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Abstract—We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning

models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process

(HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns

to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture

correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of

different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to

learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion

capture datasets.

Index Terms—Deep networks, deep Boltzmann machines, hierarchical Bayesian models, one-shot learning

Ç

1 INTRODUCTION

THE ability to learn abstract representations that support
transfer to novel but related tasks lies at the core of

many problems in computer vision, natural language
processing, cognitive science, and machine learning. In
typical applications of machine classification algorithms
today, learning a new concept requires tens, hundreds, or
thousands of training examples. For human learners,
however, just one or a few examples are often sufficient
to grasp a new category and make meaningful general-
izations to novel instances [15], [25], [31], [44]. Clearly, this
requires very strong but also appropriately tuned inductive
biases. The architecture we describe here takes a step
toward this ability by learning several forms of abstract
knowledge at different levels of abstraction that support
transfer of useful inductive biases from previously learned
concepts to novel ones.

We call our architectures compound HD models, where
“HD” stands for “Hierarchical-Deep,” because they are
derived by composing hierarchical nonparametric Bayesian
models with deep networks, two influential approaches
from the recent unsupervised learning literature with
complementary strengths. Recently introduced deep learn-
ing models, including deep belief networks (DBNs) [12],
deep Boltzmann machines (DBM) [29], deep autoencoders
[19], and many others [9], [10], [21], [22], [26], [32], [34], [43],
have been shown to learn useful distributed feature

representations for many high-dimensional datasets. The
ability to automatically learn in multiple layers allows deep
models to construct sophisticated domain-specific features
without the need to rely on precise human-crafted input
representations, increasingly important with the prolifera-
tion of datasets and application domains.

While the features learned by deep models can enable
more rapid and accurate classification learning, deep
networks themselves are not well suited to learning novel
classes from few examples. All units and parameters at all
levels of the network are engaged in representing any given
input (“distributed representations”), and are adjusted
together during learning. In contrast, we argue that learning
new classes from a handful of training examples will be
easier in architectures that can explicitly identify only a
small number of degrees of freedom (latent variables and
parameters) that are relevant to the new concept being
learned, and thereby achieve more appropriate and flexible
transfer of learned representations to new tasks. This ability
is the hallmark of hierarchical Bayesian (HB) models,
recently proposed in computer vision, statistics, and
cognitive science [8], [11], [15], [28], [44] for learning from
few examples. Unlike deep networks, these HB models
explicitly represent category hierarchies that admit sharing
the appropriate abstract knowledge about the new class’s
parameters via a prior abstracted from related classes. HB
approaches, however, have complementary weaknesses
relative to deep networks. They typically rely on domain-
specific hand-crafted features [2], [11] (e.g., GIST, SIFT
features in computer vision, MFCC features in speech
perception domains). Committing to the a-priori defined
feature representations, instead of learning them from data,
can be detrimental. This is especially important when
learning complex tasks, as it is often difficult to hand-craft
high-level features explicitly in terms of raw sensory input.
Moreover, many HB approaches often assume a fixed
hierarchy for sharing parameters [6], [33] instead of
discovering how parameters are shared among classes in
an unsupervised fashion.

In this paper, we propose compound HD architectures
that integrate these deep models with structured HB
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models. In particular, we show how we can learn a
hierarchical Dirichlet process (HDP) prior over the activities
of the top-level features in a DBM, coming to represent both
a layered hierarchy of increasingly abstract features and a
tree-structured hierarchy of classes. Our model depends
minimally on domain-specific representations and achieves
state-of-the-art performance by unsupervised discovery of
three components: 1) low-level features that abstract from
the raw high-dimensional sensory input (e.g., pixels, or
three-dimensional joint angles) and provide a useful first
representation for all concepts in a given domain; 2) high-
level part-like features that express the distinctive percep-
tual structure of a specific class, in terms of class-specific
correlations over low-level features; and 3) a hierarchy of
superclasses for sharing abstract knowledge among related
classes via a prior on which higher level features are likely
to be distinctive for classes of a certain kind and are thus
likely to support learning new concepts of that kind.

We evaluate the compound HDP-DBM model on three
different perceptual domains. We also illustrate the
advantages of having a full generative model, extending
from highly abstract concepts all the way down to sensory
inputs: We cannot only generalize class labels but also
synthesize new examples in novel classes that look reason-
ably natural, and we can significantly improve classification
performance by learning parameters at all levels jointly by
maximizing a joint log-probability score.

There have also been several approaches in the computer
vision community addressing the problem of learning with
few examples. Torralba et al. [42] proposed using several
boosted detectors in a multitask setting, where features are
shared between several categories. Bart and Ullman [3]
further proposed a cross-generalization framework for
learning with few examples. Their key assumption is that
new features for a novel category are selected from the pool of
features that was useful for previously learned classification
tasks. In contrast to our work, the above approaches are
discriminative by nature and do not attempt to identify
similar or relevant categories. Babenko et al. [1] used a
boosting approach that simultaneously groups together
categories into several supercategories, sharing a similarity
metric within these classes. They, however, did not attempt to
address transfer learning problem, and primarily focused on
large-scale image retrieval tasks. Finally, Fei-Fei et al. [11]
used an HB approach, with a prior on the parameters of
new categories that was induced from other categories.
However, their approach was not ideal as a generic
approach to transfer learning with few examples. They
learned only a single prior shared across all categories.
The prior was learned from only three categories, chosen
by hand. Compared to our work, they used a more
elaborate visual object model, based on multiple parts
with separate appearance and shape components.

