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Supplementary Materials

A Proof of Theorem 1

Special case: element-wise upper bounds First, we assume that the general result is true, i.e.

2 ‖X‖(R,C) = inf
AB>=X

sup
r∈R

∑
i

ri
∥∥A(i)

∥∥2

2
+ sup

c∈C

∑
j

cj
∥∥B(j)

∥∥2

2

 , (1)

and prove the result in the special case, where

R = {r ∈ ∆[n] : ri ≤ Ri ∀i} and C = {c ∈ ∆[m] : cj ≤ Cj ∀j} .
Using strong duality for linear programs, we have

sup
r∈R

∑
i

ri
∥∥A(i)

∥∥2

2
= sup

r∈Rn
+

{∑
i

ri
∥∥A(i)

∥∥2

2
: ri ≤ Ri,

∑
i

ri = 1

}
= inf
a∈R,a1∈Rn

+

{
a+R>a1 : a+ a1i ≥

∥∥A(i)

∥∥2

2
∀i
}
.

In this last line, if we fix a and want to minimize over a1 ∈ Rn+, it is clear that the infimum is
obtained by setting a1i = (

∥∥A(i)

∥∥2

2
− a)+ for each i. This proves that

sup
r∈R

∑
i

ri
∥∥A(i)

∥∥2

2
= inf
a∈R

{
a+

∑
i

Ri

(∥∥A(i)

∥∥2

2
− a
)

+

}
.

Applying the same reasoning to the columns and plugging everything in to (1), we get

2 ‖X‖(R,C) = inf
AB>=X, a,b∈R

{
a+

∑
i

Ri

(∥∥A(i)

∥∥2

2
− a
)

+
+ b+

∑
j

Cj

(∥∥B(j)

∥∥2

2
− b
)

+

}
.

General factorization result In the proof sketch given in the main paper, we showed that

2 ‖X‖(R,C) ≤ inf
AB>=X

(
sup
r∈R

∥∥∥r1/2A
∥∥∥2

F
+ sup

c∈C

∥∥∥c1/2B
∥∥∥2

F

)
.

We now want to prove the reverse inequality. Since ‖X‖(R,C) = ‖X‖(R,C) by definition (where
S denotes the closure of a set S), we can assume without loss of generality that R and C are both
closed (and compact) sets.
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First, we restrict our attention to a special case (the “positive case”), where we assume that for all
r ∈ R and all c ∈ C, ri > 0 and cj > 0 for all i and j. (We will treat the general case below.)
Therefore, since ‖X‖tr(r,c) is continuous as a function of (r, c) for any fixed X and since R and C
are closed, we must have some r? ∈ R and c? ∈ C such that ‖X‖(R,C) = ‖X‖tr(r?,c?), with r?i > 0

for all i and c?j > 0 for all j.

Next, let UDV > = r?
1/2 ·X · c?1/2 be a singular value decomposition, and let A? = r?−

1/2UD1/2

and B? = c?−
1/2V D1/2. Then A?B?> = X , and∥∥∥r?1/2A?
∥∥∥2

F
=
∥∥∥UD1/2

∥∥∥2

F
= trace(UDU>) = trace(D) = ‖X‖tr(r?,c?) = ‖X‖(R,C) .

Below, we will show that

r? = arg max
r∈R

∥∥∥r1/2A?
∥∥∥2

F
. (2)

This will imply that ‖X‖(R,C) = supr∈R
∥∥r1/2A?

∥∥2

F
, and following the same reasoning for B?, we

will have proved

2 ‖X‖(R,C) =

(
sup
r∈R

∥∥∥r1/2A?
∥∥∥2

F
+ sup

c∈C

∥∥∥c1/2B?
∥∥∥2

F

)
≥ inf
AB>=X

(
sup
r∈R

∥∥∥r1/2A
∥∥∥2

F
+ sup

c∈C

∥∥∥c1/2B
∥∥∥2

F

)
,

which is sufficient. It remains only to prove (2). Take any r ∈ R with r 6= r? and let w = r − r?.
We have ∥∥∥r1/2A

∥∥∥2

F
−
∥∥∥r?1/2A

∥∥∥2

F
=
∑
i

wi

∥∥A(i)

∥∥2

2
=
∑
i

wi

r?i
· (UDU>)ii ,

and it will be sufficient to prove that this quantity is≤ 0. To do this, we first define, for any t ∈ [0, 1],

f(t) :=
∑
i

√
1 + t · wi

r?i
· (UDU>)ii = trace

((
r? + tw

r?

