3. Coupled Adaptive Simulated Tempering.

the “fast” chain, uses adaptive ST. Parameters are up-
dated based on the sample particles obtained from the
slow chain, whereas the role of the fast chain is to facil-
itate mixing. In particular, once the fast chain reaches
the state for which k = 1, (its temperature value is 1),
the state is swapped with the current state of the slow
chain, as illustrated in Fig. 3.

CAST, just like adaptive ST, is only twice as expen-
sive compared to the standard stochastic approxima-
tion. Unlike adaptive ST, parameters are updated af-
ter every Gibbs update, while the fast chain runs in
parallel, adaptively mixing between different modes of
the energy landscape. As the learning progresses, the
model parameters can be fine-tuned by decreasing the
learning rate. The adaptive chain, on the other hand,
will still ensure that the sample particles continue to
explore the energy landscape. Unlike FPCD, the fast
chain is likely to visit spurious modes that may reside
far away from the data.

7. Previous Work

There has been recent work on using tempered MCMC
algorithms for learning in Restricted Boltzmann Ma-
chines. (Salakhutdinov, 2010) proposed Trans-SAP
algorithm that uses MCMC operators based on tem-
pered transitions (Neal, 1996). Unlike simulated tem-
pering, tempered transitions systematically “move”
the sample particle from the original target distribu-
tion to the high-temperature distribution, and then
back to the original distribution. A new state is ac-
cepted based on the Metropolis-Hasting rule. When
applied to more complex models, such as DBM’s, it
is often necessary introduce many intermediate distri-
butions in order to maintain a reasonable acceptance
probability and allow the sample particle to move out
of the local mode. (Desjardins et al., 2010) further
proposed to use parallel tempering, where several cou-
pled chains are run in parallel. The problem here is
that running multiple chains, for example 50 as done in
(Desjardins et al., 2010), is 50 times slower compared
to the plain stochastic approximation. In addition, for
large models, there are substantial memory require-
ments, since at each time step, one needs to store the

state of every coupled chain.

The key difference between CAST and the recently
proposed methods lies in its adaptive nature. CAST
maintains only a single adaptive chain, unlike multi-
ple chains of parallel tempering, or many graded tem-
perature levels in tempered transitions. Its adaptive
weights encourage the sample particle to move across
multiple temperature levels, while still asymptotically
converging to the correct limits.

8. Experimental Results

In our experiments we used the MNIST and NORB
datasets. For both datasets, we subdivided the data
into minibatches, each containing 100 training cases.
For SAP, the number of persistent chains was set to
100. For the CAST algorithm, we maintained 50 slow
and corresponding 50 fast chains. To speed-up learn-
ing, the number of the mean-field updates was set to 5
and all DBM models were trained using 200,000 weight
updates. The initial learning rate αt was set 0.005 and
was decreased as 10/(2000+t).

In practice, for the CAST algorithm, we found it useful
to swap states between fast and slow chains after fixed
lag intervals (we use 50). The state of the fast chain is
taken to be the last state for which k = 1. This avoids
the problem of continuous swapping between the same
states as the fast chain moves around the temperature
value of 1.

8.1. MNIST dataset

The MNIST dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9),
with 28×28 pixels. From the training data, a random
sample of 10,000 images was set aside for validation.

In our first experiment we trained a two-layer Deep
Boltzmann Machine using CAST with 500 and 1000
hidden units in the first and second hidden layers re-
spectively. Fig. 4, left panel, shows consecutive sam-
ples (by column) generated from the DBM model af-
ter learning is stopped using Gibbs sampler and adap-
tive ST algorithm. Both methods were randomly ini-
tialized and the first 1000 samples were discarded as
burn-in. It is clear that the plain Gibbs hardly mixes
at all. Adaptive ST, on the other hand, is able to move
around the energy landscape far better. For adaptive
ST, we used 20 β′s, spaced uniformly from 1 to 0.9.
The weight adapting factor was set to γt = 10. The
middle panel of the same figure further shows that the
adaptive weights push the sample particle in roughly
systematic manner through all 20 temperature values,
forcing the particle to move away from its local mode.