2 DEEP BOLTZMANN MACHINES

A DBM is a network of symmetrically coupled stochastic
binary units. It contains a set of visible units v 2 f0; 1gD,
and a sequence of layers of hidden units hð1Þ 2 f0; 1gF1 ;
hð2Þ 2 f0; 1gF2 . . . hðLÞ 2 f0; 1gFL . There are connections only
between hidden units in adjacent layers, as well as between
visible and hidden units in the first hidden layer. Consider a

DBM with three hidden layers1 (i.e., L ¼ 3). The energy of

the joint configuration fv;hg is defined as

Eðv;h;    Þ ¼ �
X
ij

W
ð1Þ
ij vih
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j �
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where h ¼ fhð1Þ;hð2Þ;hð3Þg represent the set of hidden units

and     ¼ fWð1Þ;Wð2Þ;Wð3Þg are the model parameters,

representing visible-to-hidden and hidden-to-hidden sym-

metric interaction terms.2

The probability that the model assigns to a visible vector v

is given by the Boltzmann distribution:

P ðv;    Þ ¼ 1
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Observe that setting both Wð2Þ ¼ 0 and Wð3Þ ¼ 0 recovers

the simpler Restricted Boltzmann Machine (RBM) model.
The conditional distributions over the visible and the

three sets of hidden units are given by
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where gðxÞ ¼ 1=ð1þ expð�xÞÞ is the logistic function.
The derivative of the log-likelihood with respect to the

model parameters     can be obtained from (1):
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where EPdata
½�� denotes an expectation with respect to the

completed data distribution:

Pdataðh;v;    Þ ¼ P ðhjv;    ÞPdataðvÞ;

with PdataðvÞ ¼ 1
N

P
n �vn representing the empirical distri-

bution and EPmodel
½�� is an expectation with respect to the

distribution defined by the model (1). We will sometimes

refer to EPdata
½�� as the data-dependent expectation and EPmodel

½��
as the model’s expectation.

Exact maximum likelihood learning in this model is

intractable. The exact computation of the data-dependent

expectation takes time that is exponential in the number of
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hidden units, whereas the exact computation of the models
expectation takes time that is exponential in the number of
hidden and visible units.

2.1 Approximate Learning

The original learning algorithm for Boltzmann machines
used randomly initialized Markov chains to approximate
both expectations to estimate gradients of the likelihood
function [14]. However, this learning procedure is too slow
to be practical. Recently, Salakhutdinov and Hinton [29]
proposed a variational approach, where mean-field infer-
ence is used to estimate data-dependent expectations and an
MCMC-based stochastic approximation procedure is used
to approximate the models expected sufficient statistics.

2.1.1 A Variational Approach to Estimating the

Data-Dependent Statistics

Consider any approximating distribution Qðhjv;����Þ, para-
metarized by a vector of parameters ����, for the posterior
P ðhjv;    Þ. Then the log-likelihood of the DBM model has
the following variational lower bound:

logP ðv;    Þ �
X

h

Qðhjv;����Þ logP ðv;h;    Þ þ HðQÞ

� logP ðv;    Þ �KLðQðhjv;����ÞkP ðhjv;    ÞÞ;
ð4Þ

where Hð�Þ is the entropy functional and KLðQkP Þ denotes
the Kullback-Leibler divergence between the two distribu-
tions. The bound becomes tight if and only if Qðhjv;����Þ ¼
P ðhjv;    Þ.

Variational learning has the nice property that in
addition to maximizing the log-likelihood of the data, it
also attempts to find parameters that minimize the Kull-
back-Leibler divergence between the approximating and
true posteriors.

For simplicity and speed, we approximate the true
posterior P ðhjv;    Þ with a fully factorized approximating
distribution over the three sets of hidden units, which
corresponds to so-called mean-field approximation:
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where ���� ¼ f����ð1Þ; ����ð2Þ; ����ð3Þg are the mean-field parameters
with qðhðlÞi ¼ 1Þ ¼ �ðlÞi for l ¼ 1; 2; 3. In this case, the varia-
tional lower bound on the log-probability of the data takes a
particularly simple form:

logP ðv;    Þ �
X

h

QMF ðhjv;����Þ logP ðv;h;    Þ þ HðQMF Þ

� v>Wð1Þ����ð1Þ þ ����ð1Þ>Wð2Þ����ð2Þþ

þ ����ð2Þ>Wð3Þ����ð3Þ � logZð    Þ þ HðQMF Þ:
ð6Þ

Learning proceeds as follows: For each training example,
we maximize this lower bound with respect to the
variational parameters ���� for fixed parameters     , which
results in the mean-field fixed-point equations:
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Algorithm 1. Learning Procedure for a Deep Boltzmann
Machine with Three Hidden Layers.

1: Given: a training set of N binary data vectors

fvgNn¼1, and M, the number of persistent Markov chains

(i.e., particles).

2: Randomly initialize parameter vector     0 and M

samples: f~v0;1; ~h0;1g . . . f~v0;M; ~h0;Mg,
where ~h ¼ f~hð1Þ; ~hð2Þ; ~hð3Þg.

3: for t ¼ 0 to T (number of iterations) do

4: // Variational Inference:

5: for each training example vn, n ¼ 1 to N do

6: Randomly initialize ���� ¼ f����ð1Þ; ����ð2Þ; ����ð3Þg and

run mean-field updates until convergence,

using (7), (8), (9).

7: Set ����n ¼ ����.
8: end for

9: // Stochastic Approximation:

10: for each sample m ¼ 1 to M (number of persistent

Markov chains) do

11: Sample ð~vtþ1;m; ~htþ1;mÞ given ð~vt;m; ~ht;mÞ by

running a Gibbs sampler for one step (2).

12: end for

13: // Parameter Update:
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ð1Þ
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17: Decrease �t.

18: end for
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where gðxÞ ¼ 1=ð1þ expð�xÞÞ is the logistic function. To
solve these fixed-point equations, we simply cycle through
layers, updating the mean-field parameters within a single
layer. Note the close connection between the form of
the mean-field fixed point updates and the form of the
conditional distribution3 defined by (2).

