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Abstract
We develop a hierarchical Bayesian model that learns to learn categories from single training

examples. The model transfers acquired knowledge from previously learned categories to a novel
category, in the form of a prior over category means and variances. The model discovers how
to group categories into meaningful super-categories thatexpress different priors for new classes.
Given a single example of a novel category, we can efficientlyinfer which super-category the novel
category belongs to, and thereby estimate not only the new category’s mean but also an appropriate
similarity metric based on parameters inherited from the super-category. On MNIST and MSR
Cambridge image datasets the model learns useful representations of novel categories based on
just a single training example, and performs significantly better than simpler hierarchical Bayesian
approaches. It can also discover new categories in a completely unsupervised fashion, given just
one or a few examples.

1. Introduction

In typical applications of machine classification algorithms, learning curves are measured in tens,
hundreds or thousands of training examples. For humans learners, however, the most interesting
regime occurs when the training data are very sparse. Just a single example is often sufficient
for people to grasp a new category and make meaningful generalizations to novel instances, if
not to classify perfectly (Pinker (1999)). Human categorization often asymptotes after just three
or four examples (Xu and Tenenbaum (2007); Smith et al. (2002); Kemp et al. (2006); Perfors
and Tenenbaum (2009)). Here we present a nonparametric hierarchical Bayesian model that aims
to capture this human-like pattern of one-shot learning, and test its performance against several
alternatives on two standard benchmark datasets of visual categories.

At a minimum, categorizing an object requires information about the category’s mean and vari-
ance along each dimension in an appropriate feature space. This is a similarity-based approach,
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where the mean represents the category prototype, and the inverse variances (or precisions) corre-
spond to the dimensional weights in a category-specific similarity metric. One-shot learning may
seem impossible because a single example provides information about the mean or prototype of the
category, but not about the variances or the similarity metric. Giving equal weight to every dimen-
sion in a large a priori-defined feature space, or using the wrong similarity metric, is likely to be
disastrous.

Our model leverages higher-order knowledge abstracted from previously learned categories to
estimate the new category’s prototype as well as an appropriate similarity metric from just one
example. These estimates are also improved as more examplesare observed. To illustrate, consider
how human learners seeing one example of an unfamiliar animal, such as a wildebeest (or gnu),
can draw on experience with many examples of ‘horse’, ‘cows’, ‘sheep’, and more familiar related
categories. These similar categories have similar prototypes – horses, cows, and sheep look more
like each other than like furniture or vehicles – but they also have similar variability in their feature-
space representations, or similar similarity metrics: Theways in which horses vary from the ‘horse’
prototype are similar to the ways in which sheep vary from the‘sheep’ prototype. We may group
these similar basic-level categories into an ‘animal’ super-category, which captures these classes’
similar prototypes as well as their similar modes of variation about their respective prototypes. If we
can identify the new example of ‘wildebeest’ as belonging tothis ‘animal’ super-category, we can
transfer an appropriate similarity metric and thereby generalize informatively even from a single
example.

For many real-world applications, we must be able to learn tens of thousands of different cat-
egories, and to learn new categories building on (and not disrupting) representations of old ones
(Bart and Ullman (2005); Biederman (1995)). In these settings, learning from one or a few labeled
examples and performing efficient inference will be crucial, and our method is designed to scale up
in precisely these ways. A nonparametric prior allows new categories to be formed at any time in
either supervised or unsupervised modes, and conjugate distributions allow most parameters to be
integrated out analytically for very fast inference.

2. Related Prior Work

Hierarchical Bayesian models have previously been proposed (Kemp et al. (2006); Perfors and
Tenenbaum (2009); Heller et al. (2009)) to describe how people learn to learn categories from one
or a few examples, or learn similarity metrics, but these approaches were not focused on machine
learning settings – large-scale problems with many categories and high-dimensional natural image
data. Most similar to our work is Heller et al. (2009)’s account of how people learn dimensional
biases in categorization tasks, but in their model, the analog of our super-categories capture only
shared covariance of basic-level categories, rather than both means and variances as we do. As
we show in our experimental results, this prevents their model from generalizing any better than
baseline when given just one or two examples of a novel category.