Learning Deep Boltzmann Machines using Adaptive MCMC

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18

20

Number of Gibbs updates

T
em

pe
ra

tu
re

 L
ev

el
 k

0 5 10 15 20 25 30 35 40 45 50

−115

−110

−105

−100

−95

−90

−85

−80

Number of parameter updates × 4000

Lo
w

er
 b

ou
nd

 o
n 

lo
g−

lik
el

ih
oo

d

 

 

CAST
FPCD
SAP

Gibbs Sampler Adaptive ST

Figure 4. Left: Sample particles produced by the Gibbs sampler and adaptive simulated tempering, with 300 Gibbs
steps between consecutive images (by column). Middle Temperature trajectory of a single particle. Note that adaptive
weights are able to push the samples in roughly systematic manner through all 20 temperature values. Right: Evolution
of the lower bound on the log-likelihood objective for SAP, FPCD, and CAST as learning progresses.

Table 1. The estimates of the variational lower bound on
the average test log-probabilities per image for different
learning algorithms.

Models
Datasets

MNIST NORB

SAP -87.23 -596.92
FPCD -86.72 -597.12
Trans-SAP -85.41 -595.54
CAST -84.12 -591.18

In our second experiment, we trained two additional
two-layer DBM’s using SAP and FPCD. To provide
some quantitative assessment of behavior of different
algorithms, we estimated the variational lower bound
of Eq. 3 on the log-likelihood objective after every
4,000 parameter updates. To estimate the models’ par-
tition functions we used Annealed Importance Sam-
pling (Neal, 2001; Salakhutdinov, 2008).

Figure 4, right panel, shows evolution of the bound
on the log-likelihood of the training data, as learning
progresses. Towards the end of learning, both stochas-
tic approximation and FPCD suffer from large oscil-
lations in parameter estimates. We attribute this be-
havior to the inability of the Markov chains to ex-
plore distributions with many isolated modes. Indeed,
persistent chains get stuck in local modes, producing
highly correlated samples for successive parameter up-
dates, which leads to the unstable behavior of both
algorithms. Strong oscillations in parameter estimates
are particularly problematic when learning in RBM’s
or DBM’s, since there does not exist a good stopping
criterion. In contrast, CAST exhibits a far more sta-
ble behavior, gradually increasing the variational lower
bound on the log-likelihood.

Finally, after learning is complete, we also estimated
the variational lower bound on the average test log-
probability. Table 1 shows results, which also include
Trans-SAP, a competitor algorithm based on tempered

Gibbs Sampler Adaptive ST

Figure 5. Sample particles produced by the Gibbs sampler
and adaptive simulated tempering, with 500 Gibbs steps
between consecutive images (by column).

transitions. The plain SAP achieves a lower bound
of -87.23. Both FPCD and Trans-SAP improve upon
SAP, achieving a lower bound of -86.72 and -85.41 re-
spectively. CAST, on the other hand, achieves a con-
siderably better lower bound of -84.12.

To quantify how loose the variational bound is, we
randomly sampled 100 test cases, 10 of each class, and
estimated the true test log-probability by running AIS
for each test case. The estimate of the true test log-
probability was -84.28, whereas the estimate of the
variational bound was -84.76. This shows that the
bound is rather tight.

8.2. NORB dataset

We now present results on a considerably more diffi-
cult NORB dataset. NORB (LeCun et al., 2004) con-
tains images of 50 different 3D toy objects with 10
objects in each of five generic classes: planes, cars,
trucks, animals, and humans. Each object is captured
from different viewpoints and under various lighting
conditions. The training set contains 24,300 stereo
image pairs of 25 objects, whereas the test set con-
tains 24,300 stereo pairs of the remaining, different
25 objects. From the training data, 4,300 cases were



Learning Deep Boltzmann Machines using Adaptive MCMC

set aside for validation. To deal with raw pixel data,
we followed the approach of (Nair & Hinton, 2009) by
first learning a Gaussian-binary RBM with 4000 hid-
den units, and then treating the the activities of its
hidden layer as “preprocessed” data.

We then proceed to training a large two-hidden-layer
DBM with each layer containing 4000 hidden units.
Figure 5 shows samples generated from the model,
using Gibbs and adaptive ST. For adaptive ST, we
used 30 β′s, spaced uniformly from 1 to 0.9. Note
that the Gibbs sampler simply moves around its lo-
cal mode, unable to transition into different parts of
the energy surface, containing different objects under
different viewpoint and lighting conditions. Adaptive
ST, on the other hand, is still able to systematically
move from one mode to the next.