2.1.2 A Stochastic Approximation Approach for

Estimating the Data-Independent Statistics

Given the variational parameters ����, the model parameters     
are then updated to maximize the variational bound using
an MCMC-based stochastic approximation [29], [39], [46].
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Learning with stochastic approximation is straightfor-

ward. Let     t and xt ¼ fvt;hð1Þt ;h
ð2Þ
t ;h

ð3Þ
t g be the current

parameters and the state. Then xt and     t are updated

sequentially as follows:

. Given xt, sample a new state xtþ1 from the transition
operator T    tðxtþ1 xtÞ that leaves P ð�;    tÞ invariant.
This can be accomplished by using Gibbs sampling
(see (2)).

. A new parameter     tþ1 is then obtained by making a
gradient step, where the intractable model’s expec-
tation EPmodel

½�� in the gradient is replaced by a point
estimate at sample xtþ1.

In practice, we typically maintain a set of M “persistent”
sample particles Xt ¼ fxt;1; . . . ;xt;Mg, and use an average
over those particles. The overall learning procedure for
DBMs is summarized in Algorithm 1.

Stochastic approximation provides asymptotic conver-
gence guarantees and belongs to the general class of
Robbins-Monro approximation algorithms [27], [46]. Precise
sufficient conditions that ensure almost sure convergence to
an asymptotically stable point are given in [45], [46], and
[47]. One necessary condition requires the learning rate to
decrease with time so that

P1
t¼0 �t ¼ 1 and

P1
t¼0 �

2
t <1.

This condition can, for example, be satisfied simply by
setting �t ¼ a=ðbþ tÞ, for positive constants a > 0, b > 0.
Other conditions ensure that the speed of convergence of
the Markov chain, governed by the transition operator T    ,
does not decrease too fast as     tends to infinity. Typically,
in practice the sequence j    tj is bounded, and the Markov
chain, governed by the transition kernel T    , is ergodic.
Together with the condition on the learning rate, this
ensures almost sure convergence of the stochastic approx-
imation algorithm to an asymptotically stable point.

2.1.3 Greedy Layerwise Pretraining of DBMs

The learning procedure for DBMs described above can be
used by starting with randomly initialized weights, but it
works much better if the weights are initialized sensibly.
We therefore use a greedy layerwise pretraining strategy by
learning a stack of modified RBMs (for details see [29]).

This pretraining procedure is quite similar to the
pretraining procedure of DBNs [12], and it allows us to
perform approximate inference by a single bottom-up pass.
This fast approximate inference is then used to initialize the
mean-field, which then converges much faster than mean-
field with random initialization.4

2.2 Gaussian-Bernoulli DBMs

We now briefly describe a Gaussian-Bernoulli DBM model,
which we will use to model real-valued data, such as
images of natural scenes and motion capture data.
Gaussian-Bernoulli DBMs represent a generalization of a
simpler class of models, called Gaussian-Bernoulli RBMs,
which have been successfully applied to various tasks,
including image classification, video action recognition, and
speech recognition [17], [20], [23], [35].

In particular, consider modeling visible real-valued units
v 2 IRD and let hð1Þ 2 f0; 1gF1 , hð2Þ 2 f0; 1gF2 , and hð3Þ 2

f0; 1gF3 be binary stochastic hidden units. The energy of the

joint configuration fv;hð1Þ;hð2Þ;hð3Þg of the three-hidden-

layer Gaussian-Bernoulli DBM is defined as follows:

Eðv;h;    Þ ¼ 1
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where h ¼ fhð1Þ;hð2Þ;hð3Þg represent the set of hidden units,

and     ¼ fWð1Þ;Wð2Þ;Wð3Þ; ����2g are the model parameters,

and �2
i is the variance of input i. The marginal distribution

over the visible vector v takes form

P ðv;    Þ ¼
X

h

exp ð�Eðv;h;    ÞÞR
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h exp ð�Eðv;h;    ÞÞdv0 : ð11Þ

From (10), it is straightforward to derive the following

conditional distributions:
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where gðxÞ ¼ 1=ð1þ expð�xÞÞ is the logistic function.

Conditional distributions over hð2Þ and hð3Þ remain the

same as in the standard DBM model (see (2)).
Observe that conditioned on the states of the hidden

units (12), each visible unit is modeled by a Gaussian

distribution whose mean is shifted by the weighted

combination of the hidden unit activations. The derivative

of the log-likelihood with respect to Wð1Þ takes form

@ logP ðv;    Þ
@W

ð1Þ
ij

¼ EPdata

1

�i
vih
ð1Þ
j

� �
� EPModel

1

�i
vih
ð1Þ
j

� �
:

The derivatives with respect to parameters Wð2Þ and Wð3Þ

remain the same as in (3).
As described in the previous section, learning of the

model parameters, including the variances ����2, can be

carried out using variational learning together with

stochastic approximation procedure. In practice, however,

instead of learning ����2, one would typically use a fixed,

predetermined value for ����2 [13], [24].