)1/2

UDU>

)
.

Using the fact that trace(·) ≤ ‖·‖tr for all matrices, we have

f(t) ≤

∥∥∥∥∥
(
r? + tw

r?

)1/2

UDU>

∥∥∥∥∥
tr

=
∥∥∥(r? + tw)

1/2
Xc?

1/2 · V U>
∥∥∥

tr

=
∥∥∥(r? + tw)

1/2
Xc?

1/2
∥∥∥

tr
= ‖X‖tr(r?+tw,c?) ≤ ‖X‖(R,C) =

∑
i

(UDU>)ii = f(0) ,

where the last inequality comes from the fact that r? + tw ∈ R by convexity ofR. Therefore,

0 ≥ d

dt
f(t)

∣∣∣∣
t=0

=
d

dt

(∑
i

√
1 + t · wi

r?i
· (UDU>)ii

) ∣∣∣∣
t=0

=
1

2
·
∑
i

wi

r?i
· (UDU>)ii ,

as desired. (Here we take the right-sided derivative, i.e. taking a limit as t approaches zero from the
right, since f(t) is only defined for t ∈ [0, 1].) This concludes the proof for the positive case.

Next, we prove that the general factorization (1) hold in the general case, where we might have
R 6⊂ Rn++ and/or C 6⊂ Rm++. If for any i ∈ [n] we have ri = 0 for all r ∈ R, we can discard this
row of X , and same for any j ∈ [m]. Therefore, without loss of generality, for all i ∈ [n] there
is some r(i) ∈ R with r

(i)
i > 0. Taking a convex combination, r+ = 1

n

∑
i r

(i) ∈ R, we have
r+ ∈ R ∩ Rn++. Similarly, we can construct c+ ∈ C ∩ Rm++.

Fix any ε > 0, and let δ = min{mini r
+
i ,minj c

+
j } · ε

2(1+ε) > 0, and define closed subsets

R0 =
{
r ∈ R : min

i
ri ≥ δ

}
⊆ R and C0 =

{
c ∈ C : min

i
ci ≥ δ

}
⊆ C .

Since we know that the factorization result holds for the “positive case”, we have

inf
AB>=X

(
sup
r∈R0

∥∥∥r1/2A
∥∥∥2

F
+ sup

c∈C0

∥∥∥c1/2B
∥∥∥2

F

)
= 2 ‖X‖(R0,C0)

= 2 sup
r∈R0,c∈C0

∥∥∥r1/2Xc
1/2
∥∥∥

tr
≤ 2 sup

r∈R,c∈C

∥∥∥r1/2Xc
1/2
∥∥∥

tr
= 2 ‖X‖(R,C) .
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Now choose any factorization ÃB̃> = X such that(
sup
r∈R0

∥∥∥r1/2Ã
∥∥∥2

F
+ sup

c∈C0

∥∥∥c1/2B̃
∥∥∥2

F

)
≤ 2 sup

r∈R,c∈C

∥∥∥r1/2Xc
1/2
∥∥∥

tr
(1 + ε/2) . (3)

Next, we need to show that supr∈R

∥∥∥r1/2Ã
∥∥∥2

F
is not much larger than supr∈R0

∥∥∥r1/2Ã
∥∥∥2

F
(and same

for B̃). Choose any r′ ∈ R, and let r′′ =
(

1− δ
mini r

+
i

)
r′ +

(
δ

mini r
+
i

)
r+ ∈ R. Then

min
i

r′′i ≥
(

δ

mini r
+
i

)
min
i

r+
i = δ ,

and so r′′ ∈ R0. We also have r′i ≤
(

1− δ
mini r

+
i

)−1

r′′i for all i. Therefore,

∥∥∥r′1/2Ã∥∥∥
F
≤
(

1− δ

mini r
+
i

)−1/2 ∥∥∥r′′1/2Ã∥∥∥
F
≤
(

1− δ

mini r
+
i

)−1/2

sup
r∈R0

∥∥∥r1/2Ã
∥∥∥

F
.

