
STA 437/1005, Fall 2010 — Assignment #2

Due at start of lecture on December 6. Please hand it in on 8 1/2 by 11 inch paper,
stapled in the upper-left corner, without any folder or other packaging around it. If really
necessary, you can submit it by email (to radford@stat.utoronto.ca), but please do this
only if you can’t easily hand in a paper copy.

I will go over the solution in class on December 8. If you have a legitimate excuse (eg,
illness) for not handing in this assignment on time, please contact me as soon as possi-
ble, to arrange to hand it in before class on December 8, or to have the marks for this
assignment taken from other work.

This assignment is worth 10% of the course grade. It is to be done by each student
individually. You may discuss this assignment in general terms with other students, but the
work you hand in should be your own. In particular, you should not leave any discussion
of this assignment with any written notes or other recordings, nor receive any written or
other material from anyone else by other means such as email.

For this assignment, you will look further at the same gene expression dataset you looked
at in Part II of Assignment #1. In particular, you will see how logistic regression works
for this data, and look at testing which genes are related to cancer recurrence, using both
the Bonferroni correction approach, and the False Discovery Rate approach to handling
the problem of multiple tests. With complex datasets such as this one, many variations
in the analysis are possible. In the last two parts of this assignment, you will explore
whether better results can be obtained by adjusting measurements for each patient, or by
using logistic regression with quadratic terms.

You should produce a report explaining your findings, following the outline of what to
do given below. You should justifying your findings with suitable output or plots from R,
but hand in only a reasonable amount of output, not every conceivable plot. You must
hand in a listing of the R commands you used for the analysis, including the commands
used to produce the plots you hand in. You do not need to repeat in your report what I
have said about the dataset.

The dataset, along with some hints on using R for this assignment, and some relevant
lecture notes, are (or soon will be) available from the course web page, at

http://www.utstat.utoronto.ca/∼radford/sta437/

You should check the web page regularly in case there are any corrections made to the
assignment (any corrections will be highlighted in bold at the top of the web page).

Part 1: logistic regression

In Assignment 1, you tried to predict cancer recurrence by fitting a regression model by
least squares. This obviously does not match the usual assumption that residuals are
normally distributed, since the response is either 0 or 1. Here, you should try modelling
cancer recurrence using logistic regression. In R, you can use commands of the form
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fit <- glm (recur ~ ..., family = binomial)

print(summary(fit))

where ... specifies the covariates to use.

You should start by using as covariates the first five principal components found from
the covariance matrix of the log of the expression levels, with no outliers removed, and
compare with the corresponding result using least squares (with the lm function, as for As-
signment 1). You should compare both the regression coefficients found, and the predicted
probabilities of recurrence, which you can obtain with predict(fit,type="response"),
and comment on what you find. You should then investigate whether some subset of these
covariates would give a better logistic regression model.

Part 2: t tests with Bonferroni correction

Least squares or logistic regression focuses on what covariates are useful for predicting
recurrence, which does not necessarily identify all variables that are related to recurrence,
and does not clearly indicate how statistically significant any observed association is. In
this part, you will try to identify which genes are associated with recurrence using t tests,
with the Bonferroni correction for multiple testing.

You should use two-sample t tests on the log of the expression levels for each gene, for
patients with and without recurrence, without assuming that the variance in each group
is the same. This can be done with the t.test function. If g is the vector of logs of gene
expression levels in the 39 patients, and recur is the vector of recurrence indicators, the
command

t.test (g[recur==0,i], g[recur==1,i], var.equal=FALSE) $ p.value

will return the p-value for a test of the null hypothesis that the mean expression levels
for gene i are the same in the two groups. You can use a for loop in R to do this for all
1644 genes.

The Bonferroni adjustment is to multiply the p-value from t.test by the number
of tests done. You should see how many genes are then found to have expression levels
that differ significantly between the two groups, when the significance level is set as 0.1,
0.05, 0.02, 0.01, and 0.005. Compare these numbers with the numbers of genes that are
significant at these levels without the Bonferroni adjustment.

Part 3: False Discovery Rates for t tests

As discussed in class, the simultaneous guarantee from the Bonferroni adjustment may
be too stringent. Here, you will look at identifying genes whose expression levels relate
to recurrence using False Discovery Rate (FDR) to control for multiple testing, using the
same p-values from t tests as in Part 2.

The method discussed in class puts an upper bound on FDR if the i hypotheses with
smallest p-values are rejected of mp(i)/i, where m is the total number of hypotheses tested.
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If we have an estimate, m̂0, of the number of true null hypotheses, we can instead estimate
(rather than upper bound) the FDR as m̂0p(i)/i. You should look at both the upper bound
for FDR and this estimate for FDR, using an estimate m̂0 found by counting the number
of p-values above 0.7, which we might assume are for null hypotheses that are true (or at
least almost true).

Discuss the results you obtain, comparing with the results using the Bonferroni ad-
justment, and noting any odd or otherwise interesting aspects of what you see. You may
find it useful to look at various plots, such as a histogram of p-values or plots of estimated
FDR for different numbers of rejected hypotheses.

Part 4: adjustment of data for each patient

We don’t know all the details of how the gene expression measurements were processed
for this dataset. However, it seems possible that the measurements for each patient might
be scaled by some amount that is different for each patient, due to variation in some
physical aspect of the measurement process. This scaling would show up as a shift in the
log of the expression levels.

In this part, you will investigate whether trying to correct for such a possible shift
helps. You can find the mean of the log expression levels for each patient with rowMeans(g),
where g is the matrix or data frame of logs of expression levels for genes. (This should
produce a vector of length 39, one element per patient.) You can then produce a new
dataset, in which the mean for each patient is subtracted from the expression levels for
that patient, with an expression like g-rowMeans(g). (Note that when a vector is sub-
tracted from a matrix, R subtracts the vector from each column of the matrix.)

You should try using this adjusted data for all the parts of the analysis above. Com-
ment on whether the adjustment seems to help in predicting recurrence, and how it affects
the test results using Bonferroni adjustment or FDR estimation. Try to explain any differ-
ences you see. This may require looking at various plots or computing various informative
quantities.

Part 5: logistic regression with quadratic terms

Finally, you should investigate whether using quadratic terms in the logistic regression
model helps. (This would, for example, allow the dependence of recurrence probability
on a covariate to be non-monotonic.) To include quadratic terms in a logistic regression,
you can use a command such as

fit <- glm (recur ~ xx + I(xx^2), family=binomial)

where xx is some covariate. You can consider as covariates principal components as in
Part 1, or principal components from data with per-patient adjustment as in Part 4.
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