2.3 Multinomial DBMs

To allow DBMs to express more information and introduce

more structured hierarchical priors, we will use a condi-

tional multinomial distribution to model activities of the

top-level units hð3Þ. Specifically, we will use M softmax

units, each with “1-of-K” encoding, so that each unit

contains a set of K weights. We represent the kth discrete

value of hidden unit by a vector containing 1 at the

kth location and zeros elsewhere. The conditional prob-

ability of a softmax top-level unit is
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P ðhð3Þk jhð2ÞÞ ¼
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In our formulation, all M separate softmax units will share
the same set of weights, connecting them to binary hidden
units at the lower level (see Fig. 1). The energy of the state
fv;hg is then defined as follows:

Eðv;h;    Þ ¼ �
X
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W
ð1Þ
ij vih
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j h
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k ;

where hð1Þ 2 f0; 1gF1 and hð2Þ 2 f0; 1gF2 represent stochastic
binary units. The top layer is represented by the M softmax
units hð3;mÞ, m ¼ 1; . . . ;M, with ĥ

ð3Þ
k ¼

PM
m¼1 h

ð3;mÞ
k denoting

the count for the kth discrete value of a hidden unit.
A key observation is that M separate copies of softmax

units that all share the same set of weights can be viewed as
a single multinomial unit that is sampled M times from the
conditional distribution of (13). This gives us a familiar
“bag-of-words” representation [30], [36]. A pleasing prop-
erty of using softmax units is that the mathematics under-
lying the learning algorithm for binary-binary DBMs
remains the same.

3 COMPOUND HDP-DBM MODEL

After a DBM model has been learned, we have an
undirected model that defines the joint distribution
P ðv;hð1Þ;hð2Þ;hð3ÞÞ. One way to express what has been
learned is the conditional model P ðv;hð1Þ;hð2Þjhð3ÞÞ and a
complicated prior term P ðhð3ÞÞ, defined by the DBM model.
We can therefore rewrite the variational bound as

logP ðvÞ �
X

hð1Þ;hð2Þ;hð3Þ

Qðhjv;����Þ logP ðv;hð1Þ;hð2Þjhð3ÞÞ

þ HðQÞ þ
X
hð3Þ

Qðhð3Þjv;����Þ logP ðhð3ÞÞ:
ð14Þ

This particular decomposition lies at the core of the greedy
recursive pretraining algorithm: We keep the learned condi-

tional modelP ðv;hð1Þ;hð2Þjhð3ÞÞ, but maximize the variational
lower bound of (14) with respect to the last term [12]. This
maximization amounts to replacing P ðhð3ÞÞ by a prior that is
closer to the average, over all the data vectors, of the
approximate conditional posterior Qðhð3ÞjvÞ.

Instead of adding an additional undirected layer (e.g., an
RBM) to model P ðhð3ÞÞ we can place an HDP prior over hð3Þ

that will allow us to learn category hierarchies and, more
importantly, useful representations of classes that contain
few training examples.

The part we keep, P ðv;hð1Þ;hð2Þjhð3ÞÞ, represents a
conditional DBM model:5

P ðv;hð1Þ;hð2Þjhð3ÞÞ ¼ 1

Zð    ;hð3ÞÞ
exp

�X
ij

W
ð1Þ
ij vih

ð1Þ
j

þ
X
jl

W
ð2Þ
jl h

ð1Þ
j h

ð2Þ
l þ

X
lk

W
ð3Þ
lk h

ð2Þ
l h

ð3Þ
k

�
;

ð15Þ

which can be viewed as a two-layer DBM but with bias
terms given by the states of hð3Þ.

3.1 A Hierarchical Bayesian Prior

In a typical hierarchical topic model, we observe a set of
N documents, each of which is modeled as a mixture over
topics, that are shared among documents. Let there be
K words in the vocabulary. A topic t is a discrete distribution
over K words with probability vector ����t. Each document n
has its own distribution over topics given by probabilities ����n.

In our compound HDP-DBM model, we will use a
hierarchical topic model as a prior over the activities of the
DBM’s top-level features. Specifically, the term “document”
will refer to the top-level multinomial unit hð3Þ, and M

“words” in the document will represent the M samples, or
active DBM’s top-level features, generated by this multi-
nomial unit. Words in each document are drawn by
choosing a topic t with probability �nt, and then choosing
a word w with probability �tw. We will often refer to topics
as our learned higher level features, each of which defines a
topic specific distribution over DBM’s hð3Þ features. Let h

ð3Þ
in

be the ith word in document n, and xin be its topic. We can
specify the following prior over hð3Þ:

��nj�� � Dirð�����Þ; for each document n ¼ 1; . . . ; N;

��tj		 � Dirð
		Þ; for each topic t ¼ 1; . . . ;T ;

xinj��n � Multð1; ����nÞ; for each word i ¼ 1; . . . ;M;

h
ð3Þ
in jxin; ����xin � Multð1; ����xinÞ;

where ���� is the global distribution over topics, 				 is the
global distribution over K words, and � and 
 are
concentration parameters.

Let us further assume that our model is presented with a
fixed two-level category hierarchy. In particular, suppose
that N documents, or objects, are partitioned into C basic
level categories (e.g., cow, sheep, car). We represent such a
partition by a vector zb of length N , each entry of which is
zbn 2 f1 . . .Cg. We also assume that our C basic-level
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Fig. 1. Left: Multinomial DBM model: The top layer represents M softmax
hidden units hð3Þ which share the same set of weights. Right: A different
interpretation: M softmax units are replaced by a single multinomial unit
which is sampled M times.

5. Our experiments reveal that using DBNs instead of DBMs decreased
model performance.



categories are partitioned into S supercategories (e.g.,

animal, vehicle), represented by a vector zs of length C,

with zsc 2 f1 . . .Sg. These partitions define a fixed two-level

tree hierarchy (see Fig. 2). We will relax this assumption

later by placing a nonparametric prior over the category

assignments.
The hierarchical topic model can be readily extended to

modeling the above hierarchy. For each document n that

belongs to the basic category c, we place a common Dirichlet

prior over ����n with parameters ����ð1Þc . The Dirichlet parameters

����ð1Þ are themselves drawn from a Dirichlet prior with level-2

parameters ����ð2Þ, common to all basic-level categories that

belong to the same supercategory, and so on. Specifically,

we define the following hierarchical prior over hð3Þ:

��ð2Þs j����ð3Þg � Dir
�
�ð3Þ��ð3Þg

�
; for each superclass s ¼ 1; . . . ; S;

