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Random Vectors

Notation:

Let X be a random vector with p elements, so that X = [X1, . . . , Xp]
′, where ′ denotes

transpose. (By convention, our vectors are column vectors unless otherwise indicated.)

We denote a particular realized value of X by x.

Expection:

The expectation (expected value, mean) of a random vector X is E(X) =
∫

xf(x)dx,
where f(x) is the joint probability density function for the distribution of X.

We often denote E(X) by µ, with µj = E(Xj) being the expectation of the j’th element
of X.

Variance:

The variance of the random variable Xj is Var(Xj) = E[(Xj−E(Xj))
2], which we some-

times write as σ2
j .

The standard deviation of Xj is
√

Var(Xj) = σj.

Covariance and correlation:

The covariance of Xj and Xk is Cov(Xj, Xk) = E[(Xj−E(Xj))(Xk−E(Xk))], which we
sometimes write as σjk. Note that Cov(Xj, Xj) is the variance of Xj, so σjj = σ2

j .

The correlation of Xj and Xk is Cov(Xj, Xk)/(σjσk), which we sometimes write as ρjk.
Note that correlations are always between −1 and +1, and ρjj is always one.

Covariance and correlation matrices:

The covariances for all pairs of elements of X = [X1, . . . , Xp]
′ can be put in a matrix called

the covariance matrix:

Σ =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
...

...
σp1 σp2 · · · σpp


Note that the covariance matrix is symmetrical, with the variances of the elements on the
diagonal.

The covariance matrix can also be written as Σ = E [ (X − E(X)) (X − E(X))′ ].

Similarly, the correlations can be put into a a symmetrical correlation matrix, which will
have ones on the diagonal.
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Multivariate Sample Statistics

Notation:

Suppose we have n observations, each with values for p variables. We denote the value of
variable j in observation i by xij, and the vector of all values for observation i by xi.

We often view the observed xi as a random sample of realizations of a random vector X
with some (unknown) distribution.

The is potential ambiguity between the notation xi for observation i, and the notation xj

for a realization of the random variable Xj. (The textbook uses bold face for xi.)

I will (try to) reserve i for indexing observations, and use j and k for indexing variables,
but the textbook somtimes uses i to index a variable.

Sample means:

The sample mean of variable j is x̄j = 1
n

n∑
i=1

xij.

The sample mean vector is x̄ = [x̄1, . . . , x̄p]
′.

If the observations all have the same distribution, the sample mean vector, x̄, is an unbiased
estimate of the mean vector, µ, of the distribution from which these observations came.

Sample variances:

The sample variance of variable j is s2
j = 1

n−1

n∑
i=1

(xij − x̄j)
2.

If the observations all have the same distribution, the sample variance, s2
j , is an estimate

of the variance, σ2
j , of the distribution for Xj, and will be an unbiased estimate if the

observations are independent.

Sample covariance and correlation:

The sample covariance of variable j with variable k is 1
n−1

n∑
i=1

(xij−x̄j)(xik−x̄k).

The sample covariance is denoted by sjk. Note that sjj equals s2
j , the sample variance of

variable j.

The sample correlation of variable j with variable k is sjk/(sjsk), often denoted by rjk.

Sample covariance and correlation matrices:

The sample covariances may be arranged as the sample covariance matrix:

S =


s11 s12 · · · s1p

s21 s22 · · · s2p
...

...
...

...
sp1 sp2 · · · spp


The sample covariance matrix can also be computed as S = 1

n−1

n∑
i=1

(xi − x̄)(xi − x̄)′.

Similarly, the sample correlations may be arranged as the sample correlation matrix, some-
times denoted R (though the textbook also uses R for the population correlation matrix).
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Linear Combinations of Random Variables

Define the random variable Y = a1X1 + a2X2 + · · ·+ apXp, which can be written as Y = a′X,
where a = [a1, a2, . . . , ap]

′.

Then one can show that E(Y ) = a′µ and Var(Y ) = a′Σa, where µ = E(X) and Σ is the
covariance matrix for X.

For a random vector of dimension q defined as Y = AX, with A being a q × p matrix, one can
show that E(Y ) = Aµ and Var(Y ) = AΣA′, where Var(Y ) is the covariance matrix of Y .

Similarly, if xi is the i’th observed vector, and we define yi = Axi, then the sample mean vector
of y is ȳ = Ax̄ and the sample covariance matrix of y is ASA′, where S is the sample covariance
matrix of x.

Positive definite matrices

A symmetric square matrix, A, is said to be positive definite if v′Av > 0 for any non-zero vector
v. A is said to be positive semi-definite (or non-negative definite) if v′Av ≥ 0 for all v.

Covariance and correlation matrices, and sample covariance and sample correlation matrices, are
always positive semi-definite.