Since this is true for any r′ ∈ R, applying the definition of δ, we have

sup
r∈R

∥∥∥r1/2Ã
∥∥∥

F
≤
(

1− δ

mini r
+
i

)−1/2

sup
r∈R0

∥∥∥r1/2Ã
∥∥∥

F
≤
(

1 + ε/2

1 + ε

)−1/2

sup
r∈R0

∥∥∥r1/2Ã
∥∥∥

F
.

Applying the same reasoning for B̃ and then plugging in the bound (3), we have

inf
AB>=X

(
sup
r∈R

∥∥∥r1/2A
∥∥∥2

F
+ sup

c∈C

∥∥∥c1/2B
∥∥∥2

F

)
≤
(

sup
r∈R

∥∥∥r1/2Ã
∥∥∥

F
+ sup

c∈C

∥∥∥c1/2B̃
∥∥∥2

F

)
≤
(

1 + ε/2

1 + ε

)−1

·
(

sup
r∈R0

∥∥∥r1/2Ã
∥∥∥2

F
+ sup

c∈C0

∥∥∥c1/2B̃
∥∥∥2

F

)
≤
(

1 + ε/2

1 + ε

)−1

(1 + ε/2) · 2 ‖X‖(R,C) = (1 + ε) · 2 ‖X‖(R,C) .

Since this analysis holds for arbitrary ε > 0, this proves the desired result, that

inf
AB>=X

(
sup
r∈R

∥∥∥r1/2A
∥∥∥2

F
+ sup

c∈C

∥∥∥c1/2B
∥∥∥2

F

)
≤ 2 ‖X‖(R,C) .

B Proof of Theorem 2

We follow similar techniques as used by Srebro and Shraibman [1] in their proof of the analogous
result for the max norm. We need to show that

Conv
{
uv> : u ∈ Rn, v ∈ Rm, ‖u‖R = ‖v‖C = 1

}
⊆
{
X : ‖X‖(R,C) ≤ 1

}
⊆

KG · Conv
{
uv> : u ∈ Rn, v ∈ Rm, ‖u‖R = ‖v‖C = 1

}
.

For the left-hand inclusion, since ‖·‖(R,C) is a norm and therefore the constraint ‖X‖(R,C) ≤ 1 is
convex, it is sufficient to show that

∥∥uv>∥∥
(R,C) ≤ 1 for any u ∈ Rn, v ∈ Rm with ‖u‖R = ‖v‖C =

1. This is a trivial consequence of the factorization result in Theorem 1.

Now we prove the right-hand inclusion. Grothendieck’s Inequality states that, for any Y ∈ Rn×m
and for any dimension k,

sup
{
〈Y, UV >〉 : U ∈ Rn×k, V ∈ Rm×k,

∥∥U(i)

∥∥
2
≤ 1 ∀i,

∥∥V(j)

∥∥
2
≤ 1 ∀j

}
≤ KG · sup

{
〈Y, uv>〉 : u ∈ Rn, v ∈ Rm, |ui| ≤ 1 ∀i, |vj | ≤ 1 ∀j

}
,
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where KG ∈ (1.67, 1.79) is Grothendieck’s constant. We now extend this to a slightly more general
form. Take any a ∈ Rn+ and b ∈ Rm+ . Then, setting Ũ = diag(a)+U and Ṽ = diag(b)+V (where
M+ is the pseudoinverse of M ), and same for ũ and ṽ, we see that

sup
{
〈Y, UV >〉 : U ∈ Rn×k, V ∈ Rm×k,

∥∥U(i)

∥∥
2
≤ ai ∀i,

∥∥V(j)

