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Abstract

We develop a hierarchical Bayesian model that learns taleategories from single training
examples. The model transfers acquired knowledge fromquely learned categories to a novel
category, in the form of a prior over category means and maéa. The model discovers how
to group categories into meaningful super-categoriesekytess different priors for new classes.
Given a single example of a novel category, we can efficienfgr which super-category the novel
category belongs to, and thereby estimate not only the neagagy’s mean but also an appropriate
similarity metric based on parameters inherited from theesticategory. On MNIST and MSR
Cambridge image datasets the model learns useful repatieest of novel categories based on
just a single training example, and performs significandtdr than simpler hierarchical Bayesian
approaches. It can also discover new categories in a coahplesupervised fashion, given just
one or a few examples.

1. Introduction

In typical applications of machine classification algam# learning curves are measured in tens,
hundreds or thousands of training examples. For humansedearhowever, the most interesting
regime occurs when the training data are very sparse. Jusgke £xample is often sufficient
for people to grasp a new category and make meaningful gersgians to novel instances, if
not to classify perfectly (Pinker (1999)). Human categaticn often asymptotes after just three
or four examples (Xu and Tenenbaum (2007); Smith et al. (RORmp et al. (2006); Perfors
and Tenenbaum (2009)). Here we present a nonparametrardtigral Bayesian model that aims
to capture this human-like pattern of one-shot learningl t@st its performance against several
alternatives on two standard benchmark datasets of vistedjories.

At a minimum, categorizing an object requires informatitoat the category’s mean and vari-
ance along each dimension in an appropriate feature spdus.isTa similarity-based approach,

(© Salakhutdinov, Tenenbaum, Torralba.
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where the mean represents the category prototype, andvilrsénvariances (or precisions) corre-
spond to the dimensional weights in a category-specificlaiity metric. One-shot learning may
seem impossible because a single example provides infamettout the mean or prototype of the
category, but not about the variances or the similarity ime@iving equal weight to every dimen-
sion in a large a priori-defined feature space, or using ttengvsimilarity metric, is likely to be
disastrous.

Our model leverages higher-order knowledge abstracted fneviously learned categories to
estimate the new category’s prototype as well as an apjpttepsimilarity metric from just one
example. These estimates are also improved as more exaanplebserved. To illustrate, consider
how human learners seeing one example of an unfamiliar &4ngueh as a wildebeest (or gnu),
can draw on experience with many examples of ‘horse’, ‘cowsbeep’, and more familiar related
categories. These similar categories have similar prpesty- horses, cows, and sheep look more
like each other than like furniture or vehicles — but theyddave similar variability in their feature-
space representations, or similar similarity metrics: Wags in which horses vary from the ‘horse’
prototype are similar to the ways in which sheep vary from‘'sheep’ prototype. We may group
these similar basic-level categories into an ‘animal’ stga¢egory, which captures these classes’
similar prototypes as well as their similar modes of vapiatibout their respective prototypes. If we
can identify the new example of ‘wildebeest’ as belonginghie ‘animal’ super-category, we can
transfer an appropriate similarity metric and thereby galime informatively even from a single
example.

For many real-world applications, we must be able to leans t&f thousands of different cat-
egories, and to learn new categories building on (and notgli®g) representations of old ones
(Bart and Ullman (2005); Biederman (1995)). In these sgétitearning from one or a few labeled
examples and performing efficient inference will be cryciald our method is designed to scale up
in precisely these ways. A nonparametric prior allows netegaries to be formed at any time in
either supervised or unsupervised modes, and conjugdtéudimns allow most parameters to be
integrated out analytically for very fast inference.

