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Supplementary Materials

A Proof of Theorem 1

Special case: element-wise upper bounds First, we assume that the general result is true, i.e.

2l = o | e 3 or Al e Ball, ) ™
and prove the result in the special case, where

RZ{TEA[n]:PiSRiVi}andC:{CEA[m]:CjSCj\V/j}.

Using strong duality for linear programs, we have
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reRy i

inf {aJrRTal a+ay; > HA()H Vz} .
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In this last line, if we fix a and want to minimize over a; € R, it is clear that the infimum is

obtained by setting a;; = ||A ) ||2 4 for each 4. This proves that

o S - igg{HZ:Ri (10l -2),}

a

Applying the same reasoning to the columns and plugging everything in to (1), we get
2
21Xl = e e o+ S (1405 - ), #0430 (IBolz )}

General factorization result In the proof sketch given in the main paper, we showed that
2
2 || X < inf supH /2AH +sup”c1/2BH ) .
” ”(Rﬂ) ABT (rER ceC F
We now want to prove the reverse inequality. Since || X ||z o) = [|X ||z ) by definition (where

S denotes the closure of a set S), we can assume without loss of generality that R and C are both
closed (and compact) sets.



First, we restrict our attention to a special case (the “positive case”), where we assume that for all
rc Randallc € C,r; > 0and c; > O for all 7 and j. (We will treat the general case below.)
Therefore, since || X||;, (. ) is continuous as a function of (r, ) for any fixed X and since R and C

are closed, we must have some r* € R and c* € C such that ||XH(R 0= HX||tr(r* erys Withry >0
for all 7 and ¢} > 0 for all j.

Next, let UDVT = r*"/2. X - ¢*'/* be a singular value decomposition, and let A* = r*~/2UD"/?
and B* = ¢*~/?V' D2, Then A*B*T = X, and

2 2
' AY| = HUDI/2 = trace(UDU ") = trace(D) = [ X er e ey = Xm0
F F ' '
Below, we will show that
2
r* = argmax |[r/2 A% . ()
reR F

This will imply that | X || ¢) = suprer Hrl/ZA* i,
will have proved

2
2 ”XH(R,C) = (Sél,g Hr1/2A* . + Slélg Hc1/2B*
r c

and following the same reasoning for B*, we
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which is sufficient. It remains only to prove (2). Take any r € R with r # r* and let w = r — r*.
We have
A = Sy =303 @pU T

and it will be sufficient to prove that this quantlty is < 0. To do this, we first define, for any ¢ € [0, 1],

12
Z,/Ht wpUT “trace<< HW) UDUT>.

Using the fact that trace(-) < ||- Ht for all matrices, we have
* 12
t) < H (r ttW) upUT
r

- H(r* +tw) 2 X

1'1/QAH2 —
F

(* +tw) X2 vUT

tr

tr

br = ||XHtr(r*+tw,c*) S ||XH(7?,,C) = Z(U‘DUT)“ = f(O) )

i

where the last inequality comes from the fact that r* + ¢tw € R by convexity of R. Therefore,

d w; 1 w;
= = 1 .t (UDUT).. - . 2 (UDUTY..
> dt f( )’t_o 7 (EZ 1+t - (UDU )”> 2 % - (UDU ")y

as desired. (Here we take the right-sided derivative, i.e. taking a limit as ¢ approaches zero from the
right, since f(t) is only defined for ¢ € [0, 1].) This concludes the proof for the positive case.

Next, we prove that the general factorization (1) hold in the general case, where we might have
R ¢ R, and/or C ¢ R, . If for any i € [n] we have r; = 0 for all r € R, we can discard this
row of X, and same for any j € [m]. Therefore, without loss of generality, for all i € [n] there

is some r¥ € R with r; @) > 0. Taking a convex combination, r* = %ZZ r e R, we have
rf e ROARY . Slmllarly, we can construct ¢t € C MR,

Fix any € > 0, and let § = min{min; r;", min; cj T

Roz{reR:miinriz(s}gRandcoz{cec:m}nciza}gc.