∥∥
2
≤ bj ∀j

}
= sup

{
〈diag(a) · Y · diag(b), Ũ Ṽ >〉 : Ũ ∈ Rn×k, Ṽ ∈ Rm×k,

∥∥∥Ũ(i)

∥∥∥
2
≤ 1 ∀i,

∥∥∥Ṽ(j)

∥∥∥
2
≤ 1 ∀j

}
≤ KG · sup

{
〈diag(a) · Y · diag(b), ũṽ>〉 : ũ ∈ Rn, ṽ ∈ Rm, |ũi| ≤ 1 ∀i, |ṽj | ≤ 1 ∀j

}
= KG · sup

{
〈Y, uv>〉 : u ∈ Rn, v ∈ Rm, |ui| ≤ ai ∀i, |vj | ≤ bj ∀j

}
. (4)

Now take any Y ∈ Rn×m. Let ‖·‖∗(R,C) be the dual norm to the (R, C)-norm. To bound this dual
norm of Y , we apply the factorization result of Theorem 1:

‖Y ‖∗(R,C) = sup
‖X‖(R,C)≤1

〈Y,X〉

= sup
U,V

〈Y,UV >〉 :
1

2

sup
r∈R

∑
i

ri
∥∥U(i)

∥∥2

2
+ sup

c∈C

∑
j

cj
∥∥V(j)

∥∥2

2

 ≤ 1


(∗)
= sup

U,V

〈Y, UV >〉 : sup
r∈R

∑
i

ri
∥∥U(i)

∥∥2

2
= sup

c∈C

∑
j

cj
∥∥V(j)

∥∥2

2
≤ 1


= sup
a∈Rn

+:‖a‖R≤1

b∈Rm
+ :‖b‖C≤1

sup
U,V

{
〈Y, UV >〉 :

∥∥U(i)

∥∥
2
≤ ai ∀i,

∥∥V(j)

∥∥
2
≤ bj ∀j

}
≤ KG · sup

a∈Rn
+:‖a‖R≤1

b∈Rm
+ :‖b‖C≤1

sup
U,V

{
〈Y, uv>〉 : |ui| ≤ ai ∀i, |vj | ≤ bj ∀j

}
= KG · sup

u,v

{
〈Y, uv>〉 : ‖u‖R ≤ 1, ‖v‖C ≤ 1

}
= KG · sup

X

{
〈Y,X〉 : X ∈ Conv

{
uv> : u ∈ Rn, v ∈ Rm, ‖u‖R = ‖v‖C = 1

}}
= sup

X

{
〈Y,X〉 : X ∈ KG · Conv

{
uv> : u ∈ Rn, v ∈ Rm, ‖u‖R = ‖v‖C = 1

}}
.

As in [1], this is sufficient to prove the result. Above, the step marked (*) is true because, given any
U and V with

1

2

sup
r∈R

∑
i

ri
∥∥U(i)

∥∥2

2
+ sup

c∈C

∑
j

cj
∥∥V(j)

∥∥2

2

 ≤ 1 ,

we can replace U and V with U ′ := U · ω and V ′ := V · ω−1, where ω := 4

√
supc∈C

∑
j cj‖V(j)‖22

supr∈R
∑

i ri‖U(i)‖22
.

This will give U ′V ′> = UV >, and

sup
r∈R

∑
i

ri

∥∥∥U ′(i)∥∥∥2

2
= sup

c∈C

∑
j

cj

∥∥∥V ′(j)∥∥∥2

2
=

√
sup
r∈R

∑
i

ri
∥∥U(i)

∥∥2

2
· sup
c∈C

∑
j

cj
∥∥V(j)

∥∥2

2

≤ 1

2

sup
r∈R

∑
i

ri
∥∥U(i)

∥∥2

2
+ sup

c∈C

∑
j

cj
∥∥V(j)

∥∥2

2

 ≤ 1 .
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C Proof of Theorem 3

Following the strategy of Srebro & Shraibman (2005), we will use the Rademacher complexity to
bound this excess risk. By Theorem 8 of Bartlett & Mendelson (2002)1, we know that