2. Related Prior Work

Hierarchical Bayesian models have previously been prapdkemp et al. (2006); Perfors and
Tenenbaum (2009); Heller et al. (2009)) to describe how feelearn to learn categories from one
or a few examples, or learn similarity metrics, but theseregghes were not focused on machine
learning settings — large-scale problems with many caieg@nd high-dimensional natural image
data. Most similar to our work is Heller et al. (2009)'s acabof how people learn dimensional
biases in categorization tasks, but in their model, theagnaf our super-categories capture only
shared covariance of basic-level categories, rather toém ineans and variances as we do. As
we show in our experimental results, this prevents theirehfidm generalizing any better than
baseline when given just one or two examples of a novel catego

A large class of models based on hierarchical Dirichlet @sses (Teh et al. (2006)) have also
been used for transfer learning (Sudderth et al. (2008)inCand Griffiths (2009)). There are two
key difference between our approach and previous appitatdf HDPs to cross-task transfer or
multi-task learning. First, HDPs typically assume a fixedraichy of classes for sharing param-
eters, while we learn the hierarchy in an unsupervised dashtecond, HDPs are typically given
many examples for each category rather than the one-shwiingacases we consider here, and
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it is not clear how well they would work for our problems. Rethg introduced nested Dirichlet
processes can also be used for transfer learning tasksigidedrand Vuppala (2009); Rodriguez
et al. (2008)). However, this work assumes a fixed numberassels (or groups) and did not at-
tempt to address one-shot learning problem: their motivatias to use a multilevel nonparametric
mixture to capture more complex within-class structuredituez and Vuppala (2009)). Our ap-
proach allows for new categories to be formed at multiplelewof the hierarchy in order to support
generalization from few examples.

The multi-level structure of our model is similar to the nettg introduced nested Dirichlet
process of (Rodriguez and Vuppala (2009); Rodriguez e80g)). However, there are crucial
differences both in our goals and our mathematical fornanatRodriguez and Vuppala (2009)
attach class labels to the top level of their hierarchy, @hié attach class labels to the bottom level.
This allows the upper-level classes in our model to captuperscategories (e.g., ‘animal’ as a su-
perclass for ‘dog’, ‘horse’, ‘cow’) with learned prior knd®dge about means and covariances for
categories of that kind. This learned prior can be transfeto new categories in order to support
generalization from very few examples. In contrast, Raggigand Vuppala (2009) do not learn
super-categories of labeled classes. Their approach airoapture more complex within-class
structure using their lower-level mixture components \whatlow learning of nonlinear decision
boundaries from large sets of examples (hence their focas2edlass, 2-dimensional ‘spiral’ prob-
lem or Fisher’s 3-class, 4-dimensional Iris task). A redeatarchical model of Adams et al. (2011)
could also be used for transfer learning tasks. Howeves, rtiodel does not learn hierarchical
priors over covariances, which is crucial for transferrang appropriate similarity metric to new
basic-level categories. These recently introduced matel€omplementary to our approach, and
can be combined productively, although we leave that as jecuior future work.

There are several related approaches in the computer \dsimmunity. A hierarchical topic
model for image features (Bart et al. (2008); Sivic et al.0@) can discover visual taxonomies
in an unsupervised fashion from large datasets but was msagroed for one-shot learning of new
categories. Congealing methods (Miller et al. (2000)) suppne-shot category learning with a
hierarchical probabilistic model, but they are designadharily for black-and-white images using
special purpose image representations. Perhaps closestumrk, Fei-Fei et al. (2006) also gave a
hierarchical Bayesian model for visual categories, withiarpn the parameters of new categories
that was induced from other categories. However their amtras not well-suited as a generic
approach to one-shot learning. They learned a single gniames! across all categories and the prior
was learned only from three categories, chosen by hand.

3. Hierarchical Bayesian M odel

Consider observing a set 6f i.i.d input feature vectorgx',....xV}, x” € RP. In general,
features will be derived from high-dimensional, highlyustiured data, such as images of natural
scenes, in which case the feature dimensiondlitgan be quite large (e.g. 50,000). For clarity of
presentation, let us first assume that our model is presaiitied fixed two-level category hierarchy.
In particular, suppose tha objects are partitioned int®' basic-level (or level-1) categories. We
represent such partition by a vectdrof length N, each entry of which is? € {1,...,C}. We also
assume that out' basic-level categories are partitioned iffcsuper-categories (level-2 categories),
which we represent by® of lengthC', with 25 € {1, ..., K'}. We will relax these assumption later
by placing a hierarchical nonparametric prior over the gatg assignments.
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e For each super-categoky= 1, .., cc:
Level 3 draw@? using Eq. 4.

e For each basic categoe§ = 1, .., oo, placed
under each super-categadry

Level 1

{7} draw6' using Eq. 2.