) > 0, and define closed subsets

Since we know that the factorization result holds for the “positive case”, we have
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Now choose any factorization ABT = X such that
( sup (1+¢/2). 3)
reRo
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Next, we need to show that sup,_cx Hrl/ ZAH is not much larger than sup,.¢ %, Hrl/ 2AH (and same
F F

for B). Choose any r’ € R, and let r”/ = (1 —) +) r + ( J +) rt € R. Then

min; r;] min; r]
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and so r”’ € Ry. We also have r}, < (1 - min‘? r.*) r/ for all i. Therefore,
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Since this is true for any r’ € R, applying the definition of §, we have
~ ) —/2 ~ 1+ —/2 ~
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+
reRrR F min; r; reRo F 1+4+e€ reRo F

Applying the same reasoning for B and then plugging in the bound (3), we have
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Since this analysis holds for arbitrary € > 0, this proves the desired result, that
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B Proof of Theorem 2

We follow similar techniques as used by Srebro and Shraibman [1] in their proof of the analogous
result for the max norm. We need to show that

Conv {uv” : u € R™,v € R™ ||ull = [[v], =1} € {X X r.c) < 1} c
Kg-Conv{w' :ueR"veR™ [ullg =]|v|. =1} .

For the left-hand inclusion, since ||-[|(% ¢ is a norm and therefore the constraint [ X||z o) < 11s
re) < Lforanyu € R", v € R™ with lull = llvlle =
1. This is a trivial consequence of the factorization result in Theorem 1.

convex, it is sufficient to show that ||uvT H(

Now we prove the right-hand inclusion. Grothendieck’s Inequality states that, for any Y € R™"*™
and for any dimension k,

wup {(Y,UVT) 10 € R,V € R, Ui, < 1%, [Vigl, < 1)
< Kg-sup {(Y,ww") :ue R v e R™, |u;| < 1Vi, |v;] <1Vj} ,



where K¢ € (1.67,1.79) is Grothendieck’s constant. We now extend this to a slightly more general
form. Take any a € R’} and b € R’. Then, setting U = diag(a)*U and V' = diag(b) TV (where
M is the pseudoinverse of M), and same for % and ¥, we see that

up {(¥,UVT) U € 6V € R |0 |, < ¥, Vi, < by %)
= sup {(diag(a) Y - diag(b),UV ") : U € R™* Ve R™*F HU(i)

<1V,
2

Violl, < 1w}
< K¢ -sup {(diag(a) - Y - diag(b), a0 ") : & € R", 9 € R™, |&;| < 1Vi4, |9;| < 1Vj}
= Kg -sup{(Y,uvT) cu e R v e R™ |u;| < a; Vi, |v| < b, Vj} . @

Now take any Y € R™*™. Let HH?RC) be the dual norm to the (R, C)-norm. To bound this dual
norm of Y, we apply the factorization result of Theorem 1:

||Y||>(k7a,c) = sup (Y, X)
1X1l(r,c)<1
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=sup ¢ (V,UVT) 1 5 fgg;rA!U(i)Hﬁigg;%||V(j>Hz <1
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= sup sup {(Y, uvry: HU(i)Hz < a; Vi,
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< Kg- sup sup {(Y7 uvT> Hug] < aq Vi, |us| < by Vj}
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= Kg-sup {(Y,uv") : [lullg <1,|jv], <1}

u,v

=Kg-sup{(Y,X): X € Conv{uv—r tu € R v e R, |Jullg = |lvllp =1}}
X

Vipll, < b5 Vi)

=sup {(Y,X): X € KG~Conv{uv—r tu €R" v eR™ |lullg = |v]l =1}} .
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As in [1], this is sufficient to prove the result. Above, the step marked (*) is true because, given any
U and V with

1 2 2
5 fgg;ri U]l +§gg§j:% Vinlls | <1,

SUPecc D C.7'||V<j>|\§
suprer 2.; Ti||U)