A large class of models based on hierarchical Dirichlet processes (Teh et al. (2006)) have also
been used for transfer learning (Sudderth et al. (2008); Canini and Griffiths (2009)). There are two
key difference between our approach and previous applications of HDPs to cross-task transfer or
multi-task learning. First, HDPs typically assume a fixed hierarchy of classes for sharing param-
eters, while we learn the hierarchy in an unsupervised fashion. Second, HDPs are typically given
many examples for each category rather than the one-shot learning cases we consider here, and

2



ONE-SHOT LEARNING WITH A HIERARCHICAL NONPARAMETRIC BAYESIAN MODEL

it is not clear how well they would work for our problems. Recently introduced nested Dirichlet
processes can also be used for transfer learning tasks (Rodriguez and Vuppala (2009); Rodriguez
et al. (2008)). However, this work assumes a fixed number of classes (or groups) and did not at-
tempt to address one-shot learning problem: their motivation was to use a multilevel nonparametric
mixture to capture more complex within-class structure (Rodriguez and Vuppala (2009)). Our ap-
proach allows for new categories to be formed at multiple levels of the hierarchy in order to support
generalization from few examples.

The multi-level structure of our model is similar to the recently introduced nested Dirichlet
process of (Rodriguez and Vuppala (2009); Rodriguez et al. (2008)). However, there are crucial
differences both in our goals and our mathematical formulation: Rodriguez and Vuppala (2009)
attach class labels to the top level of their hierarchy, while we attach class labels to the bottom level.
This allows the upper-level classes in our model to capture super-categories (e.g., ‘animal’ as a su-
perclass for ‘dog’, ‘horse’, ‘cow’) with learned prior knowledge about means and covariances for
categories of that kind. This learned prior can be transferred to new categories in order to support
generalization from very few examples. In contrast, Rodriguez and Vuppala (2009) do not learn
super-categories of labeled classes. Their approach aims to capture more complex within-class
structure using their lower-level mixture components which allow learning of nonlinear decision
boundaries from large sets of examples (hence their focus ona 2-class, 2-dimensional ‘spiral’ prob-
lem or Fisher’s 3-class, 4-dimensional Iris task). A recenthierarchical model of Adams et al. (2011)
could also be used for transfer learning tasks. However, this model does not learn hierarchical
priors over covariances, which is crucial for transferringan appropriate similarity metric to new
basic-level categories. These recently introduced modelsare complementary to our approach, and
can be combined productively, although we leave that as a subject for future work.

There are several related approaches in the computer visioncommunity. A hierarchical topic
model for image features (Bart et al. (2008); Sivic et al. (2008)) can discover visual taxonomies
in an unsupervised fashion from large datasets but was not designed for one-shot learning of new
categories. Congealing methods (Miller et al. (2000)) support one-shot category learning with a
hierarchical probabilistic model, but they are designed primarily for black-and-white images using
special purpose image representations. Perhaps closest toour work, Fei-Fei et al. (2006) also gave a
hierarchical Bayesian model for visual categories, with a prior on the parameters of new categories
that was induced from other categories. However their approach is not well-suited as a generic
approach to one-shot learning. They learned a single prior shared across all categories and the prior
was learned only from three categories, chosen by hand.

3. Hierarchical Bayesian Model

Consider observing a set ofN i.i.d input feature vectors{x1, ...,xN}, xn ∈ RD. In general,
features will be derived from high-dimensional, highly structured data, such as images of natural
scenes, in which case the feature dimensionalityD can be quite large (e.g. 50,000). For clarity of
presentation, let us first assume that our model is presentedwith a fixed two-level category hierarchy.
In particular, suppose thatN objects are partitioned intoC basic-level (or level-1) categories. We
represent such partition by a vectorzb of lengthN , each entry of which iszb

n ∈ {1, ..., C}. We also
assume that ourC basic-level categories are partitioned intoK super-categories (level-2 categories),
which we represent byzs of lengthC, with zs

c ∈ {1, ...,K}. We will relax these assumption later
by placing a hierarchical nonparametric prior over the category assignments.
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Cow Horse Sheep Truck Car

Animal Vehicle
Level 1
{µc, τ c}

Level 2

{µk, τk, αk}

Level 3
{τ0, α0}

• For each super-categoryk = 1, ..,∞:

drawθ2 using Eq. 4.