l l l e Foreach observation=1,..., N

| |
O O O O O drawz,, ~ NCRR(~)

drawx™ ~ N (x"|6!,z,) using Eq. 1

Figure 1: Left: Hierarchical Bayesian model that assumes a fixed tree blgrdor sharing parameters.
Right: Generative process of the corresponding nonparametrieimod

A schematic representation of the overall model is shownign E, left panel, and we now
formalize it more precisely. For any basic-level categgithe distribution over the observed feature
vectors is assumed to be Gaussian with a category-specidin i@nd a category-specifaiagonal
precision matrix, whose entries a{reg}fl_’:l. The distribution takes the following product form:

D
P(x"|zy, = ¢.0") = [ [ N (aflug, 1/75). (1)
d=1

where\ (z|u, 1/7) denotes a Gaussian distribution with mgeand precision andf' = {1.¢, 7¢1¢_,
denotes the level-1 category parameters. We next place jagad@ Normal-Gamma prior over
{uc,7¢}. Letk = 22, i.e. let the level-1 category belong to level-2 category, wheref? =
{u¥, 7%, aF}I | denote the level-2 parameters. TheP(uc, 7¢(6%, 2%) = [[5L, P(uS, 75162, 2°),
where for each dimensiahwe have:

P(ug, 7410%) = P(uglrs, 0*)P(7)0%) = 2
= N(uglpg, 1/ (v (75log, o /75)-

Note that our parameterization of the Gamma density is imgeof its shapex* and meanr*
parameters:

k /. kyak k
L(r|a*, o /7%) = %T‘J‘Ll exp (—T%). (3)
Such a parameterization is more interpretable and is muibreta work with, since ] = 7. In
particular, from Eq. 2, we can easily derive thau8 = 1* and B7°] = 7*. This gives our model a
very intuitive interpretation: the expected values of thsib level-1 parametet8 are given by the
corresponding level-2 parametés The parameter” further controls the variability of¢ around
its mean, i.e. Vdr<] = (v*)’/ak. For the level-2 parametef?, we shall assume the following
conjugate priors:

P(ug) = N(pgl0,1/7°), Plagla®) = Explaggla®), P(r|6°) = 1G(rg]a®,8%),
where Expjz|«) denotes an exponential distribution with rate parametend |G z|«, 5) denotes
an inverse-gamma distribution with shape parametand scale parameteér. We further place a

diffuse Gamma prioF'(1, 1) over hyperparameters’ andr". Throughout our experimental results,
we also set:” = 1 andv? = 1.
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3.1 Modelling the number of super-categories

So far we have assumed that our model is presented with aetvebpartitionz = {z*, z’}. This
model corresponds to a standard hierarchical Bayesian Inttmateassumes a fixed hierarchy for
sharing parameters. If, however, we are not given any Ilewvwldevel-2 category labels, we need
to infer the distribution over the possible category stites. We place a nonparametric two-level
nested Chinese Restaurant Prior (CRP) (Blei et al. (200B))2@verz, which defines a prior over
tree structures and is flexible enough to learn arbitraryahehies. The main building block of
the nested CRP is the Chinese restaurant process, a distmilom partition of integers. Imagine a
process by which customers enter a restaurant with an udiedunumber of tables, where th&*
customer occupies a tabtedrawn from:

nk k
n® >0
Pz = k|21, 2n1) = A
5 .
a1, kisnew

7 4)

wheren” is the number of previous customers at tabkend-y is the concentration parameter.

The Nested CRP, nCRF), extends CRP to nested sequence of partitions, one for eaeh |
of the tree. In this case each observatiors first assigned to the super-categefyusing Eq. 4.
Its assignment to the basic-level categofy that is placed under a super-categofy is again
recursively drawn from Eq. 4 (for details see Blei et al. (@)1 For our model, a two-level nested
CRP allows flexibility of having a potentially unbounded riogn of super-categories as well as
an unbounded of basic-level categories placed under egahm-sategory. Finally, we also place a
Gamma priorT'(1,1) over~. The full generative modelis given in Fig. 1, right panel. ik in
many conventional hierarchical Bayesian models, here ¥ee both the model parameters as well
as the hierarchy for sharing those parameters.