��ð1Þc j����
ð2Þ
zsc
� Dir

�
�ð2Þ����

ð2Þ
zsc

�
; for each basic-classc ¼ 1; . . . ; C;

����nj����ð1Þzbn � Dir
�
�ð1Þ����

ð1Þ
zbn

�
; for each document n ¼ 1; . . . ; N;

xinj����n � Multð1; ����nÞ; for each word i ¼ 1; . . . ;M;

����tj
; 				 � Dirð
				Þ;

h
ð3Þ
in jxin; ����xin � Multð1; ����xinÞ;

ð16Þ

where ����ð3Þg is the global distribution over topics, ����ð2Þs is the

supercategory specific, and ����ð1Þc is the class specific

distribution over topics, or higher level features. These

high-level features in turn define topic-specific distribution

over hð3Þ features, or “words” in our DBM model. Finally,

�ð1Þ, �ð2Þ, and �ð3Þ represent concentration parameters

describing how close ����s are to their respective prior means

within the hierarchy.
For a fixed number of topics T , the above model

represents a hierarchical extension of the latent Dirichlet

allocation (LDA) model [4]. However, we typically do not

know the number of topics a-priori. It is therefore natural to

consider a nonparametric extension based on the HDP

model [38], which allows for a countably infinite number of

topics. In the standard HDP notation, we have the following:

Gð3Þg j
; �; 	 � DPð�;Dirð
				ÞÞ;
Gð2Þs j�ð3Þ; Gð3Þ � DP

�
�ð3Þ; Gð3Þg

�
;

Gð1Þc j�ð2Þ; Gð2Þ � DP
�
�ð2Þ; G

ð2Þ
zsc

�
;

Gnj�ð1Þ; Gð1Þ � DP
�
�ð1Þ; G

ð1Þ
zbn

�
;

�����injGn � Gn;

h3
inj�����in � Mult

�
1; �����in

�
;

ð17Þ

where Dirð
				Þ is the base-distribution, and each ����� is a
factor associated with a single observation h

ð3Þ
in . Making use

of topic index variables xin, we denote �����in ¼ ����xin (see (16)).
Using a stick-breaking representation, we can write

Gð3Þg ð�Þ ¼
X1
t¼1

�
ð3Þ
gt ��t ; G

ð2Þ
s ð�Þ

X1
t¼1

�
ð2Þ
st ��t ;

Gð1Þc ð�Þ ¼
X1
t¼1

�
ð1Þ
ct ��t ; Gnð�Þ ¼

X1
t¼1

�nt��t ;

ð18Þ

which represent sums of point masses. We also place
Gamma priors over concentration parameters as in [38].

The overall generative model is shown in Fig. 2. To
generate a sample, we first draw M words, or activations of
the top-level features, from the HDP prior over hð3Þ given by
(17). Conditioned on hð3Þ, we sample the states of v from the
conditional DBM model given by (15).

3.2 Modeling the Number of Supercategories

So far we have assumed that our model is presented with a
two-level partition z ¼ fzs; zbg that defines a fixed two-level
tree hierarchy. We note that this model corresponds to a
standard HDP model that assumes a fixed hierarchy for
sharing parameters. If, however, we are not given any level-1
or level-2 category labels, we need to infer the distribution
over the possible category structures. We place a nonpara-
metric two-level nested Chinese restaurant prior (CRP) [5]
over z, which defines a prior over tree structures and is
flexible enough to learn arbitrary hierarchies. The main
building block of the nested CRP is the Chinese restaurant
process, a distribution on partition of integers. Imagine a
process by which customers enter a restaurant with an
unbounded number of tables, where the nth customer
occupies a table k drawn from

P ðzn ¼ kjz1 . . . zn�1Þ ¼
nk

n� 1þ � ; nk > 0;

�

n� 1þ � ; k is new;

8><
>: ð19Þ

where nk is the number of previous customers at table k and
� is the concentration parameter.

The nested CRP, nCRPð�Þ, extends CRP to nested
sequence of partitions, one for each level of the tree. In
this case each observation n is first assigned to the
supercategory zsn using (19). Its assignment to the basic-
level category zbn, which is placed under a supercategory zsn,
is again recursively drawn from (19). We also place a
Gamma prior �ð1; 1Þ over �. The proposed model allows for
both: a nonparametric prior over potentially unbounded
number of global topics, or higher level features, as well as
a nonparametric prior that allows learning an arbitrary tree
taxonomy.
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Fig. 2. HDP prior over the states of the DBM’s top-level features hð3Þ.



Unlike in many conventional HB models, here we infer
both the model parameters as well as the hierarchy for
sharing those parameters. As we show in the experimental
results section, both sharing higher level features and
forming coherent hierarchies play a crucial role in the
ability of the model to generalize well from one or few
examples of a novel category. Our model can be readily
used in unsupervised or semi-supervised modes, with
varying amounts of label information at different levels of
the hierarchy.

4 INFERENCE

Inferences about model parameters at all levels of hierarchy
can be performed by MCMC. When the tree structure z of
the model is not given, the inference process will alternate
between fixing z while sampling the space of model
parameters, and vice versa.

Sampling HDP parameters. Given the category assignment
vector z and the states of the top-level DBM features hð3Þ, we
use the posterior representation sampler of [37]. In parti-
cular, the HDP sampler maintains the stick-breaking weights
f����gNn¼1, f����ð1Þc ; ����ð2Þs ; ����ð3Þg g and topic indicator variables x
(parameters ���� can be integrated out). The sampler alternates
between: 1) sampling cluster indices xin using Gibbs updates
in the Chinese restaurant franchise (CRF) representation of
the HDP; 2) sampling the weights at all three levels
conditioned on x using the usual posterior of a DP.