• For each basic categoryck = 1, ..,∞, placed
under each super-categoryk:

drawθ1 using Eq. 2.

• For each observationn = 1, ..., N

drawzn ∼ nCRP(γ)

drawxn ∼ N (xn|θ1, zn) using Eq. 1

Figure 1: Left: Hierarchical Bayesian model that assumes a fixed tree hierarchy for sharing parameters.
Right: Generative process of the corresponding nonparametric model.

A schematic representation of the overall model is shown in Fig. 1, left panel, and we now
formalize it more precisely. For any basic-level categoryc, the distribution over the observed feature
vectors is assumed to be Gaussian with a category-specific meanµc and a category-specificdiagonal
precision matrix, whose entries are{τ c

d}D
d=1. The distribution takes the following product form:

P (xn|zb
n = c, θ1) =

D∏
d=1

N (xn
d |µc

d, 1/τ
c
d), (1)

whereN (x|µ, 1/τ) denotes a Gaussian distribution with meanµ and precisionτ andθ1 = {µc, τ c}C
c=1

denotes the level-1 category parameters. We next place a conjugate Normal-Gamma prior over
{µc, τ c}. Let k = zs

c , i.e. let the level-1 categoryc belong to level-2 categoryk, whereθ2 =
{µk, τk, αk}K

k=1 denote the level-2 parameters. Then:P (µc, τ c|θ2, zs) =
∏D

d=1 P (µc
d, τ

c
d |θ2, zs),

where for each dimensiond we have:

P (µc
d, τ

c
d |θ2) = P (µc

d|τ c
d , θ2)P (τ c

d |θ2) = (2)

= N (µc
d|µk

d, 1/(ντ c
d)Γ(τ c

d |αk
d, α

k
d/τk

d ).

Note that our parameterization of the Gamma density is in terms of its shapeαk and meanτk

parameters:

Γ(τ |αk, αk/τk) =
(αk/τk)α

k

Γ(αk)
ταk−1 exp

(
−τ

αk

τk

)
. (3)

Such a parameterization is more interpretable and is much easier to work with, since E[τ ] = τk. In
particular, from Eq. 2, we can easily derive that E[µc] = µk and E[τ c] = τk. This gives our model a
very intuitive interpretation: the expected values of the basic level-1 parametersθ1 are given by the
corresponding level-2 parametersθ2. The parameterαk further controls the variability ofτ c around
its mean, i.e. Var[τ c] = (τk)2/αk. For the level-2 parametersθ2, we shall assume the following
conjugate priors:

P (µk
d) = N (µk

d|0, 1/τ0), P (αk
d|α0) = Exp(αk

d |α0), P (τk
d |θ0) = IG(τk

d |a0, b0),

where Exp(x|α) denotes an exponential distribution with rate parameterα, and IG(x|α, β) denotes
an inverse-gamma distribution with shape parameterα and scale parameterβ. We further place a
diffuse Gamma priorΓ(1, 1) over hyperparametersα0 andτ0. Throughout our experimental results,
we also seta0 = 1 andb0 = 1.
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3.1 Modelling the number of super-categories

So far we have assumed that our model is presented with a two-level partitionz = {zs, zb}. This
model corresponds to a standard hierarchical Bayesian model that assumes a fixed hierarchy for
sharing parameters. If, however, we are not given any level-1 or level-2 category labels, we need
to infer the distribution over the possible category structures. We place a nonparametric two-level
nested Chinese Restaurant Prior (CRP) (Blei et al. (2003, 2010)) overz, which defines a prior over
tree structures and is flexible enough to learn arbitrary hierarchies. The main building block of
the nested CRP is the Chinese restaurant process, a distribution on partition of integers. Imagine a
process by which customers enter a restaurant with an unbounded number of tables, where thenth

customer occupies a tablek drawn from:

P (zn = k|z1, ..., zn−1) =

{
nk

n−1+γ nk > 0
γ

n−1+γ k is new
, (4)

wherenk is the number of previous customers at tablek andγ is the concentration parameter.
The Nested CRP, nCRP(γ), extends CRP to nested sequence of partitions, one for each level

of the tree. In this case each observationn is first assigned to the super-categoryzs
n using Eq. 4.