Our model can be readily used in unsupervised or semi-siggelrmodes, with varying amounts
of label information. Here we focus on two settings. Firsg assume basic-level category labels
have been given for all examples in a training set, but norscgegory labels are available. We
must infer how to cluster basic categories into super-caieg at the same time as we infer pa-
rameter values at all levels of the category hierarchy. Taieihg set includes many examples of
familiar basic categories but only one (or few) example foogel class. The challenge is to gen-
eralize the new class intelligently from this one examplénbgrring which super-category the new
class comes from and exploiting that super-category’s iedppriors to estimate the new class’s
prototype and similarity metric most accurately. Seconel,cansider a similar labeled training set
but now the test set consists of many unlabeled examplesdroonknown number of basic-level
classes — including both familiar and novel classes. THigats the problem of “unsupervised
category learning”: How to discover when the model has entad novel categories, and how
to break up new instances into categories in an intelligeay that exploits knowledge abstracted
from a hierarchy of more familiar categories.

4. Inference

Inferences about model parameters at all levels of hieyarah be made by running a Markov chain
whose stationary distribution is the posterior distribntover the model parameters. When the tree
structurez of the model is not given, the inference process will alterrizetween fixingz while
sampling the space of model parameteend fixingd while sampling category assignments. The
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use of conjugate priors allows for an efficient Gibbs sampler

Sampling level-1 parameters. Given level-2 parameterg? and z, the conditional distribution
P(uc, 7602, z,x) is Normal-Gamma (Eq. 2), which allows us to easily samplelidvparameters
{p¢,7¢}. Making inferences about precision terms in our model cathbaght of as learning a
category-specific similarity metric. Note that the coratiil distribution ove#! factorizes into the
product of conditional distributions over the parametdrsidividual categories:

C D

P({chTc cC:1|927Z) = H HP(M§77—5|927Z)'
c=1d=1

We can therefore easily speed up our inference process byliagnfrom these conditional distri-
butions in parallel. The speedup could be substantial asuhger of the basic-level categories
becomes large.

Sampling level-2 parameters. Givenz, #', and#3, the conditional distributions over the mean
w* and precision* take Gaussian and Inverse-Gamma forms. The only complicaé involves
samplinga that control the variation of the precision terfiaround its mean (Eq. 3). The condi-
tional distribution over* cannot be computed in closed form and is proportional to:

p(a®) o % exp <_ak <a0 + Sk )k — Tk)>7

whereS* =3 ,_,7¢andT* =3, log(7°). For large values of* the density, specified
by Eq. 5, is similar to a Gamma density (Wiper et al. (2001)& thérefore use Metropolis-Hastings
with a proposal distribution given by the Gamma density. drtipular, we generate a new candidate

o ~ Q(a*a®) with Q(af|af) = T'(a*|t, t/a")

and accept it with M-H rule. In all of our experiments we use- 3, which gave an acceptance
probability of about 0.6. Finally, sampling level-3 parders is similar to sampling level-2 param-
eters.

Sampling assignments z: Given model parameters = {#', 02}, combining the likelihood term
with the nCRR~) prior, the posterior over the assignmentcan be calculated as follows:

P(2zn|0, 20, X") o< p(x"0, 2 )p(2n|2—n), (5)

wherez_,, denotes variables for all observations other tham. We can further exploit the con-
jugacy in our hierarchical model when computing the proligbof creating a new basic-level
category. Using the fact the Normal-Gamma prigp©, 7¢) is the conjugate prior of a normal
distribution, we can easily compute the following margilieglihood:

p(x"16%,2,) :/ p(X”,MC,TCWQ,Zn)Z/ p(X" |1, TP, 7°10°, 7).
/"LL‘?TC MC,7—C
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Integrating out basic-level parametétslets us more efficiently sample over the tree structures
When computing the probability of placing® under a newly created super-category, its parameters
are sampled from the prior.

5. One-shot Learning

Consider observing a single new instanceof a novel category ¢* 2. Conditioned on the current
setting of the level-2 parametef$ and our current tree structuge we can first infer which super-
category the novel category should belong to, i.e. we carmpobenthe posterior distribution over
the assignments; using Eq. 5. We note that our new category can either be placedr one of
the existing super-categories, or create its own supegoay, if it is sufficiently different from all
of the existing super-categories.