Conditioned on the draw of the superclass DP Gð2Þs and
the state of the CRF, the posteriors over Gð1Þc become
independent. We can easily speed up inference by sampling
from these conditionals in parallel. The speedup could be
substantial, particularly as the number of the basic-level
categories becomes large.

Sampling category assignments z. Given the current
instantiation of the stick-breaking weights, for each input n
we have

ð�1;n; . . . ; �T ;n; �new;nÞ �
Dir
�
�ð1Þ�

ð1Þ
zn;1

; . . . ; �ð1Þ�
ð1Þ
zn;T

; �ð1Þ�ð1Þzn;new

�
:

ð20Þ

Combining the above likelihood term with the CRP prior (19),
the posterior over the category assignment can be calculated
as follows:

p
�
znj����n; z�n; ����ð1Þ

�
/ p
�
����nj����ð1Þ; zn

�
pðznjz�nÞ; ð21Þ

where z�n denotes variables z for all observations other
than n. When computing the probability of placing ����n under
a newly created category, its parameters are sampled from
the prior.

Sampling DBM’s hidden units. Given the states of the
DBM’s top-level multinomial unit hð3Þn , conditional samples
from P ðhð1Þn ;hð2Þn jhð3Þn ;vnÞ can be obtained by running a
Gibbs sampler that alternates between sampling the states
of hð1Þn independently given hð2Þn , and vice versa. Condi-
tioned on topic assignments xin and hð2Þn , the states of the
multinomial unit hð3Þn for each input n are sampled using
Gibbs conditionals:

P
�
h
ð3Þ
in jhð2Þn ;h

ð3Þ
�in;xn

�
/ P

�
hð2Þn jhð3Þn

�
P
�
h
ð3Þ
in jxin

�
; ð22Þ

where the first term is given by the product of logistic
functions (see (15)):

P
�
hð2Þn jhð3Þn

�
¼
Y
l

P
�
h
ð2Þ
ln jhð3Þn

�
; with

P
�
h
ð2Þ
l ¼ 1jhð3Þ

�
¼ 1

1þ exp
�
�
P

k W
ð3Þ
lk h

ð3Þ
k

� ; ð23Þ

and the second term P ðhð3Þin Þ is given by the multinomial:
Multð1; ����xinÞ (see (17)). In our conjugate setting, para-
meters ���� can be further integrated out.

Fine-tuning DBM. Finally, conditioned on the states of
hð3Þ, we can further fine-tune low-level DBM parameters
    ¼ fWð1Þ;Wð2Þ;Wð3Þg by applying approximate maximum
likelihood learning (see Section 2) to the conditional DBM
model of (15). For the stochastic approximation algorithm,
since the partition function depends on the states of hð3Þ, we
maintain one “persistent” Markov chain per data point
(for details see [29], [39]). As we show in our experimental
results section, fine-tuning low-level DBM features can
significantly improve model performance.

4.1 Making Predictions

Given a test input vt, we can quickly infer the approximate
posterior over h

ð3Þ
t using the mean-field of (6), followed by

running the full Gibbs sampler to get approximate samples
from the posterior over the category assignments. In
practice, for faster inference, we fix learned topics �t and
approximate the marginal likelihood that h

ð3Þ
t belongs to

category zt by assuming that document specific DP can be
well approximated by the class-specific6 DP Gt � Gð1Þzt
(see Fig. 2). Hence, instead of integrating out document
specific DP Gt, we approximate

P ðhð3Þt jzt; Gð1Þ; ����Þ ¼
Z
Gt

P ðhð3Þt j����;GtÞP ðGtjGð1Þzt
ÞdGt

� P ðhð3Þt j����;Gð1Þzt
Þ;

ð24Þ

which can be computed analytically by integrating out
topic assignments xin (17). Combining this likelihood term
with nCRP prior P ðztjz�tÞ of (19) allows us to efficiently
infer approximate posterior over category assignments. In
all of our experimental results, computing this approx-
imate posterior takes a fraction of a second, which is
crucial for applications, such as object recognition or
information retrieval.

5 EXPERIMENTS

We present experimental results on the CIFAR-100 [17],
handwritten character [18], and human motion capture
recognition datasets. For all datasets, we first pretrain a
DBM model in unsupervised fashion on raw sensory input
(e.g., pixels, or three-dimensional joint angles), followed by
fitting an HDP prior which is run for 200 Gibbs sweeps.
We further run 200 additional Gibbs steps to fine-tune
parameters of the entire compound HDP-DBM model. This
was sufficient to obtain good performance. Across all
datasets, we also assume that the basic-level category
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6. We note that Gð1Þzt
¼ E½GtjGð1Þzt

�.



labels are given, but no supercategory labels are available.
We must infer how to cluster basic categories into
supercategories at the same time as we infer parameter
values at all levels of the hierarchy. The training set
includes many examples of familiar categories but only a
few examples of a novel class. Our goal is to generalize
well on a novel class.

In all experiments, we compare performance of HDP-
DBM to the following alternative models. The first two
models, stand-alone DBMs and DBNs [12], used three
layers of hidden variables and were pretrained using a
stack of RBMs. To evaluate classification performance of
DBNs and DBMs, both models were converted into
multilayer neural networks and were discriminatively
fine-tuned using backpropagation algorithm (see [29] for
details). Our third model, “Flat HDP-DBM,” always used a
single supercategory. The Flat HDP-DBM approach,
similar in spirit to the one-shot learning model of [11],
could potentially identify a set of useful high-level features
common to all categories. Our fourth model used a version
of SVM that implements cost-sensitive learning.7 The basic
idea is to assign a larger penalty value for misclassifying
examples that arise from the underrepresented class. In our
setting, this model performs slightly better compared to a
standard SVM classifier. Our last model used a simple
k nearest neighbors (k-NN) classifier. Finally, using HDPs
on top of raw sensory input (i.e., pixels, or even image-
specific GIST features) performs far worse compared to our
HDP-DBM model.