Its assignment to the basic-level categoryzb
n, that is placed under a super-categoryzs

n, is again
recursively drawn from Eq. 4 (for details see Blei et al. (2010)). For our model, a two-level nested
CRP allows flexibility of having a potentially unbounded number of super-categories as well as
an unbounded of basic-level categories placed under each super-category. Finally, we also place a
Gamma priorΓ(1, 1) over γ. The full generative modelis given in Fig. 1, right panel. Unlike in
many conventional hierarchical Bayesian models, here we infer both the model parameters as well
as the hierarchy for sharing those parameters.

Our model can be readily used in unsupervised or semi-supervised modes, with varying amounts
of label information. Here we focus on two settings. First, we assume basic-level category labels
have been given for all examples in a training set, but no super-category labels are available. We
must infer how to cluster basic categories into super-categories at the same time as we infer pa-
rameter values at all levels of the category hierarchy. The training set includes many examples of
familiar basic categories but only one (or few) example for anovel class. The challenge is to gen-
eralize the new class intelligently from this one example byinferring which super-category the new
class comes from and exploiting that super-category’s implied priors to estimate the new class’s
prototype and similarity metric most accurately. Second, we consider a similar labeled training set
but now the test set consists of many unlabeled examples froman unknown number of basic-level
classes – including both familiar and novel classes. This reflects the problem of “unsupervised
category learning”: How to discover when the model has encountered novel categories, and how
to break up new instances into categories in an intelligent way that exploits knowledge abstracted
from a hierarchy of more familiar categories.

4. Inference

Inferences about model parameters at all levels of hierarchy can be made by running a Markov chain
whose stationary distribution is the posterior distribution over the model parameters. When the tree
structurez of the model is not given, the inference process will alternate between fixingz while
sampling the space of model parametersθ and fixingθ while sampling category assignments. The
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use of conjugate priors allows for an efficient Gibbs sampler.

Sampling level-1 parameters: Given level-2 parametersθ2 and z, the conditional distribution
P (µc, τ c|θ2, z,x) is Normal-Gamma (Eq. 2), which allows us to easily sample level-1 parameters
{µc, τ c}. Making inferences about precision terms in our model can bethought of as learning a
category-specific similarity metric. Note that the conditional distribution overθ1 factorizes into the
product of conditional distributions over the parameters of individual categories:

P
({µc, τ c}C

c=1|θ2, z
)

=
C∏

c=1

D∏
d=1

P (µc
d, τ

c
d |θ2, z).

We can therefore easily speed up our inference process by sampling from these conditional distri-
butions in parallel. The speedup could be substantial as thenumber of the basic-level categories
becomes large.

Sampling level-2 parameters: Given z, θ1, andθ3, the conditional distributions over the mean
µk and precisionτk take Gaussian and Inverse-Gamma forms. The only complicated step involves
samplingαk that control the variation of the precision termτ c around its mean (Eq. 3). The condi-
tional distribution overαk cannot be computed in closed form and is proportional to:

p(αk) ∝ (αk/τk)α
knk

Γ(αk)nk
exp

(
−αk

(
α0 + Sk/τk − T k

))
,

whereSk =
∑

c:z(c)=k τ c andT k =
∑

c:z(c)=k log(τ c). For large values ofαk the density, specified
by Eq. 5, is similar to a Gamma density (Wiper et al. (2001)). We therefore use Metropolis-Hastings
with a proposal distribution given by the Gamma density. In particular, we generate a new candidate

α∗ ∼ Q(α∗|αk) with Q(α∗|αk) = Γ(α∗|t, t/αk)

and accept it with M-H rule. In all of our experiments we uset = 3, which gave an acceptance
probability of about 0.6. Finally, sampling level-3 parameters is similar to sampling level-2 param-
eters.

Sampling assignments z: Given model parametersθ = {θ1, θ2}, combining the likelihood term
with the nCRP(γ) prior, the posterior over the assignmentzn can be calculated as follows:

p(zn|θ, z−n,xn) ∝ p(xn|θ, zn)p(zn|z−n), (5)

wherez−n denotes variablesz for all observations other thann. We can further exploit the con-
jugacy in our hierarchical model when computing the probability of creating a new basic-level
category. Using the fact the Normal-Gamma priorp(µc, τ c) is the conjugate prior of a normal
distribution, we can easily compute the following marginallikelihood:

p(xn|θ2, zn) =
∫

µc,τc

p(xn, µc, τ c|θ2, zn) =
∫

µc,τc

p(xn|µc, τ c)p(µc, τ c|θ2, zn).
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Integrating out basic-level parametersθ1 lets us more efficiently sample over the tree structures1.
When computing the probability of placingxn under a newly created super-category, its parameters
are sampled from the prior.