Given an inferred assignmént’ and using Eq. 2, we can infer the posterior mean and precision
terms (or similarity metricX n*, 7*} for our novel category. We can now test the ability of the HB
model to generalize to new instances of a novel category pating the conditional probability
that a new test input! belongs to a novel category:

p(x'|z)p(z;)

x AR 18e)PATe)

PR = S o p(a)”
where the prior is given by the nCIRﬂ and the likelihood takes form:

(x[¢") ZlOgTd *_ZTd (xl — pg)* + C,

where(C' is a constant that does not depend on the parameters. Oltisattie relative importance
of each feature in determining the similarity is proportibto the category-specific precision of
that feature. Features that are salient, or have higheispyacwithin the corresponding category
contribute more to the overall similarity of an input.

It is informative to better understand what kind of simitannetric transfer our model is per-
forming based on a single example of a novel category. Letxamme the posterior mean and
precision of thel” feature. The inferred mean is given by:

log p(

vptg + T

v+1
The parameter controls the blend between an observation and the mean dflttel super-
category. In all of our experiments we set= 0.1. Inferred precision (or similarity metric) is
given by the Gamma density, whose expected value is equgl/te;. Provideda; is large (in our
experimentsy}; is typically much larger than 1), so thaf,/(a; + 0.5) ~ 1, the expected value of
the precision parameter takes the following form:

k k
Td Td

k(% k :
—M§)2) 1+ ’“+051:u(7d (27 = 1a)?)

Py =

Eln] = —

_%d v _Tq
o5 (L T aros (24

(6)

1. In the supervised case, inference in simplified by onlys@aring which super-category each basic-level category i
assigned to.

2. Observing several examples of a new category is treatgithgly.

3.In our experiments, for faster inference, we simply corapuhe most probable assignmemf =
argmax p(z;|0%, z* ., x*) with parameterg* integrated out.
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The above formula has a very intuitive interpretation. Ifeavrobservationz} is relatively close to
the meanu’fl of the global super-category (with distances scaled by theigion terms), then the
expected similarity metric will be close to the similarityetric defined by the global super-category.
Otherwise, the model will become more uncertain about thgevaf the observed feature, and this
feature will contribute less to the overall similarity of aput.

6. Experimental results

We now present experimental results on the MNIST handwritigit and MSR Cambridge object
recognition image datasets. During the inference stepuweur hierarchical Bayesian (HB) model
for 200 full Gibbs sweeps, which was sufficient to reach cay@ece and obtain good performance.
We normalize input vectors to zero mean and scale the entirg by a single number to make the
average feature variance be one.

In all of our experiments, we compare performance of the HBehto the following four base-
line models. The first model, called “Euclidean”, uses a kgeeln metric, i.e. all precision terms
are set to one and are never updated, hence all dimensiorguaty important for all categories.
The second model, that we call “HB-Flat”, always uses a sisgiper-category. When presented
with a single example of a new category, HB-Flat will inhergimilarity metric that is shared by all
existing categories. This approach, similar in spirit toFei et al. (2006), could potentially identify
a set of useful features common to all categories and leaigntoe irrelevant features. Our third
baseline model, which we refer to as “HB-Var”, is similar jpiré to the approach of Heller et al.
(2009) and is based on clustering only covariance matriéd®ut taking into account the means of
the super-categories. Our final baseline model, called “MgEores hierarchical Bayes altogether
and estimates a category-specific mean and precision frompleaverages. If a category contains
only one example, the model resorts to using the Euclidedrian€inally, we also compare to the
the “Oracle” model that always uses the correct, insteadfefiied, similarity metric.

6.1 MNIST dataset

The MNIST dataset contains 60,000 training and 10,000 nestjés of ten handwritten digits (zero
to nine), with 28«28 pixels. For our experiments, we randomly choose 100Aitrgiand 1000 test
images (100 images per class). We work directly in the pigats because all handwritten digits
were already properly aligned. Fig. 2 shows a typical partibver the basic level categories, along
with corresponding mean and similarity metrics, that oudeialiscovers.