ES

∑
ij

pij

∣∣∣Yij − X̂ij

∣∣∣− inf
‖X‖(R,C)≤

√
k

∑
ij

pij |Yij −Xij |


= O

(
ES
[
R̂S

({
X ∈ Rn×m : ‖X‖(R,C) ≤

√
k
})])

, (5)

where the expected Rademacher complexity is defined as

ES
[
R̂S

({
X ∈ Rn×m : ‖X‖(R,C) ≤

√
k
})]

:=
1

s
ES,ν

 sup
‖X‖(R,C)≤

√
k

∑
t

νt ·Xitjt

 ,

where ν ∈ {±1}s is a random vector of independent unbiased signs, generated independently from
S.

Now we bound the Rademacher complexity. By scaling, it is sufficient to consider the case k = 1.
The main idea for this proof is to first show that, for any X with ‖X‖(R,C) ≤ 1, we can decompose
X into a sum X ′ + X ′′ where ‖X ′‖max ≤ KG and ‖X ′′‖tr(p̃) ≤ 2KGγ

−1/2, where p̃ represents
the smoothed row and column marginals with smoothing parameter ζ = 1/2, and where KG ≤ 1.79
is Grothendieck’s constant. We will then use known Rademacher complexity bounds for the classes
of matrices that have bounded max norm and bounded smoothed weighted trace norm.

To construct the decomposition of X , we start with a vector decomposition lemma, proved below.
Lemma 1. SupposeR ⊇ R×1/2,γ . Then for any u ∈ Rn with ‖u‖R = 1, we can decompose u into a

sum u = u′ + u′′ such that ‖u′‖∞ ≤ 1 and ‖u′′‖p̃row
:=
∑
i p̃i•u

′′
i

2 ≤ γ−1/2.

Next, by Theorem 2, we can write

X = KG ·
∞∑
l=1

tl · ulv>l ,

where tl ≥ 0,
∑∞
l=1 tl = 1, and ‖ul‖R = ‖vl‖C = 1 for all l. Applying Lemma 1 to ul and to vl

for each l, we can write ul = u′l + u′′l and vl = v′l + v′′l , where

‖u′l‖∞ ≤ 1, ‖u′′l ‖p̃row
≤ γ−1/2, ‖v′l‖∞ ≤ 1, ‖v′′l ‖p̃col

≤ γ−1/2 .

Then

X = KG ·

( ∞∑
l=1

tl · u′lv′l> +

∞∑
l=1

tl · u′lv′′l > +

∞∑
l=1

tl · u′′l vl>
)

=: KG (X1 +X2 +X3) .

Furthermore, ‖u′l‖p̃row
≤ ‖u′l‖∞ ≤ 1, and ‖vl‖p̃row

≤ ‖vl‖C ≤ 1. Applying Srebro and Shraibman
[1]’s convex hull bounds for the trace norm and max norm (stated in Section 4 of the main paper),
we see that ‖X1‖max ≤ 1, and that that ‖Xi‖tr(p̃) ≤ γ−1/2 for i = 2, 3. Defining X ′ = X1 and
X ′′ = X2 +X3, we have the desired decomposition.

Applying this result to every X in the class
{
X ∈ Rn×m : ‖X‖(R,C) ≤ 1

}
, we see that

ES
[
R̂S

({
X ∈ Rn×m : ‖X‖(R,C) ≤ 1

})]
≤ ES

[
R̂S ({X ′ : ‖X ′‖max ≤ KG})

]
+ ES

[
R̂S

({
X ′′ : ‖X ′′‖tr(p̃) ≤ KG · 2γ−

1/2
})]

≤ KG · O
(√

n

s

)
+KG · 2γ−

1/2 · O

(√
n log(n)

s
+
n log(n)

s

)
,

1The statement of their theorem gives a result that holds with high probability, but in the proof of this result
they derive a bound in expectation, which we use here.
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where the last step uses bounds on the Rademacher complexity of the max norm and weighted trace
norm unit balls, shown in Theorem 5 of [1] and Theorem 3 of [2], respectively. Finally, we want
to deal with the last term, n log(n)

s , that is outside the square root. Since s ≥ n by assumption, we

have n log(n)
s ≤

√
n log2(n)

s , and if s ≥ n log(n), then we can improve this to n log(n)
s ≤

√
n log(n)

s .
Returning to (5) and plugging in our bound on the Rademacher complexity, this proves the desired
bound on the excess risk.