The ability of the adaptive ST algorithm to escape
from local modes allows us to learn much better gen-
erative models. Table 1 shows that CAST achieves
a lower bound on the average test log-probability of
-592.23, improving upon its closest competitor by at
least 4 nats.

9. Conclusion

We have developed a new learning algorithm, based on
adaptive simulated tempering, for training Deep Boltz-
mann Machines and showed that it is able to more flex-
ibly traverse a highly multimodal energy landscape.
The proposed algorithm is easy to implement and is
only twice as slow as the original learning algorithm
that uses the plain Gibbs sampler.

Our results on the MNIST and NORB dataset fur-
ther demonstrate that CAST considerably improves
parameter estimates, which allows us to learn much
better generative models. More importantly, CAST
tends to exhibit a more stable behavior during learn-
ing, gradually increasing the variational lower bound
on the log-likelihood of the training data. Finally, we
believe that the connection between learning dynam-
ics of Boltzmann machines and adaptive MCMC will
allow us to further develop better learning techniques
and to better understand the interesting interplay be-
tween learning and inference.

Acknowledgments

We acknowledge the financial support from NSERC,
Shell, and NTT Communication Sciences Laboratory.

References

Atchade, Y. and Liu, S. The Wang-Landau algorithm for
Monte Carlo computation in general state spaces. Tech-

nical report, University of Ottawa, 2004.

Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and
Delalleau, O. Tempered Markov chain Monte Carlo for
training of restricted Boltzmann machines. In AI and
Statistics, pp. 145–152, 2010.

Hinton, Geoffrey E., Welling, Max, and Mnih, Andriy.
Wormholes improve contrastive divergence. In NIPS.
MIT Press, 2003.

LeCun, Y., Huang, F. J., and Bottou, L. Learning methods
for generic object recognition with invariance to pose
and lighting. In CVPR (2), pp. 97–104, 2004.

Liang, F. Determination of normalizing constants for sim-
ulated tempering. Physica A: Statistical Mechanics and
its Applications, 356(2):468–470, 2005.

Marinari, E. and Parisi, G. Simulated tempering: A new
Monte Carlo scheme. Europhysics Letters, 19:451–458,
1992.

Nair, V. and Hinton, G. Implicit mixtures of restricted
Boltzmann machines. In Advances in Neural Informa-
tion Processing Systems, volume 21, 2009.

Neal, R. Sampling from multimodal distributions using
tempered transitions. Statistics and Computing, 6:353–
366, 1996.

Neal, R. Annealed importance sampling. Statistics and
Computing, 11:125–139, 2001.

Robbins, H. and Monro, S. A stochastic approximation
method. Ann. Math. Stat., 22:400–407, 1951.

Salakhutdinov, R. Learning and evaluating Boltzmann ma-
chines. Technical Report UTML TR 2008-002, Depart-
ment of Computer Science, University of Toronto, 2008.

Salakhutdinov, R. and Hinton, G. Deep Boltzmann ma-
chines. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, volume 5, pp.
448–455, 2009.

Salakhutdinov, R. R. Learning in Markov random fields
using tempered transitions. In Advances in Neural In-
formation Processing Systems, volume 22, 2010.

Tieleman, T. Training restricted Boltzmann machines us-
ing approximations to the likelihood gradient. In ICML.
ACM, 2008.

Tieleman, T. and Hinton, G.E. Using fast weights to im-
prove persistent contrastive divergence. In ICML, pp.
1033–1040. ACM New York, NY, USA, 2009.

Wang, F. and Landau, D. P. Efficient, multiple-range ran-
dom walk algorithm to calculate the density of states.
Physical Review Letters, 86(10):2050–2053, 2001.

Younes, L. Estimation and annealing for Gibbsian fields.
Ann. Inst. Henri Poincaré (B), 24(2):269–294, 1988.

Younes, L. On the convergence of Markovian stochas-
tic algorithms with rapidly decreasing ergodicity rates,
March 17 2000.

Yuille, A. The convergence of contrastive divergences. In
NIPS, 2004.