5. One-shot Learning

Consider observing a single new instancex∗ of a novel category c∗ 2. Conditioned on the current
setting of the level-2 parametersθ2 and our current tree structurez, we can first infer which super-
category the novel category should belong to, i.e. we can compute the posterior distribution over
the assignmentsz∗c using Eq. 5. We note that our new category can either be placedunder one of
the existing super-categories, or create its own super-category, if it is sufficiently different from all
of the existing super-categories.

Given an inferred assignment3 z∗c and using Eq. 2, we can infer the posterior mean and precision
terms (or similarity metric){µ∗, τ∗} for our novel category. We can now test the ability of the HB
model to generalize to new instances of a novel category by computing the conditional probability
that a new test inputxt belongs to a novel categoryc∗:

p(c∗|xt) =
p(xt|z∗c)p(z∗c)∑

z p(xt|z)p(z)
,

where the prior is given by the nCRP(γ) and the likelihood takes form:

log p(xt|c∗) =
1
2

∑
d

log(τ∗d )− 1
2

∑
d

τ∗d (xt
d − µ∗d)

2 + C,

whereC is a constant that does not depend on the parameters. Observethat the relative importance
of each feature in determining the similarity is proportional to the category-specific precision of
that feature. Features that are salient, or have higher precision, within the corresponding category
contribute more to the overall similarity of an input.

It is informative to better understand what kind of similarity metric transfer our model is per-
forming based on a single example of a novel category. Let us examine the posterior mean and
precision of thedth feature. The inferred mean is given by:

µ∗d =
νµk

d + x∗d
ν + 1

.

The parameterν controls the blend between an observation and the mean of theglobal super-
category. In all of our experiments we setν = 0.1. Inferred precision (or similarity metric) is
given by the Gamma density, whose expected value is equal toα∗d/β

∗
d . Providedα∗d is large (in our

experimentsα∗d is typically much larger than 1), so thatα∗d/(α
∗
d + 0.5) ≈ 1, the expected value of

the precision parameter takes the following form:

E[τ∗d ] =
τk
d

αk
d

αk
d+0.5

(1 + ν
1+ν

τk
d

αk
d+0.5

(x∗d − µk
d)2)

≈ τk
d

1 + 1
αk

d+0.5
ν

1+ν (τk
d (x∗d − µk

d)
2)

. (6)

1. In the supervised case, inference in simplified by only considering which super-category each basic-level category is
assigned to.

2. Observing several examples of a new category is treated similarly.
3. In our experiments, for faster inference, we simply compute the most probable assignmentz∗c =

argmax p(z∗c |θ2, z∗−c,x
∗) with parametersθ1 integrated out.
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The above formula has a very intuitive interpretation. If a new observationx∗d is relatively close to
the meanµk

d of the global super-category (with distances scaled by the precision terms), then the
expected similarity metric will be close to the similarity metric defined by the global super-category.
Otherwise, the model will become more uncertain about the value of the observed feature, and this
feature will contribute less to the overall similarity of aninput.

6. Experimental results

We now present experimental results on the MNIST handwritten digit and MSR Cambridge object
recognition image datasets. During the inference step, we run our hierarchical Bayesian (HB) model
for 200 full Gibbs sweeps, which was sufficient to reach convergence and obtain good performance.
We normalize input vectors to zero mean and scale the entire input by a single number to make the
average feature variance be one.

In all of our experiments, we compare performance of the HB model to the following four base-
line models. The first model, called “Euclidean”, uses a Euclidean metric, i.e. all precision terms
are set to one and are never updated, hence all dimensions areequally important for all categories.
The second model, that we call “HB-Flat”, always uses a single super-category. When presented
with a single example of a new category, HB-Flat will inherita similarity metric that is shared by all
existing categories. This approach, similar in spirit to Fei-Fei et al. (2006), could potentially identify
a set of useful features common to all categories and learn toignore irrelevant features. Our third
baseline model, which we refer to as “HB-Var”, is similar in spirit to the approach of Heller et al.
(2009) and is based on clustering only covariance matrices without taking into account the means of
the super-categories. Our final baseline model, called “MLE” ignores hierarchical Bayes altogether
and estimates a category-specific mean and precision from sample averages. If a category contains
only one example, the model resorts to using the Euclidean metric. Finally, we also compare to the
the “Oracle” model that always uses the correct, instead of inferred, similarity metric.