C.1 Proof of Lemma 1

For u ∈ Rn with ‖u‖R = 1, we need to find a decomposition u = u′ + u′′ such that ‖u′‖∞ ≤ 1

and ‖u′′‖p̃row
=
√∑

i p̃i•u
′′
i

2 ≤ γ−1/2. Without loss of generality, assume |u1| ≥ · · · ≥ |un|. Find

N ∈ {1, . . . , n} and t ∈ (0, 1] so that
∑N−1
i=1 p̃i• + t · p̃N• = γ−1, and let

r = γ · (p̃1•, . . . , p̃(N−1)•, t · p̃N•, 0, . . . , 0) ∈ ∆[n] .

Clearly, ri ≤ γ · p̃i• for all i, and so r ∈ R×1/2,γ ⊆ R.

Now let u′′ = (u1, . . . , uN−1,
√
t · uN , 0, . . . , 0), and set u′ = u− u′′. We then calculate

‖u′′‖2p̃row
=

N−1∑
i=1

p̃i•u
2
i + t · p̃N•u2

N = γ−1
n∑
i=1

riu
2
i ≤ γ−1 ‖u‖2R ≤ γ

−1 .

Finally, we want to show that ‖u′‖∞ ≤ 1. Since u′i = 0 for i < N , we only need to bound |u′i| for
each i ≥ N . We have

1 = ‖u‖2R ≥
n∑

i′=1

ri′u
2
i′ ≥

N∑
i′=1

ri′u
2
i′

(∗)
≥ u2

i ·
N∑
i′=1

ri′
(#)
= u2

i ≥ u′i2 ,

where the step marked (*) uses the fact that |ui′ | ≥ |ui| for all i′ ≤ N , and the step marked (#)
comes from the fact that r is supported on {1, . . . , N}. This is sufficient.

D Proof of Proposition 1

Let L0 = Loss(X̂). Then, by definition,

X̂ = arg min
{

Penalty(β,τ)(X) : Loss(X) ≤ L0

}
.

Then to prove the lemma, it is sufficient to show that for some t ∈ [0, 1],

X̂ = arg min
{
‖X‖(R(t),C(t)) : Loss(X) ≤ L0

}
,

where we set

R(t) =

{
r ∈ ∆[n] : ri ≥

t

1 + (n− 1)t
∀i
}
, C(t) =

{
c ∈ ∆[m] : cj ≥

t

1 + (m− 1)t
∀j
}
.

Trivially, we can rephrase these definitions as

R(t) =

{
t

1 + (n− 1) · t
· (1, . . . , 1) +

1− t
1 + (n− 1) · t

· r : r ∈ ∆[n]

}
and

C(t) =

{
t

1 + (m− 1) · t
· (1, . . . , 1) +

1− t
1 + (m− 1) · t

· c : c ∈ ∆[m]

}
. (6)

Note that for any vectors u ∈ Rn+ and v ∈ Rm+ ,

sup
r∈∆[n]

∑
i

riui = max
i
ui and sup

c∈∆[m]

∑
j

cjvj = max
j
vj . (7)
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Applying the SDP formulation of the local max norm (proved in Lemma 2 below), we have

‖X‖(R(t),C(t)) =
1

2
inf

 sup
r∈R(t)

∑
i

riUii + sup
c∈C(t)

∑
j

cjVjj :

(
U X
X> V

)
� 0


By (6) and (7)

=
1

2
inf

{
t

1 + (n− 1) · t
·
∑
i

Uii +
1− t

1 + (n− 1) · t
max
i
Uii

+
t

1 + (m− 1) · t
·
∑
j

Vjj +
1− t

1 + (m− 1) · t
max
j
Vjj :