We first study the ability of the HB model to generalize fromiagke training example of
handwritten digit ‘nine’. To this end, we trained the HB mbde 900 images (100 images of each
of zero-to-eight categories), while withholding all imag#at belong to category ‘nine’. Given a
single new instance of a novel ‘nine’ category our model ig &b discover that the new category
is more like categories that contain images of seven and &t hence this novel category can
inherit the mean and the similarity metric, shared by caiegdseven’ and ‘four’. Fig. 2 precisely
illustrates the kind of transfer our model is performing eransferred similarity metric allows HB
model to generalize much better to new instances of a notegcgy.

Figure 3 and Table 1 further quantifies performance usingiba under the ROC curve (AU-
ROC) for classifying 1000 test images as belonging to theenvs. all other categories (an area
of 0.5 corresponds to the classifier that makes random pieay. The HB model achieves an
AUROC of 0.81, considerably outperforming HB-Flat, HB-V&uclidean, and MLE that achieve
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Table 1: Performance results using the area under the ROC curve (A)RO the MNIST dataset. The
rightmost Average panel shows results averaged over alaiégories, using leave-one-out test

format.
Model Category: Digit 9 Category: Digit 6 Average
lex 2ex 4dex 20ex lex 2ex 4dex 20ex lex 2ex 4ex 20ex
HB 0.81 0.85 0.88 0.90|/ 085 0.89 0.92 0097|0.85 0.88 0.90 0.93

HB-Flat | 0.71 0.77 0.84 0.90| 0.73 0.79 0.88 0.97| 0.74 0.79 0.86 0.93
HB-Var 0.72 0.81 086 0.90|0.72 083 090 0097|075 082 0.89 0.93
Euclidean| 0.70 0.73 0.76 0.80| 0.74 0.77 0.82 0.86| 0.72 0.76 0.80 0.83
Oracle 0.87 0.89 090 090095 096 096 097090 092 092 0.93
MLE 069 0.75 0.83 0.90(0.72 0.78 087 097|071 0.77 084 0.93

Mean
Query Image
Mean
Va”ance HB Model

Variance vl 7 7 9 9 9 7 9 9

E E E II , g':\"":‘; 779999797
E I —
. / \ /\

i ,,,,,, ¢ HB Model

- Possible observe( q q q 9 0 9 9
E EE H 2'2%&1"%?25&3 000 090

Figure 2: MNIST datasetL eft: A typical partition over the 10 basic-level categories disered by the HB
model. Top panels display means and bottom panels disptégneas (white encodes larger val-
ues).Middle: Transfer of similarity metric based on a single example obzeh‘nine’ category.
Right: Retrieval results: Top eight most similar images retrieiveth the test set of 1000 images
corresponding to 10 categories. Note that due to metricteanthe HB model is able to avoid
mistakes made by the Euclidean model.

an AUROC of 0.71, 0.72, 0.70, and 0.69 respectively. Tablarthér reveals with just a single
example, the HB model performs comparable to both HB-FIdtMhE that use 4 examples. This
result clearly demonstrates that the HB model is able toesstally transfer appropriate metrics
from previously learned categories. Moreover, with jusirfexamples, the HB model is able to
achieve performance close to that of the Oracle model. Bhis sharp contrast to HB-Flat, MLE
and Euclidean models, that even with four examples perfamworse.
Finally, Fig. 4, left panel, shows that using the wrong ‘twohilarity metric for the novel ‘nine’

category can significantly deteriorate model’s predictimturacy. Indeed, the model performs
worse than the Euclidean model which does not learn a sityilaetric at all. This example clearly

demonstrates that our model learns meaningful superaésgand is indeed able to transfer good
similarity metric.
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Figure 3: ROC curves for classifying test images belonging to a noalgory vs. the rest based on observ-
ing asingleinstance of a new category. Three curves represent Eunl{tmaer red), HB (middle
blue), and Oracle (upper red) models. All curves are averager 100 (MNIST) or 25 (MSR)
possible examples corresponding to a novel category. Ther&dye’ represents results averaged
over all 10 (MNIST) or 24 (MSR) categories, using leave-ougtest format.