6.1 MNIST dataset

The MNIST dataset contains 60,000 training and 10,000 test images of ten handwritten digits (zero
to nine), with 28×28 pixels. For our experiments, we randomly choose 1000 training and 1000 test
images (100 images per class). We work directly in the pixel space because all handwritten digits
were already properly aligned. Fig. 2 shows a typical partition over the basic level categories, along
with corresponding mean and similarity metrics, that our model discovers.

We first study the ability of the HB model to generalize from a single training example of
handwritten digit ‘nine’. To this end, we trained the HB model on 900 images (100 images of each
of zero-to-eight categories), while withholding all images that belong to category ‘nine’. Given a
single new instance of a novel ‘nine’ category our model is able to discover that the new category
is more like categories that contain images of seven and four, and hence this novel category can
inherit the mean and the similarity metric, shared by categories ‘seven’ and ‘four’. Fig. 2 precisely
illustrates the kind of transfer our model is performing. The transferred similarity metric allows HB
model to generalize much better to new instances of a novel category.

Figure 3 and Table 1 further quantifies performance using thearea under the ROC curve (AU-
ROC) for classifying 1000 test images as belonging to the ‘nine’ vs. all other categories (an area
of 0.5 corresponds to the classifier that makes random predictions). The HB model achieves an
AUROC of 0.81, considerably outperforming HB-Flat, HB-Var, Euclidean, and MLE that achieve
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Table 1: Performance results using the area under the ROC curve (AUROC) on the MNIST dataset. The
rightmost Average panel shows results averaged over all 10 categories, using leave-one-out test
format.

Model
Category: Digit 9 Category: Digit 6 Average

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex
HB 0.81 0.85 0.88 0.90 0.85 0.89 0.92 0.97 0.85 0.88 0.90 0.93
HB-Flat 0.71 0.77 0.84 0.90 0.73 0.79 0.88 0.97 0.74 0.79 0.86 0.93
HB-Var 0.72 0.81 0.86 0.90 0.72 0.83 0.90 0.97 0.75 0.82 0.89 0.93
Euclidean 0.70 0.73 0.76 0.80 0.74 0.77 0.82 0.86 0.72 0.76 0.80 0.83
Oracle 0.87 0.89 0.90 0.90 0.95 0.96 0.96 0.97 0.90 0.92 0.92 0.93
MLE 0.69 0.75 0.83 0.90 0.72 0.78 0.87 0.97 0.71 0.77 0.84 0.93

Mean

Variance Mean

Variance

HB Model

HB−Euclid

Query Image

Query Image

HB Model

HB−Euclid

Possible observed 
single instance of
a novel category

Posterior mean
and variances

Figure 2: MNIST dataset.Left: A typical partition over the 10 basic-level categories discovered by the HB
model. Top panels display means and bottom panels display variances (white encodes larger val-
ues).Middle: Transfer of similarity metric based on a single example of a novel ‘nine’ category.
Right: Retrieval results: Top eight most similar images retrievedfrom the test set of 1000 images
corresponding to 10 categories. Note that due to metric transfer, the HB model is able to avoid
mistakes made by the Euclidean model.

an AUROC of 0.71, 0.72, 0.70, and 0.69 respectively. Table 1 further reveals with just a single
example, the HB model performs comparable to both HB-Flat and MLE that use 4 examples. This
result clearly demonstrates that the HB model is able to successfully transfer appropriate metrics
from previously learned categories. Moreover, with just four examples, the HB model is able to
achieve performance close to that of the Oracle model. This is in sharp contrast to HB-Flat, MLE
and Euclidean models, that even with four examples perform far worse.