(
U X
X> V

)
� 0

}

=
ωt
2

inf

{
t
∑
i

Aii + (1− t) max
i
Aii + t

∑
j

Bjj + (1− t) max
j
Bjj :

(
A X
X> B

)
� 0

}

=
ωt
2

inf

{
(1− t) ·M(A,B) + t · T(A,B) : X ∈ XA,B

}
, (8)

where for the next-to-last step, we define

A = U ·

√
1 + (m− 1) · t
1 + (n− 1) · t

, B = V ·

√
1 + (n− 1) · t
1 + (m− 1) · t

, ωt =
1√

(1 + (n− 1) · t)(1 + (m− 1) · t)
,

and for the last step, we define

T(A,B) = trace(A) + trace(B), M(A,B) = max
i
Aii + max

j
Bjj ,

and

XA,B =

{
X :

(
A X
X> B

)
� 0

}
.

Next, we compare this to the (β, τ) penalty formulated in our main paper. Recall

Penalty(β,τ)(X) = inf
X=AB>


√

max
i

∥∥A(i)

∥∥2

2
+ max

j

∥∥B(j)

∥∥2

2
·
√∑

i

∥∥A(i)

∥∥2

2
+
∑
j

∥∥B(j)

∥∥2

2

 .

Applying Lemma 3 below, we can obtain an equivalent SDP formulation of the penalty

Penalty(β,τ)(X) = inf
A,B

{√
M(A,B) ·

√
T(A,B) : X ∈ XA,B

}
. (9)

Since M(A,B) ≤ T(A,B) ≤ max{n,m}M(A,B), and since for any x, y > 0 we know
√
xy ≤

1
2

(
α · x+ α−1 · y

)
for any α > 0 with equality attained when α =

√
y/x, we see that

Penalty(β,τ)(X̂) =
1

2
inf
A,B

{
inf

α∈[1,
√

max{n,m}]

{
α ·M(A,B) + α−1 · T(A,B)

}
: X̂ ∈ XA,B

}

= inf
α∈[1,
√

max{n,m}]

[
1

2
inf
A,B

{
α ·M(A,B) + α−1 · T(A,B) : X̂ ∈ XA,B

}]
.

Since the quantity inside the square brackets is nonnegative and is continuous in α, and we are
minimizing over α in a compact set, the infimum is attained at some α̂, so we can write

Penalty(β,τ)(X̂) =
1

2
inf
A,B

{
α̂ ·M(A,B) + α̂−1 · T(A,B) : X̂ ∈ XA,B

}
.
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Recall that X̂ minimizes Penalty(β,τ)(X) subject to the constraint Loss(X) ≤ L0. Setting t :=
α̂−1

α̂+α̂−1 , we get

X̂ ∈ arg min
X

{
inf
A,B

{
α̂ ·M(A,B) + α̂−1 · T(A,B) : X ∈ XA,B

}
: Loss(X) ≤ L0

}
= arg min

X

{
inf
A,B

{
α̂

α̂+ α̂−1
·M(A,B) +

α̂−1

α̂+ α̂−1
· T(A,B) : X ∈ XA,B

}
: Loss(X) ≤ L0

}
= arg min

X

{
inf
A,B
{(1− t) ·M(A,B) + t · T(A,B) : X ∈ XA,B} : Loss(X) ≤ L0

}
= arg min

X

{
‖X‖(R(t),C(t)) : Loss(X) ≤ L0

}
,

as desired.

E Computing the local max norm with an SDP

Lemma 2. Suppose R and C are convex, and are defined by SDP-representable constraints. Then
the (R, C)-norm can be calculated with the semidefinite program

‖X‖(R,C) =
1

2
inf

sup
r∈R

∑
i

riAii + sup
c∈C

∑
j

cjBjj :

(
A X
X> B

)
� 0

 .

In the special case whereR and C are defined as in (8) in the main paper, then the norm is given by

‖X‖(R,C) =
1

2
inf

{
a+R>a1 + b+ C>b1 : a1i ≥ 0 and a+ a1i ≥ Aii ∀i,

b1j ≥ 0 and b+ b1j ≥ Bjj ∀j,
(

A X
X> B

)
� 0

}
.