5.1 CIFAR-100 Data Set

The CIFAR-100 image dataset [17] contains 50,000 training
and 10,000 test images of 100 object categories (100 per
class), with 32	 32	 3 RGB pixels. Extreme variability in
scale, viewpoint, illumination, and cluttered background
makes the object recognition task for this dataset quite
difficult. Similarly to [17], to learn good generic low-level
features, we first train a two-layer DBM in completely
unsupervised fashion using 4 million tiny images8 [40].
We use a conditional Gaussian distribution to model
observed pixel values [13], [17]. The first DBM layer

contained 10,000 binary hidden units, and the second
layer contained M ¼ 1;000 softmax units.9 We then fit an
HDP prior over hð2Þ to the 100 object classes. We also
experimented with a three-layer DBM model, as well as
various softmax parameters: M ¼ 500 and M ¼ 2;000. The
difference in performance was not significant.

Fig. 3 displays a random subset of the training data, first
and second layer DBM features, as well as higher level
class-sensitive features, or topics, learned by the HDP
model. Second layer features were visualized as a weighted
linear combination of the first layer features as in [21]. To
visualize a particular higher level feature, we first sample
M words from a fixed topic �t, followed by sampling RGB
pixel values from the conditional DBM model. While DBM
features capture mostly low-level structure, including
edges and corners, the HDP features tend to capture higher
level structure, including contours, shapes, color compo-
nents, and surface boundaries in the images. More
importantly, features at all levels of the hierarchy evolve
without incorporating any image-specific priors. Fig. 4
shows a typical partition over 100 classes that our model
discovers with many supercategories containing semanti-
cally similar classes.

Table 1 quantifies performance using the area under the
ROC curve (AUROC) for classifying 10,000 test images as
belonging to the novel versus all of the other 99 classes. We
report 2*AUROC-1, so zero corresponds to the classifier
that makes random predictions. The results are averaged
over 100 classes using “leave-one-out” test format. Based on
a single example, the HDP-DBM model achieves an
AUROC of 0.36, significantly outperforming DBMs, DBNs,
SVMs, and 1-NN using standard image-specific GIST
features10 that achieve an AUROC of 0.26, 0.25, 0.20, and
0.27, respectively. Table 1 also shows that fine-tuning
parameters of all layers jointly as well as learning super-
category hierarchy significantly improves model perfor-
mance. As the number of training examples increases, the
HDP-DBM model still outperforms alternative methods.
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Fig. 3. A random subset of the training images along with the first and second layer DBM features and higher level class-sensitive HDP features/
topics. To visualize higher level features, we first sample M words from a fixed topic �t, followed by sampling RGB pixel values from the conditional
DBM model.

7. We used LIBSVM software package of [7].
8. The dataset contains random images of natural scenes downloaded

from the web.

9. The generative training of the DBM model using 4 million images
takes about a week on the Intel Xeon 3.00 GHz. Fitting an HDP prior to the
DBMs top-level features on the CIFAR dataset takes about 12 hours.
However, at test time, using variational inference and approximation of
(24), it takes a fraction of a second to classify a test example into its
corresponding category.

10. Gist descriptors have previously been used for this dataset [41].



With 50 training examples, however, all models perform
about the same. This is to be expected, as with more
training examples, the effect of the hierarchical prior
decreases.

We next illustrate the ability of the HDP-DBM to
generalize from a single training example of a “pear” class.
We trained the model on 99 classes containing 500 training
images each, but only one training example of a “pear”
class. Fig. 5 shows the kind of transfer our model is
performing, where we display training examples along with
eight most probable topics �t, ordered by hand. The model
discovers that pears are like apples and oranges, and not
like other classes of images, such as dolphins, that reside in
very different parts of the hierarchy. Hence the novel
category can inherit the prior distribution over similar high-
level shape and color features, allowing the HDP-DBM to
generalize considerably better to new instances of the
“pear” class.

We next examined the generative performance of the
HDP-DBM model. Fig. 6 shows samples generated by the
HDP-DBM model for four classes: “Apple,” “Willow Tree,”
“Elephant,” and “Castle.” Despite extreme variability in

scale, viewpoint, and cluttered background, the model is
able to capture the overall structure of each class. Fig. 7
shows conditional samples when learning with only three
training examples of a novel class. For example, based on
only three training examples of the “Apple” class, the HDP-
DBM model is able to generate a rich variety of new apples.
Fig. 8 further quantifies performance of HDP-DBM, DBM,
and SVM models for all object categories when learning
with only three examples. Observe that over 40 classes
benefit in various degrees from both: learning a hierarchy as
well as learning low and high-level features.

5.2 Handwritten Characters

The handwritten characters dataset [18] can be viewed as
the “transpose” of the standard MNIST dataset. Instead of
containing 60,000 images of 10 digit classes, the dataset
contains 30,000 images of 1,500 characters (20 examples
each) with 28	 28 pixels. These characters are from
50 alphabets from around the world, including Bengali,
Cyrillic, Arabic, Sanskrit, Tagalog (see Fig. 9). We split the
dataset into 15,000 training and 15,000 test images (10 ex-
amples of each class). Similarly to the CIFAR dataset, we
pretrain a two-layer DBM model, with the first layer
containing 1,000 hidden units, and the second layer
containing M ¼ 100 softmax units. The HDP prior over
hð2Þ was fit to all 1,500 character classes.
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TABLE 1
Classification Performance on the Test Set Using 2�AUROC� 1

The results in bold correspond to ROCs that are statistically indistinguishable from the best (the difference is not statistically significant).

Fig. 4. A typical partition of the 100 basic-level categories. Many of the
discovered supercategories contain semantically coherent classes.