The Multivariate Normal (Gaussian) Distribution

If X is a random vector of dimension p, the multivariate normal (also called Gaussian) dis-
tribution for X with mean µ and covariance matrix Σ will have the joint probability density
function

f(x) =
1

(2π)p/2

1

(det Σ)1/2
exp (−1

2
(x− µ)′Σ−1(x− µ))

Such a multivariate normal distribution, written as N(µ, Σ), is defined for any vector µ of di-
mension p and any p× p positive definite matrix Σ.

If X has the N(µ, Σ) distribution, then D2 = (X −µ)′Σ−1(X −µ) has the χ2 distribution with
p degrees of freedom.

If x1, . . . , xn are i independent observations on p variables coming from a multivariate normal
distribution, with sample mean x̄ and sample covariance matrix S, then d2

i = (xi−x̄)′S−1(xi−x̄)
will have approximately a χ2 distribution with p degrees of freedom (for large n).

Eigenvectors and eigenvalues of positive definite matrices

By definition, a non-zero vector e is an eigenvector of a square matrix M , with eigenvalue λ, if
Me = λe.

The eigenvectors of a symmetric, positive definite matrix are real (no imaginary part), and their
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eigenvalues are positive reals. (For symmetric, positive semi-definite matrices, the eigenvectors
are real and the eigenvalues are non-negative reals).

The spectral decomposition theorem: If A is a k× k symmetric real matrix, it is possible to find
a set of k eigenvectors of A that are orthogonal and have length one, and if e1, . . . , ek are any
such set of eigenvectors, with eigenvalues λ1, . . . , λk, then

A = λ1e1e
′
1 + · · · + λkeke

′
k

Principal Component Analysis (PCA)

The principal component directions of a p×p covariance or correlation matrix are the eigenvectors,
e1, e2, . . . , ep, ordered by decreasing eigenvalue, λ1 ≥ λ2 ≥ · · · ≥ λp.

The principal components have the property that e1 is the direction with greatest variance, e2 is
the direction of greatest variance subject to the constraint that e2 be orthogonal to e1, etc.

From n observations, x1, . . . , xn, each a vector of p variables, we find the principal components
from either the sample covariance matrix or the sample correlation matrix. The projection of
observation i on the k’th principal component direction is zik = e′kxi. We may decide to reduce
the observations to just the projections on the first k principal component directions, with k less
than p.

Various forms of the multivariate T 2 test

These T 2 tests generalize the one-sample and two-sample t tests for univariate data. The data is
a sample of n observations of p variables, or two samples of n1 and n2 observations of p variables.

T 2 statistic for one sample:
T 2 = n(x− µ0)

′S−1(x− µ0)

The distribution of T 2 under the null hypothesis that the mean is µ0 is [(n−1)p/(n−p)]Fp,n−p,
which is approximately χ2

p when n− p and n/p are both large.

T 2 statistic for two samples, using pooled covariance estimate:

T 2 = ((x1 − x2) − δ0)
′ [(1/n1 + 1/n2)Spooled]

−1 ((x1 − x2) − δ0)

Here, Spooled = ((n1−1)S1+(n2−1)S2) / (n1+n2−2). The distribution of T 2 under the null hy-
pothesis that the difference in means of the groups is δ0 is [(n1+n2−2)p/(n1+n2−p−1)]Fp,n1+n2−p−1.
This distribution is approximately χ2

p when n1 + n2 − p and (n1 + n2) / p are both large.

T 2 statistic for two samples, covariances not necessarily equal:

T 2 = ((x1 − x2) − δ0)
′ [(1/n1)S1 + (1/n2)S2]

−1 ((x1 − x2) − δ0)

There is no exact formula for the distribution of T 2 in this case, but there are approximations us-
ing an F distribution, and when both n1−p and n2−p are large, the distribution is approximately
χ2

p.
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Bonferroni correction with multiple tests

If m hypothesis tests are performed, and we reject those of the m null hypotheses for which the
p-value is less than α/m, then we are guaranteed that the probability of rejecting any true null
hypothesis is no greater than α.

Similarly, if we create m level 1 − α/m confidence intervals, the probability that all confidence
intervals will contain the true parameter value is at least 1− α.

False Discovery Rates

Define the False Discovery Rate (FDR) as the expected fraction of rejected hypotheses that are
false (this fraction is defined to be zero if no hypotheses are rejected).

Suppose we fix a limit on False Discovery Rate of α, in advance of analysing the data. We
perform m hypothesis tests, and order the p-values obtained as p(1) ≤ p(2) ≤ · · · ≤ p(m). We then
set k as follows:

k = max
{

i : p(i) ≤ (i/m) α
}

and we reject all those hypotheses for which the p-value is p(k) or less. (We reject no hypotheses
if there is no i with p(i) ≤ (i/m)α).

Then the False Discovery Rate is bounded by FDR ≤ α.
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