Proof. For the general case, based on Theorem 1 in the main paper, we only need to show that

inf

sup
r∈R

∑
i

riAii + sup
c∈C

∑
j

cjBjj :

(
A X
X> B

)
� 0


= inf

sup
r∈R

∑
i

ri
∥∥A(i)

∥∥2

2
+ sup

c∈C

∑
j

cj
∥∥B(j)

∥∥2

2
: AB> = X

 .

This is proved in Lemma 3 below.

For the special case where R and C are defined by element-wise bounds, we return to the proof of
Theorem 1 given in Section A, where we see that

2 ‖X‖(R,C) = inf
AB>=X,a,b∈R
a1∈Rn

+,b1∈R
m
+

{
a+R>a1+b+C>b1 : a+a1i ≥

∥∥A(i)

∥∥2

2
∀i, b+b1j ≥

∥∥B(j)

∥∥2

2
∀j
}
.

Noting that
∥∥A(i)

∥∥2

2
= (AA>)ii and

∥∥B(j)

∥∥2

2
= (BB>)jj , we again use Lemma 3 to see that this

is equivalent to the SDP

inf

{
a+R>a1 + b+ C>b1 : a1i ≥ 0 and a+ a1i ≥ Aii ∀i,

b1j ≥ 0 and b+ b1j ≥ Bjj ∀j,
(

A X
X> B

)
� 0

}
.
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Lemma 3. Let f : Rn ×Rm → R be any function that is nondecreasing in each coordinate and let
X ∈ Rn×m be any matrix. Then

inf
{
f
(∥∥A(1)

∥∥2

2
, . . . ,

∥∥A(n)

∥∥2

2
,
∥∥B(1)

∥∥2

2
, . . . ,

∥∥B(m)

∥∥2

2

)
: AB> = X

}
= inf

{
f (Φ11, . . . ,Φnn,Ψ11, . . . ,Ψmm) :

(
Φ X
X> Ψ

)
� 0

}
,

where the factorization AB> = X is assumed to be of arbitrary dimension, that is, A ∈ Rn×k and
B ∈ Rm×k for arbitrary k ∈ N.

Proof. We follow similar arguments as in Lemma 14 in [3], where this equality is shown for the
special case of calculating a trace norm.

For convenience, we write

g(A,B) = f
(∥∥A(1)

∥∥2

2
, . . . ,

∥∥A(n)

∥∥2

2
,
∥∥B(1)

∥∥2

2
, . . . ,

∥∥B(m)

∥∥2

2

)
and

h(Φ,Ψ) = f (Φ11, . . . ,Φnn,Ψ11, . . . ,Ψmm) .

Then we would like to show that

inf
{
g(A,B) : AB> = X

}
= inf

{
h(Φ,Ψ) :

(
Φ X
X> Ψ

)
� 0

}
.

First, take any factorization AB> = X . Let Φ = AA> and Ψ = BB>. Then
(

Φ X
X> Ψ

)
� 0,

and we have g(A,B) = h(Φ,Ψ) by definition. Therefore,

inf
{
g(A,B) : AB> = X

}
≥ inf

{
h(Φ,Ψ) :

(
Φ X
X> Ψ

)
� 0

}
.

Next, take any Φ and Ψ such that
(

Φ X
X> Ψ

)
� 0. Take a Cholesky decomposition

(
Φ X
X> Ψ

)
=

(
A 0
B C

)
·
(
A 0
B C

)>
=

(
AA> AB>

BA> BB> + CC>

)
.

From this, we see that AB> = X , that Φii =
∥∥A(i)

∥∥2

2
for all i, and that Ψjj ≥

∥∥B(j)

∥∥2

2
for all j.

Since f is nondecreasing in each coordinate, we have h(Φ,Ψ) ≥ g(A,B). Therefore, we see that

inf
{
g(A,B) : AB> = X

}
≤ inf

{
h(Φ,Ψ) :

(
Φ X
X> Ψ

)
� 0

}
.
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