Finally, Fig. 4, left panel, shows that using the wrong ‘two’similarity metric for the novel ‘nine’
category can significantly deteriorate model’s predictionaccuracy. Indeed, the model performs
worse than the Euclidean model which does not learn a similarity metric at all. This example clearly
demonstrates that our model learns meaningful super-categories and is indeed able to transfer good
similarity metric.
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Figure 3: ROC curves for classifying test images belonging to a novel category vs. the rest based on observ-
ing asingle instance of a new category. Three curves represent Euclidean (lower red), HB (middle
blue), and Oracle (upper red) models. All curves are averaged over 100 (MNIST) or 25 (MSR)
possible examples corresponding to a novel category. The ‘Average’ represents results averaged
over all 10 (MNIST) or 24 (MSR) categories, using leave-one-out test format.

6.2 MSR Cambridge Dataset

We now present results on a considerably more difficult MSR Cambridge dataset, that contains
MSR Cambridge dataset4 contains images of 24 different categories. Figure 4, rightpanel, shows
24 basic-level categories along with a typical partition that our model discovers, where many super-
categories contain semantically similar basic-level categories. For all experiments we use 15 and 25
images per category for testing and training.

6.2.1 DETAILS OF IMAGE REPRESENTATION

We use a simple “texture-of-textures” framework for constructing image features. In particular, we
use the algorithm of DeBonet and Viola (1997) that extracts 46,875 very specific features that re-
spond to edge orientation, color, texture, and many local properties at multiple scales. Each image
is convolved with a set of 25 local linear filters including bars and oriented edges. Filter response
is then rectified by squaring and further downsampled by a factor of two. Convolution, rectification
and downsampling is repeated two more times, producing a vector of size253 = 15, 625. The same
operation is then applied to each of the three RGB channels, yielding a total of 46,875 features. We
emphasize that presented model is not restricted to using this type of features and we expect that
performance could potentially be improved by using more advanced features. For simple compari-
son, we also present results of the HDP model, where each image was represented as a bag of 2000
visual words derived from texture-of-textures features.

6.2.2 RESULTS

We first tested the ability of our model to generalize from a single image of a cow. Similar to the
experiments on the MNIST dataset, we first train the HB model on images corresponding to 23
categories, while withholding all images of cows. In general, our model is able to discover that the
new ‘cow’ category is more like the ‘sheep’ category, as opposed to categories that contain images
of cars, or forks, or buildings. This allows the new ‘cow’ category to inherit sheep’s similarity
metric.

4. Available at http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Table 2: Performance results categories using the area under the ROCcurve (AUROC) on the MSR dataset.
The rightmost Average panel shows results averaged over all24 categories, using leave-one-out
test format.

Model
Category: Cow Category: Flower Average

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex
HB 0.77 0.81 0.84 0.89 0.71 0.75 0.78 0.81 0.76 0.80 0.84 0.87
HB-Flat 0.62 0.69 0.80 0.89 0.59 0.64 0.75 0.81 0.65 0.71 0.78 0.87
HB-Var 0.61 0.73 0.83 0.89 0.60 0.68 0.77 0.81 0.64 0.74 0.81 0.87
Euclidean 0.59 0.61 0.63 0.66 0.55 0.59 0.61 0.64 0.63 0.66 0.69 0.71
Oracle 0.83 0.84 0.87 0.89 0.77 0.79 0.80 0.81 0.82 0.84 0.86 0.87
MLE 0.58 0.64 0.78 0.89 0.55 0.62 0.72 0.81 0.62 0.67 0.77 0.87
HDP 0.64 0.71 0.82 0.90 0.61 0.67 0.77 0.83 0.67 0.72 0.79 0.89
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Figure 4: Results when using the wrong similarity metric. Three curves represent HB (top blue), Euclidean
(middle red), and the model that uses the wrong similarity metric (lower green).Left: Using
the ‘two’ similarity for the novel ‘nine’ category.Middle: Using the ‘fork’ similarity for the
novel ‘cow’ category.Right: MSR Cambridge dataset: A typical partition over the 24 basic-level
categories discovered by the HB model.