6.2 M SR Cambridge Dataset

We now present results on a considerably more difficult MSRQ#&dge dataset, that contains
MSR Cambridge datasetontains images of 24 different categories. Figure 4, ngirtel, shows
24 basic-level categories along with a typical partitioattbur model discovers, where many super-
categories contain semantically similar basic-levelgaties. For all experiments we use 15 and 25
images per category for testing and training.

6.2.1 DETAILS OF IMAGE REPRESENTATION

We use a simple “texture-of-textures” framework for consting image features. In particular, we
use the algorithm of DeBonet and Viola (1997) that extraét845 very specific features that re-
spond to edge orientation, color, texture, and many locgbgnties at multiple scales. Each image
is convolved with a set of 25 local linear filters includingrd®and oriented edges. Filter response
is then rectified by squaring and further downsampled by tafaxf two. Convolution, rectification
and downsampling is repeated two more times, producingtavetsize25® = 15, 625. The same
operation is then applied to each of the three RGB channielsliyg a total of 46,875 features. We
emphasize that presented model is not restricted to usiagyihe of features and we expect that
performance could potentially be improved by using moreaaded features. For simple compari-
son, we also present results of the HDP model, where eacleimag represented as a bag of 2000
visual words derived from texture-of-textures features.

6.2.2 RESULTS

We first tested the ability of our model to generalize fromrayg image of a cow. Similar to the
experiments on the MNIST dataset, we first train the HB modeinsages corresponding to 23
categories, while withholding all images of cows. In gehevar model is able to discover that the
new ‘cow’ category is more like the ‘sheep’ category, as ggbto categories that contain images
of cars, or forks, or buildings. This allows the new ‘cow’ egwry to inherit sheep’s similarity
metric.

4. Available at http://research.microsoft.com/en-ugguts/objectclassrecognition/
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Table 2: Performance results categories using the area under thecROE (AUROC) on the MSR dataset.
The rightmost Average panel shows results averaged ovedathtegories, using leave-one-out

test format.
Model Category: Cow Category: Flower Average
lex 2ex 4dex 20ex lex 2ex 4dex 20ex lex 2ex 4ex 20ex
HB 0.77 0.81 0.84 0.89] 071 0.75 0.78 0.81|0.76 0.80 0.84 0.87

HB-Flat | 0.62 0.69 0.80 0.89| 059 0.64 0.75 0.81| 0.65 0.71 0.78 0.87
HB-Var 0.61 0.73 083 0.89| 060 0.68 0.77 0.81|0.64 0.74 0.81 0.87
Euclidean| 0.59 0.61 0.63 0.66| 0.55 0.59 0.61 0.64| 0.63 0.66 0.69 0.71
Oracle 0.83 0.84 087 0.89|0.77 0.79 0.80 0.81|0.82 0.84 0.86 0.87

MLE 0.58 0.64 0.78 0.89| 055 0.62 0.72 0.81] 0.62 0.67 0.77 0.87
HDP 0.64 0.71 082 090061 0.67 0.77 0.83|0.67 0.72 0.79 0.89
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Figure 4: Results when using the wrong similarity metric. Three camanresent HB (top blue), Euclidean
(middle red), and the model that uses the wrong similarityrimé¢lower green).Left: Using
the ‘two’ similarity for the novel ‘nine’ categoryMiddle: Using the ‘fork’ similarity for the
novel ‘cow’ categoryRight: MSR Cambridge dataset: A typical partition over the 24 biesiel
categories discovered by the HB model.

Figure 3 and Table 2 show that the HB model, based on a singl@m@e of cow, achieves an
AUROC of 0.77. This is compared to an AUROC of only 0.64, 0&81, 0.59, and 0.58 achieved
by the HDP, HB-Flat, HB-Var, Euclidean, and MLE models. As tilumber of training examples
increases, the HB model still consistently outperformghadlother methods. Similar to the results
on the MNIST dataset, the HB model with just one example perfoccomparably with the HB-Flat
and MLE models that make use of four examples. This cleanyatestrates that the HB model
is able to successfully transfer metric from similar catéggo In particular, the improvement over
HDP, Euclidean, HB-Flat HB-Var, and MLE models is particlyastriking when learning with only
one example. With 20 examples, however, the part-based H&xfeInslightly outperforms our HB
model.

