
STA 4503, Spring 2013 — Theory Assignment #4

Due April 10 by 5pm (slip it under my door). Please hand it in on 8 1/2 by 11 inch paper, stapled
in the upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general terms with
other students, but the work you hand in should be your own. In particular, you should not leave
any discussion with someone else with any written notes (either on paper or in electronic form).

In this assignment, you will evaluate the variance of two estimators of marginal likelihood or its
inverse. For the first estimator — what we will here call the “mean likelihood estimator” — the
marginal likelihood is estimated by the average likelihood for parameter values drawn from the prior.
For the second estimator — the infamous “‘harmonic mean estimator” — the inverse (reciprocal)
of the marginal likelihood is estimated by the average of the inverse likelihood for parameter values
drawn from the posterior.

The mean likelihood estimator is simply the sample version of the definition of the marginal
likelihood, which is

Z = P (x) =
∫

P (x|θ)P (θ)dθ

Given θ1, . . . , θN sampled independently from the prior, P (θ), the mean likelihood estimate is

Ẑm =
1

N

N∑

i=1

P (x|θi)

This is an unbiased estimate of Z, and from the Law of Large Numbers, it is consistent for any
proper Bayesian model for which Z is well-defined.

The harmonic mean estimator is simply the sample version of the following formula for the
inverse of the marginal likelihood:

Z−1 =
∫ 1

P (x|θ)P (θ|x)dθ

This formula is valid provided that P (x|θ) is non-zero for all θ for which P (θ) is non-zero. Given
θ1, . . . , θN sampled independently from the posterior, P (θ|x), the harmonic mean estimate for Z−1

is

Ẑ−1

h
=

1

N

N∑

i=1

1

P (x|θi)

Given the assumption above, this is an unbiased estimate of Z−1, and from the Law of Large
Numbers, it is consistent. In practice, it may be difficult to sample independently from the posterior,
but these properties will often still hold for parameter values sampled from the posterior using
MCMC.

Consistency of an estimator is a weak property, however. For practical purposes, it is highly
desirable for the expressions within the summations above to have finite variances, so that the
Central Limit Theorem will apply (though further conditions are needed when the points are not
independent, but come from an MCMC run). The accuracy of the estimator will then improve at
the usual 1/

√
N rate, and one can then find a confidence interval based on the distribution of the

estimator being (asymptotically) Gaussian. Of course, from a practical standpoint, a very large
variance is almost as bad as an infinite variance.



In this assignment, you will evaluate the variance of these two estimators for a simple model
in which binary observations, x1, . . . , xn, are assumed, conditional on a parameter θ in (0, 1), to
be independent, with all xi having the Bernoulli(θ) distribution. The prior distribution for θ is
Beta(a,b), where a and b are known positive constants.

You should look at the situation when the n observations consist of m zeros and 2m ones (so
n = 3m). You should consider what happens with data sets of this sort for all positive integers m.

Specifically, for all m, a, and b, you should determine whether the variance of Ẑm is finite, and
whether the variance of Ẑ−1

h
is finite. When the variance of one of these estimators is finite, you

should find an explicit, and not terribly complex, formula for it, as a function of m, a, b, and N .

From these formulas, you should find formulas for N times the variance of log Ẑm and N times
the variance of − log Ẑ−1

h
that are valid in the limit as N goes to infinity.

Finally, you should use theses formulas to investigate, either theoretically or empirically, which
of the two methods is better (for data with m zeros and 2m ones). Which is better might of course
depend on the values of a, b, and m.