Fig. 5. Learning to learn: Training examples along with the eight most
probable topics �t, ordered by hand.



Fig. 9 displays a random subset of training images, along

with the first and second layer DBM features, as well as

higher level class-sensitive HDP features. The first layer
features capture low-level features, such as edges and
corners, while the HDP features tend to capture higher level
parts, many of which resemble pen “strokes,” which is
believed to be a promising way to represent characters [18].
The model discovers approximately 50 supercategories, and
Fig. 10 shows a typical partition of some of the classes into
supercategories which share the same prior distribution
over “strokes.” Similarly to the CIFAR dataset, many of the
supercategories contain meaningful groups of characters.

Table 1 further shows results for classifying 15,000 test
images as belonging to the novel versus all of the other
1,499 character classes. The results are averaged over
200 characters chosen at random, using the “leave-one-
out” test format. The HDP-DBM model significantly out-
performs other methods, particularly when learning char-
acters with few training examples. This result demonstrates
that the HDP-DBM model is able to successfully transfer
appropriate prior over higher level “strokes” from pre-
viously learned categories.

We next tested the generative aspect the HDP-DBM
model. Fig. 11 displays learned superclasses along with
examples of entirely novel characters that have been
generated by the model for the same superclass. In
particular, the left panels show training characters in one
supercategory with each row displaying a different ob-
served character and each column displaying a drawing
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Fig. 8. Performance of HDP-DBM, DBM, and SVMs for all object
classes when learning with three examples. Object categories are
sorted by their performance.

Fig. 7. Conditional samples generated by the HDP-DBM model when learning with only three training examples of a novel class: Top: Three training
examples, Bottom: 49 conditional samples. Best viewed in color.

Fig. 6. Class-conditional samples generated from the HDP-DBM model. Observe that the model despite extreme variability, the model is able to
capture a coherent structure of each class. See in color for better visualization.



produced by a different subject. The right panels show
examples of novel synthesized characters in the corre-
sponding supercategory, where each row displays a
different synthesized character, whereas each column
shows a different example generated at random by the
HDP-DBM model. Note that many samples look realistic,
containing coherent, long-range structure, while at the same
time being different from existing training images.

Fig. 12 further shows conditional samples when learning
with only three training examples of a novel character. Each
panel shows three figures: 1) three training examples of a
novel character class, 2) 12 synthesized examples of that
class, and 3) samples of the training characters in the same
supercategory that the novel character has been grouped
under. Many of the novel characters are grouped together
with related classes, allowing each character to inherit the
prior distribution over similar high-level “strokes,” and
hence generalizing better to new instances of the corre-
sponding class (see the supplemental materials, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2012.269, for

a much richer class of generated samples). Using DBNs
instead of DBMs produced far inferior generative samples
when generating new characters as well as when learning
from three examples.

5.3 Motion Capture

Results on the CIFAR and Character datasets show that the
HDP-DBM model can significantly outperform many other
models on object and character recognition tasks. Features
at all levels of the hierarchy were learned without assuming
any image-specific priors, and the proposed model can be
applied in a wide variety of application domains. In this
section, we show that the HDP-DBM model can be applied
to modeling human motion capture data.

The human motion capture dataset consists of sequences
of 3D joint angles plus body orientation and translation, as
shown in Fig. 13, and was preprocessed to be invariant to
isometries [34]. The dataset contains 10 walking styles,
including normal, drunk, graceful, gangly, sexy, dinosaur,
chicken, old person, cat, and strong. There are 2,500 frames
of each style at 60fps, where each time step was represented
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Fig. 10. Some of the learned supercategories that share the same prior distribution over “strokes.” Many of the discovered supercategories contain
meaningful groupings of characters.

Fig. 9. A random subset of the training images along with the first and second layer DBM features, as well as higher level class-sensitive HDP
features/topics. To visualize higher level features, we first sample M words from a fixed topic �t, followed by sampling pixel values from the
conditional DBM model.



by a vector of 58 real-valued numbers. The dataset was split

at random into 1,500 training and 1,000 test frames of each

style. We further preprocessed the data by treating each

window of 10 consecutive frames as a single 58 � 10 ¼ 580-d

data vector.
For the two-layer DBM model, the first layer contained

500 hidden units, with the second layer containing M ¼ 50

softmax units. The HDP prior over the second-layer

features was fit to various walking styles. Using “leave-

one-out” test format, Table 1 shows that the HDP-DBM

model performs much better compared to other models

when discriminating between existing nine walking styles

versus novel walking style. The difference is particularly

large in the regime when we observe only a handful of

training examples of a novel walking style.

6 CONCLUSIONS

We developed a compositional architecture that learns an

HDP prior over the activities of top-level features of the

DBM model. The resulting compound HDP-DBM model is

able to learn low-level features from raw, high-dimen-

sional sensory input, high-level features, as well as a

category hierarchy for parameter sharing. Our experimen-

tal results show that the proposed model can acquire new

concepts from very few examples in a diverse set of

application domains.
The compositional model considered in this paper was

directly inspired by the architecture of the DBM and HDP,

but it need not be. Indeed, any other deep learning module,

including DBNs, sparse autoencoders, or any other HB

model, can be adapted. This perspective opens a space of
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Fig. 12. Each panel shows three figures from left to right: 1) three training examples of a novel character class, 2) 12 synthesized examples of that
class, and 3) training characters in the same supercategory that the novel character has been assigned to.

Fig. 11. Within each panel: Left: Examples of training characters in one supercategory: Each row is a different training character and each column is
a drawing produced by a different subject. Right: Examples of novel sampled characters in the corresponding supercategory: Each row is a different
sampled character, and each column is a different example generated at random by the model.



compositional models that may be more suitable for
capturing the human-like ability to learn from few examples.
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