Figure 3 and Table 2 show that the HB model, based on a single example of cow, achieves an
AUROC of 0.77. This is compared to an AUROC of only 0.64, 0.62,0.61, 0.59, and 0.58 achieved
by the HDP, HB-Flat, HB-Var, Euclidean, and MLE models. As the number of training examples
increases, the HB model still consistently outperforms allthe other methods. Similar to the results
on the MNIST dataset, the HB model with just one example performs comparably with the HB-Flat
and MLE models that make use of four examples. This clearly demonstrates that the HB model
is able to successfully transfer metric from similar categories. In particular, the improvement over
HDP, Euclidean, HB-Flat HB-Var, and MLE models is particularly striking when learning with only
one example. With 20 examples, however, the part-based HDP model slightly outperforms our HB
model.

Fig. 5 further displays retrieval results based on a single image of a cow. As expected, the HB
model performs much better compared to the simple Euclideanmodel that does not learn a similarity
metric. Fig. 5, right panel, further shows an example where the HB model fails, since it retrieves
many images of the wrong ‘sheep’ category. This is in sharp contrast to the Euclidean model, that
tends to retrieve images from very unrelated categories.
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EuclideanQuery

Hierarchical Bayes
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Figure 5: Retrieval results based on observing a single example of cow. Top five most similar images were
retrieved from the test set, containing 360 images corresponding to 24 categories.
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Figure 6: Unsupervised category discovery.Left: Six representative test images, sorted by the posterior
probability of forming a novel category.Right: The model is presented with 18 unlabeled test
images. After running a Gibbs sampler for 100 steps, the model correctly places nine ‘familiar’
images in nine different basic-level categories, while also correctly forming three novel basic-level
categories with three examples each.

6.3 Unsupervised Category Discovery

Another key advantage of the hierarchical nonparametric Bayesian model is its ability to infer cate-
gory structure in an unsupervised fashion, discovering novel categories at both levels 1 and 2 of the
hierarchy. We explored the HB model’s category discovery ability by training on labeled examples
of 21 basic-level MSR categories, leaving out clouds, trees, and chimneys. We then provided six
test images: one in each of the three unseen categories and one in each of three familiar basic-level
categories (car, airplane, bench). For each test image, using Eq. 6, we can easily compute the poste-
rior probability of forming a new basic-level category. Figure 6, left panel, shows six representative
test images, sorted by the posterior probability of forminga novel category. The model correctly
identifies the car, the airplane and the bench as belonging tofamiliar categories, and places much
higher probability on forming novel categories for the other images. With only one unlabeled ex-
ample of these novel classes, the model still prefers two of them in familiar categories: the ‘tree’ is
interpreted as an atypical example of ‘countryside’ while the ‘chimney’ is classified as an atypical
‘building’. However, the model can correctly discover novel categories given only a little more
unlabeled data.

With 18 unlabeled test images (see Fig. 6, right panel), after running a Gibbs sampler for 100
steps, the model correctly places nine ‘familiar’ images innine different basic-level categories,
while also correctly forming three novel basic-level categories with three examples each. Most
interestingly, these new basic-level categories are placed at the appropriate level of the category
hierarchy: the novel ‘tree’ category is correctly placed under the super-category containing ‘leaves’
and ‘countrysides’; the novel ‘chimney’ category is placedtogether with ‘buildings’ and ‘doors’;
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while ‘clouds’ category is placed in its own super-category– all consistent with the hierarchy we
originally found from a fully labeled training set with manyexamples in each of these three classes
(see Fig. 4). Other models we tried for this unsupervised task, including HB-Euclid and HB-Flat,
perform much worse; they confuse ‘chimneys’ with ‘cows’ (see Fig. 5) and ‘trees’ with ‘country-
sides’.

7. Conclusions

In this paper we developed a hierarchical nonparametric Bayesian model for learning a novel cate-
gory based on a single training example. Our experimental results, conducted on realistic datasets,
further demonstrate that our model is able to effectively transfer appropriate similarity metric from
the previously learned categories to a novel category basedon just observing a single example.

There are several key advantages to our model. First, due to efficient Gibbs moves that can
exploit conjugacy, the model can be efficiently trained. Many of the Gibbs updates can be run in
parallel, which will allow our model to potentially handle alarge number of basic-level categories.
Second, the model is able to discover meaningful super-categories and be able to form coherent
novel categories. Finally, given a single example of a novelcategory, the model is able to quickly
infer which super-category the new basic-level category should belong to. This in turns allows us to
efficiently infer the appropriate similarity metric for this novel category.
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