3.
2

we can replace U and V with U’ :== U -wand V' .= V - w™!, where w = i‘/

This will give U'V'T = UV T, and

sup Z r;
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C Proof of Theorem 3

Following the strategy of Srebro & Shraibman (2005), we will use the Rademacher complexity to
bound this excess risk. By Theorem 8 of Bartlett & Mendelson (2002)', we know that

Es Z Pij |Y;
2]

ij*Xij’ -

x| <fz Pij [Yi = Xl
R.0)S

=0 (Bs [Rs ({X e R™™ : Xl re) < VE})])

where the expected Rademacher complexity is defined as

~ " 1
s {Rs ({X c RMX™ . X1 (r.c) < \/E})} = gIES’,, - sup<\/EZ v Xig, |
(R,C)= t

where v € {£1}* is a random vector of independent unbiased signs, generated independently from

Now we bound the Rademacher complexity. By scaling, it is sufficient to consider the case k = 1.
The main idea for this proof is to first show that, for any X with || X ||z ¢) < 1, we can decompose
X into a sum X' + X" where || X'|| .. < K¢ and | X"[|;,5) < 2Ky~ "/?, where p represents

the smoothed row and column marginals with smoothing parameter { = 1/2, and where K¢ < 1.79
is Grothendieck’s constant. We will then use known Rademacher complexity bounds for the classes
of matrices that have bounded max norm and bounded smoothed weighted trace norm.

To construct the decomposition of X, we start with a vector decomposition lemma, proved below.

Lemma 1. Suppose R O R}, . Then for any u € R" with ||u|, = 1, we can decompose w into a

=3 P <7

12,7
sumuw = u’ 4+ u” such that ||v'|| < 1and ||u"]5

Prow

Next, by Theorem 2, we can write

o0
X:KG'Ztl'ulUlT,
=1

where t; > 0, >,°,t; = 1, and ||w||r = |lullo = 1 for all [. Applying Lemma 1 to u; and to v;
for each [, we can write u; = u} + v} and v; = v; + v}, where

lulloe <1, 1l llg,.., <77 Mol <15 llofllg,,, <7777

Prow

Then

o0 e} o
G- (Z ty - ujo) T 4 Ztl ujv) T+ Ztl ~u2’vlT> = Kg (X1 +Xo+ X3) .
=1 =1 I=1

Furthermore, ||vjl[5 < [lull,, < 1,and [[v[5 < [lvillc < 1. Applying Srebro and Shraibman
[1]’s convex hull bounds for the trace norm and max norm (stated in Section 4 of the main paper),
we see that || X1[],,,, < 1, and that that [[X;[|, ) < 4~Y2 for i = 2,3. Defining X’ = X, and

X" = X5 + X3, we have the desired decomposition.

Applying this result to every X in the class {X € R™>*m . HX||(R o < 1}, we see that

Es [735 ({X €RV™ 1 ||X || ) < 1})}

<Es [Rs (X ¢ X | < KeD)] +Bs [Rs ({X7 21Xy < K- 277}

1 1 1
SKG~O(ﬂ)+Kg-2v—/2-O< ”Of(”)+”°§(”)> ,

I'The statement of their theorem gives a result that holds with high probability, but in the proof of this result
they derive a bound in expectation, which we use here.




where the last step uses bounds on the Rademacher complexity of the max norm and weighted trace
norm unit balls, shown in Theorem 5 of [1] and Theorem 3 of [2], respectively. Finally, we want
to deal with the last term, ”lofg(”), that is outside the square root. Since s > n by assumption, we
nlog(n) nlog(n)

have ,and if s > nlog(n), then we can improve this to

Returmng to (5) and pluggmg in our bound on the Rademacher complexity, this proves the de51red
bound on the excess risk.

nlog(n) < /nlog (n)

C.1 Proof of Lemma 1

For u € R™ with |lu|l, = 1, we need to find a decomposition u = u’ + u” such that ||o/|| , <1
and [[u”|[5 = /> Pi.ui? < ~~"/2. Without loss of generality, assume |u;| > - -- > |u,|. Find
N e{l,...,n}andt € (0,1] so that Ef\:ll Pie +1-Pn. =7}, and let

I‘Z’y'(f)l.,...,ﬁ(N_l),,t~i5N,,0,...,0) EA[H] .