Fig. 5 further displays retrieval results based on a singlege of a cow. As expected, the HB
model performs much better compared to the simple Euclideadel that does not learn a similarity
metric. Fig. 5, right panel, further shows an example whieeeHB model fails, since it retrieves
many images of the wrong ‘sheep’ category. This is in sharrast to the Euclidean model, that
tends to retrieve images from very unrelated categories.
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Figure 5: Retrieval results based on observing a single example of Top/five most similar images were
retrieved from the test set, containing 360 images corrredipg to 24 categories.

Existing Categories Existing Categories Novel Categories

Novel: 0.01  Novel: 0.02 Novel: 0.02
Car:0.99  Plane: 097 Bench: 0.92

wﬁy

Novel Categories
Nov Novel: 042  Novel: 0.87

- 2 .
: caria N2 S
Countryside: 053 Bmldlng 0.49 Blrd 0.11 -
. e e s
T ¥ \ :
/

Figure 6: Unsupervised category discoveryeft: Six representative test images, sorted by the posterior
probability of forming a novel categonRight: The model is presented with 18 unlabeled test
images. After running a Gibbs sampler for 100 steps, the homteectly places nine ‘familiar’
images in nine different basic-level categories, while atsrrectly forming three novel basic-level
categories with three examples each.

6.3 Unsupervised Category Discovery

Another key advantage of the hierarchical nonparametrie@Bian model is its ability to infer cate-
gory structure in an unsupervised fashion, discoveringchcategories at both levels 1 and 2 of the
hierarchy. We explored the HB model’s category discoveiiitalby training on labeled examples
of 21 basic-level MSR categories, leaving out clouds, traed chimneys. We then provided six
test images: one in each of the three unseen categories and each of three familiar basic-level
categories (car, airplane, bench). For each test imagey &5j. 6, we can easily compute the poste-
rior probability of forming a new basic-level category. &ig 6, left panel, shows six representative
test images, sorted by the posterior probability of forméngovel category. The model correctly
identifies the car, the airplane and the bench as belongifgndiar categories, and places much
higher probability on forming novel categories for the athmages. With only one unlabeled ex-
ample of these novel classes, the model still prefers twberhtin familiar categories: the ‘tree’ is
interpreted as an atypical example of ‘countryside’ while fthimney’ is classified as an atypical
‘building’. However, the model can correctly discover nbeategories given only a little more
unlabeled data.

With 18 unlabeled test images (see Fig. 6, right panel)s aftening a Gibbs sampler for 100
steps, the model correctly places nine ‘familiar’ imagesiine different basic-level categories,
while also correctly forming three novel basic-level catégs with three examples each. Most
interestingly, these new basic-level categories are glatehe appropriate level of the category
hierarchy: the novel ‘tree’ category is correctly placedemthe super-category containing ‘leaves’
and ‘countrysides’; the novel ‘chimney’ category is pladedether with ‘buildings’ and ‘doors’;

12
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while ‘clouds’ category is placed in its own super-categersll consistent with the hierarchy we
originally found from a fully labeled training set with mamsyamples in each of these three classes
(see Fig. 4). Other models we tried for this unsupervisekl, tasluding HB-Euclid and HB-Flat,
perform much worse; they confuse ‘chimneys’ with ‘cows’d€g. 5) and ‘trees’ with ‘country-
sides’.

7. Conclusions

In this paper we developed a hierarchical nonparametrie8ay model for learning a novel cate-
gory based on a single training example. Our experimensailtss conducted on realistic datasets,
further demonstrate that our model is able to effectivedysfer appropriate similarity metric from
the previously learned categories to a novel category basfuast observing a single example.

There are several key advantages to our model. First, dufficeelet Gibbs moves that can
exploit conjugacy, the model can be efficiently trained. WMahthe Gibbs updates can be run in
parallel, which will allow our model to potentially handldaage number of basic-level categories.
Second, the model is able to discover meaningful supegoes and be able to form coherent
novel categories. Finally, given a single example of a noagtgory, the model is able to quickly
infer which super-category the new basic-level categoopkhbelong to. This in turns allows us to
efficiently infer the appropriate similarity metric for ghhovel category.
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