Clearly, r; <~ -p;. forall 4, andsor € Rlx/z e R.
Now let u" = (uy,...,un_1,Vt-un,0,...,0), and set v’ = u — u”. We then calculate
N-1 n
_ - 2 _
/I3, = Puud +t-pyaud =71 vl <7 fuff <7
i=1 i=1

Finally, we want to show that ||u/|| ., < 1. Since u} = 0 for i < N, we only need to bound |u}| for
each 7 > N. We have

1_Hu||R>Zr7/u,>ZrZ/u, >u2 Zrll = u I>ul?

where the step marked (*) uses the fact that |u;| > |u,| for all ¢/ < N, and the step marked (#)
comes from the fact that r is supported on {1, ..., N}. This is sufficient.

D Proof of Proposition 1

Let Lo = Loss()/(\' ). Then, by definition,
X = argmin {Penalty(ﬁﬁ) (X) : Loss(X) < LO} .
Then to prove the lemma, it is sufficient to show that for some ¢ € [0, 1],

X = arg min{|\X||(R<t)7c(t)) - Loss(X) < LO} :

where we set

t t

Trivially, we can rephrase these definitions as

t 1—t
Rp={———(1,.... )+ —————.r:reA d
© {1+(n1)~t @ )+1+(n—1)~t rire [”]} an

t 1-t¢
C(t):{H(Tn_l)'t'(L”wl)‘i‘M'C.CEA[m]} . (6)

Note that for any vectors u € R’} and v € R,

sup E r;u; = max u; and  sup E cjv; = max V) . (7

I‘GA[H] i CGA[m] j



Applying the SDP formulation of the local max norm (proved in Lemma 2 below), we have

1, U X
1X0 (R0 = 5 10f ] sup D willi+ sup > eV ( X7 v > =0
reR (1) i CGCU) j

By(ﬁ):andm;inf{l_’_ p— ZU“—F n—l) m?ini
e T et ()4
:(’;tinf{ ZA“—i— 1—t)maxA“+tZB]j+ )mJaXBJJ : ( )?T )]§>>0}

:(“;tinf{(l_t).M(A’B)+t~T(A,B)ZXGXA,B}7 (3)

where for the next-to-last step, we define

1+(m—1)-t

A=U 1+(n—1)-

, B=V-

and for the last step, we define

T(A, B) = trace(A) + trace(B), M(A4, B) = max Ay + max Bjj ,

A X
XA,B{X:<XT B)tO}

Next, we compare this to the (3, 7) penalty formulated in our main paper. Recall

and

Penalty (s )(X) = inf \/maXHA()H2+Inax||B(J)||2 \/Z||A<)||2+Z||B<a>||2

Applying Lemma 3 below, we can obtain an equivalent SDP formulation of the penalty

Penalty 5., (X) = %{\/M(A, B)-VT(AB) : X e XA,B} . )

Since M(A, B) < T(A4, B) < max{n,m}M(A, B), and since for any z,y > 0 we know ,/zy <

% (a cx4+a - y) for any « > 0 with equality attained when o = +/y/x, we see that

~ 1 _ B ~
Penalty 5 .y (X) = 5 b ]fg{ . 1nf{ - {a-M(A,B)+a ' T(4,B)} : X € XA,B}
1 ~
= inf [ inf sa-M(A,B)+a ' -T(A,B) : X €Xap } .
a€[l,y/max{n,m}] 2 A’B{ }

Since the quantity inside the square brackets is nonnegative and is continuous in «, and we are
minimizing over « in a compact set, the infimum is attained at some &, so we can write

N 1 N
Penalty(s ,(X) = 5 i ]t;{oz M(A,B)+a ! T(A,B) : Xe XAB} .



Recall that X minimizes Penalty g ) (X) subject to the constraint Loss(X) < Lo. Setting ¢ :=

a-
ata- 1’ we get

«

Xe argmm {,l4nf {@-M(A,B)+a ' T(A,B) : X € Xap}:Loss(X) < LO}
~ Sl
f {Oé_l M(A,B)+ ﬁ T(A7B) : X € XA’B} ZLOSS(X) S LO}
a

inf {(1—1¢)-M(A,B)+¢-T(A,B) : X € Xap}:Loss(X) < Lo
= argrr;(in {”XH(’R@,C@)) : Loss(X) < LO} ;

as desired.

E Computing the local max norm with an SDP

Lemma 2. Suppose R and C are convex, and are defined by SDP-representable constraints. Then
the (R, C)-norm can be calculated with the semidefinite program

i A X
1X[l(rc) = 1n suerzA”JrsuchJ DY < Jrc > =0

ceC

In the special case where R and C are defined as in (8) in the main paper, then the norm is given by
1
”X”(R,C) = 2inf{a+RTa1+b+CTb1 Dayg ZOanda—&—ah— ZA“ V’L,

buZOdi’ldb‘i‘bljZBijj,(;T g)to}

Proof. For the general case, based on Theorem 1 in the main paper, we only need to show that

A X
il onson (4 3)

= inf iAiz N BeslI?: ABT = x
in félg;r | ()HQ‘FigIC’ZCJ | (J)HQ

This is proved in Lemma 3 below.

For the special case where R and C are defined by element-wise bounds, we return to the proof of
Theorem 1 given in Section A, where we see that

20X = o inf bR T s wran > A} i bt > B i
a1 E€RT by ERT

Noting that ||A; H2
is equivalent to the SDP

(AAT);; and HBU)H2 = (BBT);;, we again use Lemma 3 to see that this

inf{a—i—RTal + b—|—OTb1 : a1y > 0and a + ay; > Aj; Vi,

blj 20andb—|—b1j ZBijj,( );—4T )_é ) EO}

O



Lemma 3. Let f : R™ x R™ — R be any function that is nondecreasing in each coordinate and let
X € R™™ ™ be any matrix. Then

int {7 (A2 [ A 2. | B

. ¢ X
:lnf{f(q)llw'wq)nna\ljllv"'7\Ijmm):(XT \I/)EO}’

2o | Bewlly)  ABT = x}

where the factorization AB T = X is assumed to be of arbitrary dimension, that is, A € R™*F gnd
B € R™*¥ for arbitrary k € N.

Proof. We follow similar arguments as in Lemma 14 in [3], where this equality is shown for the
special case of calculating a trace norm.

For convenience, we write

9(A,B) = f (HA<1>|

2

2 1Bl

| Ay |

Bim|3)

2
PEEEEE)

and
P, 9) = f (P11, Prn, P11y ooy Uinm) -

Then we would like to show that

inf{g(A,B):ABT:X}:inf{h(Q\I/): ( o ) »o} .

First, take any factorization ABT = X.Let® = AAT and U = BBT. Then ( ;‘r )\If ) >0,
and we have g(A, B) = h(®, ¥) by definition. Therefore,

inf{g(A,B):ABTX}zinf{h@),\lf):( e X ) 50} :

o X
X' v

® X\_[(A 0\ (A 0\ _[A4AT  4BT

X" v )"\ B C B C ) ~\ BA" BBT+cCCT )"
From this, we see that ABT = X, that &,;;, = HA(i) H; for all 7, and that ¥;; > HB(j) H; for all j.
Since f is nondecreasing in each coordinate, we have h(®, V) > g(A, B). Therefore, we see that

Next, take any ® and W such that ( > > 0. Take a Cholesky decomposition

inf {g(A,B) : ABT = X} <inf{h(<I>7\I/): ( oo ) »o} .
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